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7 November 2022

1 Introduction

The purpose of Goodwillie calculus is to give a setting in which one can approximate a given functor
F ∶ C → D between two ∞-categories (usually Top∗ of Sp) by polynomial functors PnF . This is
done in analogy to ordinary calculus, where one approximates a real valued function by polynomials.
The analogy is strong and much of the vocabulary in Goodwillie calculus is made to resemble ordinary
calculus. For instance, there are the notions of polynomial functors, derivatives and Taylor
tower of a functor.

F (X) → ⋯ → PnF (X) → Pn−1F (X) → ⋯ → P1F (X)

Taylor tower of F applied to an object X ∈ C.

The analogy, however, is not perfect and breaks down for instance when one looks at the identity
functor I ∶ Top∗ → Top∗. The Taylor tower of this functor is a highly non-trivial object, in opposition
to the identity map in ordinary calculus. Although this might look like bad news, the non-triviality
of the Taylor tower of I has very interesting consequences in the study of homotopy types. For
example, applying the homotopy functor to the Taylor tower of I (applied to an object X), one
obtains a sequence of homotopy groups interpolating between the homotopy groups of X and the
stable homotopy groups of X!

π∗(X) → ⋯ → π∗(PnI(X)) → π∗(Pn−1(X)) → ⋯ → π∗(P1I(X)) ≅ π
s
∗(X)

In these notes, we aim to give a very brief introduction to the subject of Goodwillie calculus.
We will define all the objects previously mentioned in the general context of ∞-categories, but
present examples and results focusing on the ∞-category of pointed topological spaces Top∗, and
mostly on the identity functor on this category. The theory was introduced and developed by
Tom Goodwillie ([Goo90],[Goo92],[Goo03]) and has since seen further developments with different
flavours and several applications (a few instances are [AM99] [BCR07] [KR02] [Heu15] [Heu21]
[Wei99] [GW99] [Bök+96]). We follow mainly the survey on chapter 1 of [Mil19].

2 Polynomial functors

Let C be an ∞-category that admits pushouts.
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Definition 1. An n-cube in C is a functor X ∶ P(I) → C, where P(I) is the poset of subsets of some
finite set I with cardinality n. An n-cube is cartesian if the canonical map

X(∅) → holim∅≠S⊂IX(S)

is an equivalence and cocartesian if

hocolimS⊊IX(S) → X(I)

is an equivalence. Moreover, an n-cube is said to be strongly cocartesian if every 2-dimensional
face is a pushout.

Remark 2.

• A cartesian (cocartesian) 0-cube is a terminal (initial) object; a cartesian (or cocartesian)
1-cube is an equivalence; a cartesian (cocartesian) 2-cube is a pullback (pushout):

X(∅) holim∅≠S⊂IX(S) X({0})

X({1}) X(I)

∼

• For n ≥ 2, a strongly cocartesian n-cube is cocartesian. For n = 0, 1, every n-cube is strongly
cocartesian.

Definition 3. (Polynomial functor) A functor F ∶ C → D is said to be n-excisive if it takes every
strongly cocartesian (n+1)-cube in C to a cartesian (n+1)-cube in D. We say that F is polynomial
if it is n-excisive for some integer n.

Denote by Excn(C,D) ⊂ Map(C,D) the ∞-category of n-excisive functors.

Example 4. For the degenerate cases n = −1, 0, F is (−1)-excisive if and only if F (X) is the terminal
object for every X ∈ C; F is 0-excisive if it is homotopically constant, i.e. F takes every morphism
in C to an equivalence in D.

Example 5. F is 1-excisive if and only if it takes pushout squares in C to pullback squares in D.
When C = D = Top∗, the prototypical example of an 1-excisive functor is

X ↦ Ω
∞(E ∧X)

where E is some spectrum. These classify the functors which are 1-excisive, reduced (i.e. that
preserve the null object) and finitary (i.e. that preserve filtered colimits).

Example 6. The identity functor I ∶ C → C is not in general n-excisive for any n. In fact, we will
see that functors can typically be approximated by polynomial functors and the approximations of
I ∶ Top∗ → Top∗ provide interesting decompositions of spaces, which would not exist if I were to be
polynomial.

Lemma 7. If F ∶ C → D is n-excisive, then it is also (n + 1)-excisive. Hence, there is a sequence of
inclusions

Exc0(C,D) ⊂ Exc1(C,D) ⊂ ⋯ ⊂ Excn(C,D) ⊂ Excn+1(C,D) ⊂ ⋯
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3 Polynomial approximation of functors

In ordinary calculus, one approximates a function around a given point x ∈ Rn
. The Goodwillie

analogue of that will be to fix an object X ∈ C and objects in ”a neighborhood of X” will mean
objects that come equipped with a morphism to X, that is objects in the slice ∞-category C/X .

Definition 8. We say that functors C → D admit n-excisive approximations at X if the inclusion

Excn(C/X ,D) ↪ Map(C/X ,D)

has a left adjoint, which we denote by P
X
n .

