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Abstract. In these notes, we present a selection of properties and examples of ∞-topoi.
In the first section, we review the definition of ∞-topos and some basic theory. The
second section studies higher sheaves and Grothendieck topologies. The third one is
dedicated to the characterizations of ∞-topoi, using Giraud axioms or descent.

These notes assume familiarity with the model of higher categories based on quasicategories.
For an introduction into this subject see the notes from the previous day of this seminar,
the course notes of Rezk [4], or the wiki of Lurie [2]. The word ∞-category is used as a
replacement of quasicategory, and ∞-groupoid as a replacement of Kan complex. Also,
denote by S the ∞-category of all ∞-grupoids, and by Fun(C,D) the ∞-category of functors
between C and D, which is modeled by the quasicategory Map(C,D). The contents of this
document are based on a lecture notes of Rezk [5], the book of Lurie [1], and the notes [3] of
a talk of Rezk in a conference called “Toposes online”.

1. Basic properties of infinity topoi

Recall from the first lecture of this seminar the definition of a Grothendieck topos as a
localization:

Definition 1.1. A (Grothendieck) topos E is a category together with a left exact localization
of the category of presheaves PSh(K) := Fun(Kop,Set) on a small category K.

As we saw at the end of the previous lecture, the definition of a higher topos is very
similar: it is only necessary to change all the 1-categorical concepts with its ∞-categorical
counterparts, replace the category of sets with the ∞-category of ∞-grupoids S, and add
the requirement that the localization must be accessible. Observe that in the 1-categorical
construction, the localization is also accessible, but this is always true for any localization of
presheaves on a small category, and therefore is not an extra condition to a topos.

Definition 1.2. An ∞-topos X is a ∞-category together with an accessible left exact
localization of the ∞-category of presheaves PSh(K) := Fun(Kop,S) on a small ∞-category
K.

Given an ∞-category C and object x ∈ C, the slice category C/x is an ∞-category with:
• The objects are morphisms f : y → x for any y ∈ C.
• The morphisms are commutative triangles:

y y′

x

• The n-morphisms are

(C/x)
n

= {σ : ∆n+1 → C | σ sends the final vertex of ∆n+1 to x}.
Some of the most well-known properties and examples of higher topos are:

Proposition 1.3. For every ∞-topos X :
(i) X is a cartesian closed ∞-category.
(ii) For any object x ∈ X , the slice-category X/x is itself an ∞-topos.
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Example 1.4. Some examples of ∞-topoi:
(i) Any presheaf PSh(K) on a small ∞-category K is trivially an ∞-topos.
(ii) The ∞-category of ∞-grupoids S is an ∞-topos, because it is equal to the presheaf

PSh(1) = Fun(1op,S) = S where 1 is the terminal ∞-category with only one object.

As in the case of ordinary topos, the morphisms between∞-topos that respect the internal
structure are left exact adjunctions:

Definition 1.5. A geometric morphism f : X → Y is a functor f∗ : Y → X which has a
right adjoint f∗ : X → Y and f∗ is left exact. The ∞-topoi with geometric morphisms form
the ∞-category of ∞-topoi, denoted ∞-Topoi.

Example 1.6 (Terminal ∞-topos). Because S = PSh(1), for any ∞-topos X , a geometric
morphism f : X → S is determined by a functor ϕ : 1 → X such that ϕ̃ : PSh(1) → X
preserves the terminal object and pullbacks of representables. Since the only representable is
the terminal object, then there is a unique geometric morphism π : X → S, and therefore, S
is the terminal ∞-topos.

2. Higher sheaves

One of the main characterizations of the topoi is the equivalence between the Grothendieck
topologies and left exact localizations of presheaves categories. In particular, any topos is a
category of sheaves over a category with some Grothendieck topology. As a result, there is
the following diagram of equivalences:

{Topoi} ⇐⇒ {Categories of sheaves on C} ⇐⇒ {Grothendieck topologies on C}
When taking into account higher topos, this characterization does not hold in general.

But a similar construction can be done, defining the higher categorical version of a sheaf.
A sieve on an object x ∈ C is a full sub-category Dx ⊂ C/x which is closed under

precomposition with morphisms in C/x. For S a sieve on x ∈ C and f : y → x a morphism
into x, the pullback sieve f∗S on y is the one spanned by all those morphisms into y that
become equivalent to a morphism in S after postcomposition with f .

Definition 2.1. A Grothendieck topology on an ∞-category C is an assignment to each
object x ∈ C of a collection of sieves on x, called covering sieves, such that:

(i) (Trivial sieve covers) For each x ∈ C, the trivial sieve C/x ⊆ C/x on x is a covering
sieve.

(ii) (Pullback of a sieve covers) If S is a covering sieve on x and f : y → x a morphism,
then the pullback sieve f∗S is a covering sieve on y.

(iii) (Sieve covers if its pullbacks cover) For S a covering sieve on x and T any sieve on x,
if the pullback sieve f∗T for every f ∈ S is covering, then T itself is covering.

