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1 Modal logic

The term modality informally refers to ways in which a language can express various
relationships to reality or truth. For example, “can”,“could”, “should”, “must” are
modal verbs, while “possibly” or “necessarily” are modal adverbs.

Modal logic is a collection of formal systems developed to represent statements
about necessity and possibility. The modal operators are denoted as 3 and 2. For a
proposition p, we write 3φ to denote “possibly p” and 2φ to denote “necessarily p”.
Here one should distinguish between logical necessity and deontic necessity (that is,
moral or legal obligation).

The syntax rules of the modal operators include the following:

� 2p ↔ ¬3¬p.

� 3p ↔ ¬2¬p.

� K: 2(p → q) → (2p → 2q).

� T: 2p → p.

� 4: 2p → 22p (idempotence).

� B: p → 23p (the naturalistic fallacy in deontic logic).

� D: 2p → 3p.

� 5: 3p → 23p.

Here K + T + 4 and K + T + 5 are models of interior algebra, that is, Boolean
algebra with an interior operator and a closure operator (Tarski–Jónsson, 1951).

2 Modalities in homotopy type theory

In type theory, modalities are unary operations on types, and on propositions they
reduce to modal logic. Type theory is equipped with monads and comonads on
types. Monads in computer science embody a notion of computation: if T is the
modality of possibility and a is an object of type A, then Ta models computation
of A. Thus, computation of type A represents the possibility of a value of type A.

When the underlying type theory is homotopy type theory, modalities are a
generalization of traditional modalities in the sense of higher category theory. Hence
they have semantics in ∞-categories given by ∞-monads. Details are given in [4].

Homotopy type theory is an internal language for ∞-topoi. Modalities are in-
troduced in homotopy type theory using a localization higher inductive type, and
left-exact modalities correspond semantically to subtopoi. Only idempotent monadic
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modalities are considered. Each idempotent monadic modality can be represented
as an operator ⃝ : U → U on a type universe U equipped with a family of functions∏

(A:U)A → ⃝A yielding a reflective subuniverse U⃝ ≡ Σ(X:U) isModal(X) where
X is modal if the reflection map X → ⃝X is an equivalence.

One of the most important modalities in homotopy type theory is n-truncation.
More generally, many modalities are instances of nullifications with respect to small
families, defined as higher inductive types. Given a family F :

∏
(a:A)B(a) → C(a),

a typeX is F -local if the induced map (C(a) → X) → (B(a) → X) is an equivalence
for all a : A. An F -localization of X is a universal F -local type LFX admitting a
map X → LFX. A modality is accessible if it is associated with an F -localization.
An accessible modality is left exact if the reflector preserves finite limits.

In the internal logic of topoi, subtopoi are represented by Lawvere–Tierney oper-
ators on the subobject classifier, which generate a subtopos by internal sheafification.
In dependent type theory, a subtopos is an operation on a type universe and any
Lawvere–Tierney operator on the universe of propositions gives rise to a left-exact
modality. While in topos theory every left-exact modality arises from a Lawvere–
Tierney operator, in ∞-topos theory this is no longer true. The subtopoi that are
determined by their behavior on propositions are called topological in [3].

3 Modalities in ∞-topoi

3.1 Factorization systems

Let E be an ∞-category. A factorization system in E consists of two classes of
morphisms L and R closed under isomorphisms and composition, such that for
every u : A → B in L and every v : P → Q in R and for every square u → v the
space of fillers B → P is contractible (then one says that L is left orthogonal to R
and that R is right orthogonal to L), and every morphism f : X → Y in E admits
a factorization X → E → Y with X → E in L and E → Y in R. For such a
factorization one denotes ||f || = E.

Examples:

� Let L be all morphisms in E and R be the class of isomorphisms. Then (L,R)
is a factorization system. The same is true with these two classes reversed.

� In the ∞-category S of spaces, a monomorphism is a map that is isomorphic
to the inclusion of a union of connected components, and a surjection is a map
u such that π0(u) is surjective. Then (Surj,Mono) is a factorization system.
This example generalizes to any ∞-topos; see [1]. A morphism f : X → Y is a
monomorphism if the square idX → f is a pullback. A morphism is surjective
if it is left orthogonal to the class of monomorphisms. Then f : X → Y
is surjective if and only if the base change functor f ∗ : E/Y → E/X reflects
isomorphisms (base change means pullback along f).
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� If E is an ∞-topos with finite limits, the diagonal ∆(X) of an object X is the
canonical morphism X → X × X = XS0