Note that functors in Map(C,D) restrict to Map(C/X , D). Given a functor F ∶ C → D, we will

denote by P
X
n F ∶ C/X → D the image by P

X
n of the restriction of F to Map(C/X , D).

Theorem 9. (Goodwillie [Goo03], Lurie [Lur]) Let C and D be ∞-categories such that C has pushouts
and D has sequential colimits and finite limits, which commute. Then functors C → D admit n-
excisive approximations at any object X ∈ C.

Let us consider from now on ∞-categories C and D satisfying the conditions of the previous
theorem (Top∗ and Sp are examples of such).

Example 10. The 0-excisive approximation to F at X is equivalent to the constant functor with
value F (X).

Let us assume from now on, without loss of generality, that X is the terminal object of C. In
that way, the n-excisive approximation to F ∶ C → D is again a functor C → D and will be denoted
by PnF .

Example 11. The 1-excisive approximation P1F to a functor F ∶ Top∗ → Top∗, when applied to a
finite CW-complex Y , is of the form

P1F (Y ) ≃ Ω
∞(∂1F ∧ Y )

where ∂1F is a spectrum which we’ll call the first derivative of F (at the one point space ∗).

Example 12. The 1-excisive approximation to the identity functor I ∶ Top∗ → Top∗ is the stable
homotopy functor

P1I(Y ) ≃ Ω
∞
Σ

∞
Y,

or, equivalently, ∂1I ≃ S
0
, the sphere spectrum.

4 Taylor tower

Definition 13. TheTaylor tower of F ∶ C → D atX ∈ C is the sequence of natural transformations:

F → ⋯ → P
X
n+1F → P

X
n F → ⋯ → P

X
1 F → P

X
0 F ≃ F (X)

where P
X
n+1F → P

X
n F comes from the universal property of P

X
n+1 :

NatExcn+1(C,D)(PX
n+1F, P

X
n F ) ≅ NatMap(C,D)(F, PX

n F )
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Like in ordinary calculus, the idea now is to recover the value F (Y ) for some f ∶ Y → X ∈ C/X
using the Taylor tower of F at X.

Definition 14. The taylor tower of F ∶ C → D at X ∈ C converges at Y ∈ C/X if the induced map

F (Y ) → holimnP
X
n F (Y )

is an equivalence in D.

Remark 15. The question of convergence is both very difficult and very important, especially for
general ∞-categories C and D. There is, however, a rich theory developed by Goodwillie [Goo92]
[Goo03] to study convergence in the setting of topological spaces and spectra. We shall not go into
details in this notes, only mention a case where the identity functor I ∶ Top∗ → Top∗ converges.

Example 16. The Taylor tower of I ∶ Top∗ → Top∗ at ∗ converges on simply connected spaces.

Assuming convergence of the taylor tower of a functor F ∶ C → D, one then wishes to better
understand the structure of the tower, in particular its layers.

Let us take a functor F ∶ C → D and suppose further that D is a pointed ∞-category.

Definition 17. The n-th layer of the Taylor tower of F at X is the functor D
X
n F ∶ C/X → D given

by

D
X
n F (Y ) = hofib(PX

n F (Y ) → P
X
n−1F (Y )).

These functors play the role of homogeneous polynomials in ordinary calculus.

Example 18. For functors F ∶ Top∗ → Top∗ and finite CW-complexes X, the n-th layer of F at
∗ is determined by single a spectrum ∂nF , referred to as the n-th derivative of F (at ∗), with a
symmetric group action:

DnF (X) ≃ Ω
∞(∂nF ∧ (Σ∞

X)∧n)hΣn

Example 19. The n-th derivative of I ∶ Top∗ → Top∗ is (non-equivariently) equivalent to a wedge

of (n − 1)! copies of the (1 − n)-sphere spectrum [Joh95]. In particular, ∂1I ≃ S
0
and ∂2I ≃ S

−1
, so

D2I(X) ≃ Ω
∞
Σ

−1(Σ∞
X)∧2hΣ2

.

One can use this to compute the second approximation P2I to I as it fits in the fiber sequence
D2I → P2I → P1I.

The derivatives of the identity have nice properties when applied to odd-dimensional spheres.

Theorem 20. ([AM99], Proposition 3.1) Let X be an odd-dimensional sphere. The spectrum

(∂nI ∧ (Σ∞
X)∧n)hΣn

is rationally contractible for n > 1.

Corollary 21. (Serre, 1953) If X is an odd-dimensional sphere, the map X → Σ
∞
Ω

∞
X is a rational

homotopy equivalence.

We know then that the homology of (∂nI ∧ (Σ∞
X)∧n)hΣn

is torsion. The next theorem gives us
information about how the torsion is distributed among the layers.

Theorem 22. ([AM99], [AD01]) Let X be an odd-dimensional sphere and p a prime. The homology
of (∂nI ∧ (Σ∞

X)∧n)hΣn
with mod p coefficients is non-trivial only if n is a power of p.
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