For the rest of this section, let K be a small ∞-category. A map f : x→ y of C is called
monomorphism if, for each z ∈ C, the induced map C(z, x)→ C(z, y) has all homotopy fibers
empty or contractible. Given a localization i : C � PSh(K) : L, let

S = {f ∈ PSh(K) | L(f) is an iso}
be the class of maps inverted by L. Then, L is a topological localization if S is stable under
pullback and the smallest strongly saturated class of morphisms containing a subclass of
monomorphisms S ⊂ S. For more details on strongly saturated classes see [1]. Then, the
definition of higher sheaves follows:

Definition 2.2. An ∞-category of ∞-sheaves Sh(K, T ) is a topological localization of
PSh(K).

It can be proven that any sieve on x is an equivalence class of monomorphisms U → j(x)
in PSh(K), with j : K → PSh(K) the ∞-Yoneda embedding. Those equivalence classes of
monomorphisms are usually called covering monomorphisms. Hence, the relation between
∞-sheaves and Grothendieck topologies is not immediate, but can be realized in the following
theorem:
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Theorem 2.3. Sh(K, T ) is a topological localization of PSh(K) if, and only if, there exists
a Grothendieck topology T on K such that:

• Sh(K, T ) is the full subcategory of PSh(K) spanned by objects F : Kop → S such that

F (x) = PSh(K)(j(x), F )→ PSh(K)(U,F )

is an equivalence for all covering monomorphisms p : U → j(x) of T .
• The inclusion functor Sh(K, T ) ↪→ PSh(K) admits a left adjoint a : PSh(K) →

Sh(K, T ) which is left exact.

It can be seen that any topological localization is a left exact localization, and therefore
any ∞-category of ∞-sheaves is an ∞-topos. But the converse has not been proved yet. By
this fact and the previous theorem, the diagram of equivalences in the higher categorical
setting is:

{∞-Topoi} ⇐= {∞-categories of ∞-sheaves on K} ⇐⇒ {Grothendieck topologies on K}

Example 2.4. Let X be a paracompact topological space, and OX be the poset of open set
on X, with morphisms being the inclusions. In particular, OX has a Grothendieck topology
where the covering sieves correspond to families {Ui → U}i∈I such that U =

⋃
i∈I Ui.

The presheaves on X are presheaves PSh(OX) on OX . A presheaf on X F : OX
op → S is

a sheaf on X if, for every open cover {Ui}i∈I such that U =
⋃

i∈I Ui, the map

F (U)→ lim
J∈Pf (I)

F

(⋂
i∈J

Uj

)
is an equivalence, where Pf (I) is the poset of finite non-empty subsets of I.

3. Characterization of infinity topoi

The definition of higher topos depends on finding a suitable small ∞-category, but
sometimes, a more intrinsic characterization is needed:

Theorem 3.1. X is an ∞-topos if and only if
(i) it is presentable,
(ii) colimits are universal, and
(iii) colimits satisfy descent.

Recall that for any morphism f : x→ y, there is an induced pullback functor f∗ : C/y → C/x
which sends a morphism g : z → y to the pullback g∗:

z ×y x x

z yg

f

g∗

y

The concept of universal colimit is a direct generalization of the one seen for ordinary
categories:

Definition 3.2. Let C be a cocomplete and finitely complete∞-category. Then, the colimits
of C are universal if for all morphisms f : x→ y, the induced pullback functor f∗ : C/y → C/x
preserves colimits.

As a particular case, we will review the condition of descent applied only to pushouts.
Consider the following diagram

y1 y0 y2 y

x1 x0 x2 x

y y ho. po.
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where the two squares are homotopy pushouts, and the homotopy colimits of the diagram
builds a morphism y → x. Then, if pushouts satisfy descent, for any i ∈ {0, 1, 2} the diagrams

yi y

xi x

y

are homotopy pullbacks.

Example 3.3. Descent applied only to homotopy pushouts holds in Top or sSet, but not in
Set applied to ordinary pushouts. Take any space X and a continuous function f : X → X,
then given the following diagram

X X qX X Cf

∗ {1, 2} ∗ S1

(id,id)

y y

(id,f)

p
ho. po.

where Cf = X × [0, 1]/(x,1)∼(fx,0). Because descend holds, if f is a homeomorphism, p is a
fiber bundle.

Now we want to study the general formulation for descent. Let Cart(C) ⊆ Fun([1], C) be
the subcategory containing all objects and whose morphisms f ′ → f are pullback squares:

x′ x

y′ y

f ′ f

Definition 3.4. The colimits of an ∞-category C satisfy descent if Cart(C) has all small
colimits and the inclusion Cart(C)→ Fun([1], C) preserves small colimits.

Another useful characterization, which shares the firsts two points with the previous one,
comes as a generalization of Giraud axioms in a Grothendieck topos:

Theorem 3.5 (Töen-Vezzosi [6], Lurie [1]). X is an ∞-topos if and only if
(i) it is presentable,
(ii) colimits are universal,
(iii) coproducts are disjoint, and
(iv) all groupoid objects in X are effective.

Observe that the only condition that has been rewritten from the original topos theoretic
definition is the last one. In the original one, it asked for all equivalence relations to be
effective, instead of all groupoid objects. For more details about this last condition see [5].
The definition of the coproducts being disjoint is a direct generalization of the same condition
for ordinary categories:

Definition 3.6. For any pair x1 and x2 of objects with coproduct x1 q x2, the following
commutative square is a pullback:

0 x2

x1 x1 q x2

y
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