, and the diagonal of a morphism
u : A → B is the canonical morphism ∆(u) from A to the pullback of u with
itself. Thus ∆(X) = ∆(X → 1) where 1 is the terminal object. We can iterate
to ∆n(X) : X → XSn−1

for n ≥ 0, where S−1 = ∅.
For any −1 ≤ n < ∞, a morphism f in E is n-truncated if the iterated diagonal
morphism ∆n+2(f) is invertible. A morphism f is n-connected if the iterated
diagonal morphisms ∆k+1(X) : X → XSk

are surjective for −1 ≤ k ≤ n.
Then (n-connected, n-truncated) is a factorization system in E . An object A is
n-truncated if the diagonal map A → ASn+1

is invertible. The full subcategory
of n-truncated objects is reflective and the reflector τn takes an object X to
its n-truncation τn(X). Then an object X is n-connected if τn(X) = 1. A
morphism f : A → B is n-truncated if and only if the object (A, f) of E/B is
n-truncated, and similarly for n-connected.

If (L,R) is a factorization system in E , then R is closed under limits and base
change (this means that if v : P → Q is in R and F → P is a pullback along a map
G → Q then F → G is in R), and L is closed under colimits and cobase change.
Moreover, L ∩ S is the class of isomorphisms.

A class of morphisms M is saturated if it contains the isomorphisms and it is
closed under composition and colimits. Every class of morphisms is contained in a
smallest saturated class. If (L,R) is a factorization system then L is saturated.

3.2 Reflective subcategories

An object X in an ∞-category E is local with respect to a morphism u : A → B
if the map of spaces MapE(B,X) → MapE(A,X) is invertible in S. For a class of
morphisms Σ, we denote by Loc(E ,Σ) the full subcategory of E whose objects are
the Σ-local objects.

A reflector ϕ : E → F is accessible if F = Loc(E ,Σ) for some set Σ of morphisms.
An ∞-category is presentable if it is an accessible localization of a presheaf category
Psh(K) for a small ∞-category K. (A subcategory C is full if the inclusion functor
C → E is fully faithful, i.e., the morphism MapC(X, Y ) → MapE(X, Y ) is invertible
for all X and Y in C.)

Thus an ∞-category E is an ∞-topos if it is an accessible left-exact localization
of PSh(K) for some K small.

Let (L,R) be a factorization system in an∞-category E with a terminal object 1.
Let R[1] denote the full subcategory of E whose objects are those X for which
pX : X → 1 is in R. Let us denote ||X|| = ||pX || and let ηX : X → ||X|| be the
corresponding morphism. Then ||X|| ∈ R[1], and ηX is a reflection of X onto R[1].
Hence R[1] is reflective.

In fact a morphism g : X → X ′ is a reflection onto R[1] if and only if X ′ ∈ R[1]
and g ∈ L. The functor || − || inverts all maps in L.

If Σ is a set of morphisms and E is presentable, then the localization E →
Loc(E ,Σ) is equivalent to the localization E → R[1] associated with the factorization
system (L,R) generated by Σ, that is, in which L is the saturation of Σ.
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3.3 Modalities

A factorization system (L,R) in an ∞-category E with finite limits is a modality if
L is closed under base change. A modality (L,R) is left-exact if, in addition, L is
closed under finite limits.

Examples:

� Our previous examples of factorization systems are modalities.

� For every left-exact reflector ϕ : E → F the class Lϕ of morphisms rendered
invertible by ϕ is the left class of a modality (Lϕ,Rϕ).

There is a bijection between left-exact modalities in E and left-exact localizations
in E , sending every reflector ϕ to (Lϕ,Rϕ) where Lϕ is the class of morphisms
rendered invertible by ϕ.

If u : A → B is a morphism in an ∞-topos E , then an object X is u-modal if it
is local with respect to every base change u′ of u. If Σ is a class of maps in E , we
say that an object X is Σ-modal if it is u-modal for every u ∈ Σ.

Let E be an ∞-topos. A class of morphisms L is acyclic if it contains the
isomorphisms and it is closed under composition, colimits, and base change, i.e., if
it is saturated and closed under base change. Every class of maps is contained in
a smallest acyclic class. Then it follows that a factorization system (L,R) in an
∞-topos E is a modality if and only if its left class L is acyclic.

A covering topology on an ∞-topos E is an acyclic class C containing the class
of surjections. The Grothendieck topology associated to a covering topology is the
intersection of C with the class of monomorphisms. Hence the class of surjections is
the smallest covering topology and the class of all maps is the largest.

3.4 Modalities for spaces and spectra

For every space W the factorization system generated by W → ∗ is a modality.
Hence the modalities in S include the nullifications.

Modalities in a stable ∞-category correspond to t-structures, while a left-exact
modality is a triangulated subcategory. A class of morphisms M is closed under
base change if and only if for every map f : X → Y in M the map F → 0 is in M,
where F denotes the fibre of f .
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