Goodwillie Calculus II

14 November 2022

Let S denote the ∞ -category of spaces. For a small ∞ -category C, denote by [C, S] the ∞ -category of functors $F: C \to S$, that is, presheaves on C^{op} .

Recall that an ∞ -topos is an accessible left exact localization of [C, S] for some small ∞ -category C, where *left exact* means that it preserves finite limits.

If \mathcal{E} is an ∞ -topos, then a *modality* on \mathcal{E} is a factorization system $(\mathcal{L}, \mathcal{R})$ such that \mathcal{L} is stable by base change (i.e., pullback along some map).

If F is a left exact localization on an ∞ -topos \mathcal{E} , then the class \mathcal{L} of F-equivalences and the class \mathcal{R} of F-local maps form a modality. A map $f: A \to B$ is called F-local if the square $f \to Ff$ is a pullback.

1 Construction of P_n

Let C be a small ∞ -category with finite colimits and a terminal object. The main examples are the ∞ -categories Fin and Fin_{*} of *finite spaces* and *finite pointed spaces*. The category Fin is defined as the smallest full subcategory of S which contains the terminal object * and is closed under finite colimits (the closure of * under colimits is S). Then Fin_{*} = [*, Fin].

Recall that a functor $F: C \to S$ is *n*-excisive if it carries strongly cocartesian (n+1)-cubes in C to cartesian cubes in S. We denote by $[C, S]^{(n)}$ the full subcategory of [C, S] whose objects are the *n*-excisive functors.

A functor $F: C \to S$ is reduced if F(1) = *. A spectrum is a reduced 1-excisive functor $\operatorname{Fin}_* \to S$. If E is a spectrum and we denote $E_n = ES^n$, then E_n is a pointed space such that $E_n \simeq \Omega E_{n+1}$ for all n. More generally, a spectrum object in an ∞ -category X with finite limits is a reduced 1-excisive functor $\operatorname{Fin}_* \to X$.

If the condition that F be reduced is omitted, then $[\operatorname{Fin}_*, S]^{(1)}$ can be viewed as the ∞ -category of *parametrized spectra*. A spectrum parametrized by a space B is a spectrum object in $S_{/B}$.

For a functor $F: C \to S$ and $n \ge 0$, define $T_n F: C \to S$ as

$$T_n F = \lim_{\emptyset \neq U \in [n]} F(K \star U)$$

with the map $t_n: F \to T_n F$ determined by the fact that $K \star \emptyset = K$. Here a finite set U is viewed as an object of C by taking a coproduct of U copies of the terminal object 1, and define $K \star U$ as the colimit of a cone from K to U. For example, if U has two elements, then $K \star U$ is a suspension of K.

Note that T_0F is the constant functor taking the value F(1), and $T_1F = \Omega \circ F \circ \Sigma$. Then one defines, as in [4],

$$P_nF = \operatorname{colim}(F \to T_nF \to T_nT_nF \to \cdots).$$

As a special case, if F is reduced, then $P_1F = \lim_m \Omega^m \circ F \circ \Sigma^m$.

2 Properties of P_n

The functor $P_n F$ is *n*-excisive and the canonical map $F \to P_n F$ is universal among maps from F to *n*-excisive functors. Moreover, the functor $P_n: [C, S] \to [C, S]^{(n)}$ is a left exact localization (that is, it commutes with finite limits), and P_n also commutes with colimits.

Therefore, $[C, \overline{S}]^{(n)}$ is an ∞ -topos.

The classes \mathcal{L} of P_n -equivalences and \mathcal{R} of P_n -local maps form a modality, called the *n*-excisive modality.

It is shown in [2,3] that $[Fin_*, S]^{(n)}$ classifies pointed n-nilpotent objects.

A central result in [1] is a Blakers–Massey-style theorem stating that if K is the pushout of two maps $f: F \to G$ and $g \to F \to H$ between functors $C \to S$, and if f is a P_m -equivalence and g is a P_n -equivalence, then the canonical map $F \to G \times_K H$ is a P_{m+n+1} -equivalence. Dually, if F is the pullback of $f: H \to K$ and $g: G \to K$ and if f is a P_m -equivalence and g is a P_n -equivalence then the canonical map $G \cup_F H \to K$ is a P_{m+n+1} -equivalence.

The proof of this result uses the Yoneda embedding $Y: C^{\text{op}} \to [C, S]$ in order to prove that, given a P_i -equivalence f and P_j -equivalence g between functors $C \to S$, the pushout-product $(\Delta f) \Box (\Delta g)$ is a P_{i+j+1} -equivalence, where $\Delta f: A \to A \times_B A$ if $f: A \to B$. The pushout product of two maps $u: A \to B$ and $v: S \to T$ is the canonical map $u \Box v: (A \times T) \cup_{A \times S} (B \times S) \to B \times T$.

References:

- M. Anel, G. Biedermann, E. Finster, A. Joyal, Goodwillie's calculus of functors and higher topos theory, J. Topology 11 (2018), 1100–1132.
- M. Anel, G. Biedermann, E. Finster, A. Joyal, Left-exact localizations of ∞-topoi I: Higher sheaves, arXiv:2101.02791v4 [math.CT] (2022).
- [3] M. Anel, G. Biedermann, E. Finster, A. Joyal, Left-exact localizations of ∞-topoi II: Grothendieck topologies, arXiv:2201.01236v1 [math.CT] (2022).
- [4] J. Lurie, Higher Algebra, http://www.math.harvard.edu/~lurie/papers/HA.pdf