Waldschmidt constants

Tomasz Szemberg Pedagogical University of Cracow

> Joint AG Seminar Barcelona, June 01, 2018

> > æ

∃ >

A⊒ ▶ ∢ ∃

Schneider-Lang Theorem in one variable

Theorem

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C} with f_1, f_2 algebraically independent. Let \mathbb{K} be a number field. Assume that for all $j = 1, \ldots, k$

$$f'_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

$$S = \{z \in \mathbb{C} : z \text{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$$

イロン イ部ン イヨン イヨン 三日

is finite.

Schneider-Lang Theorem in one variable

Theorem

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C} with f_1, f_2 algebraically independent. Let \mathbb{K} be a number field. Assume that for all $j = 1, \ldots, k$

$$f'_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

$$S = \{z \in \mathbb{C} : z \text{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$$

æ

< ロ > < 同 > < 三 >

is finite.

Corollary (Hermite-Lindemann)

For $\omega \in \mathbb{C}^*$ at least one of the numbers ω , $\exp(\omega)$ is transcendental.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

Schwarz Lemma in one variable

Theorem

Let f be an analytic function in a disc $\{|z| \le R\} \subset \mathbb{C}$ with at least N zeroes in a disc $\{|z| \le r\}$ with r < R. Then

$$|f|_r \le \left(\frac{3r}{R}\right)^N |f|_R,$$

where

$$|f|_{\gamma} = \sup_{|z| \leq \gamma} |f(z)|.$$

イロン イヨン イヨン イヨン

æ

Schneider-Lang Theorem in several variables

Theorem (Bombieri 1970)

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C}^n with f_1, \ldots, f_{n+1} algebraically independent. Let \mathbb{K} be a number field. Assume that for all $i = 1, \ldots, n, j = 1, \ldots, k$

$$\frac{\partial}{\partial z_i} f_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

 $S = \{z \in \mathbb{C}^n : z \text{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

is contained in an algebraic hypersurface.

Hörmander version of Schwarz lemma in several variables

Theorem

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists M(m) > 0 such that there exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{c(n)\cdot r}{R}\right)^{M(m)}|f|_R$$

where c(n) is a constant depending only on n.

Hörmander version of Schwarz lemma in several variables

Theorem

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists M(m) > 0 such that there exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{c(n)\cdot r}{R}\right)^{M(m)}|f|_R,$$

where c(n) is a constant depending only on n.

Problem

Make the statement effective. In particular: what is the maximal value of M(m)?

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

- < ≣ →

æ

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

Theorem (Moreau)

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{\exp(n)\cdot r}{R}\right)^{\alpha(mS)}|f|_R,$$

伺 ト イヨ ト イヨト

where $\alpha(mS)$ is the initial degree of $I_S^{(m)}$.

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

Theorem (Moreau)

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{\exp(n)\cdot r}{R}\right)^{\alpha(mS)}|f|_R,$$

where $\alpha(mS)$ is the initial degree of $I_S^{(m)}$.

Remark

The constant $\alpha(mS)$ is optimal.

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_N]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m*-th symbolic power is

$$\mathcal{I}^{(m)} = \bigcap_{P \in \mathrm{Ass}(I)} \left(I^m R_P \cap R \right).$$

イロン イヨン イヨン イヨン

æ

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_N]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m*-th symbolic power is

$$I^{(m)} = \bigcap_{P \in \mathrm{Ass}(I)} (I^m R_P \cap R).$$

Theorem (Zariski-Nagata)

Let $X \subset \mathbb{P}^{N}(\mathbb{K})$ be a projective variety (in particular reduced). Then $I(X)^{(m)}$ is generated by all forms which vanish along X to order at least m.

・ロン ・回 と ・ ヨ と ・ ヨ と

Symbolic powers of ideals of points

Let
$$Z = \{P_1, \dots, P_s\}$$
 be a finite set of points in $\mathbb{P}^N(\mathbb{K})$. Then
 $I(Z) = I(P_1) \cap \dots \cap I(P_s)$
and
 $I(Z)^{(m)} = I(P_1)^m \cap \dots \cap I(P_s)^m$

イロン イヨン イヨン イヨン

æ

for all $m \ge 1$.

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

æ

|田・ (日) (日)

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

.

< ≣ >

The Waldschmidt constant of I is the real number

$$\widehat{\alpha}(I) = \inf_{m \ge 1} \frac{\alpha(I^{(m)})}{m}$$

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

The Waldschmidt constant of I is the real number

$$\widehat{\alpha}(I) = \inf_{m \ge 1} \frac{\alpha(I^{(m)})}{m} = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}$$

A ■

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

The Waldschmidt constant of I is the real number

$$\widehat{\alpha}(I) = \inf_{m \ge 1} \frac{\alpha(I^{(m)})}{m} = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}$$

Remark

The Waldschmidt constant can be computed by subsequences.

- 4 回 ト - 4 回 ト - 4 回 ト

Completion of a list by Chudnovsky

Theorem (Farnik, Gwoździewicz, Hejmej, Lampa-Baczyńska, Malara, Szpond 2017)

There exists a complete classification of all configurations Z of points in \mathbb{P}^2 with

$$\widehat{\alpha}(Z) \leq \frac{5}{2}.$$

In particular all Waldschmidt constants for up to 8 points are known.

Completion of a list by Chudnovsky

Theorem (Farnik, Gwoździewicz, Hejmej, Lampa-Baczyńska, Malara, Szpond 2017)

There exists a complete classification of all configurations Z of points in \mathbb{P}^2 with

$$\widehat{\alpha}(Z) \leq \frac{5}{2}.$$

In particular all Waldschmidt constants for up to 8 points are known.

Tomasz Szemberg Pedagogical University of Cracow

Waldschmidt constants

Expected values of Waldschmidt constants for points

Nagata-type Conjecture

Let I be a saturated ideal of $s \gg 0$ very general points in $\mathbb{P}^{N}(\mathbb{C})$. Then

 $\widehat{\alpha}(I) = \sqrt[N]{s}.$

・ 回 と ・ ヨ と ・ ヨ と

3

Expected values of Waldschmidt constants for points

Nagata-type Conjecture

Let I be a saturated ideal of $s \gg 0$ very general points in $\mathbb{P}^{N}(\mathbb{C})$. Then

 $\widehat{\alpha}(I) = \sqrt[N]{s}.$

Remark

The Conjecture holds for

$$s = k^N$$

・ロン ・回 と ・ 回 と ・ 回 と

3

very general points.

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + N - 1}{N}$$

-≣->

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + N - 1}{N}$$

Conjecture (Demailly)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I^{(m)}) + N - 1}{m + N - 1}$$

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + N - 1}{1 + N - 1}$$

Conjecture (Demailly)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I^{(m)}) + N - 1}{m + N - 1}$$

Remark

The Chudnovsky Conjecture is the m = 1 case of the Demailly Conjecture.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

Containment and a Chudnovsky-type statement

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke) Let I be a saturated ideal in $\mathbb{K}[x_0, \dots, x_N]$. Then for all $m \ge Nr$ $I^{(m)} \subset I^r$.

▲御▶ ▲注▶ ▲注▶

3

Containment and a Chudnovsky-type statement

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)

Let I be a saturated ideal in $\mathbb{K}[x_0,\ldots,x_N].$ Then for all $m\geq Nr$

 $I^{(m)} \subset I^r$.

Corollary (Earlier proof by Skoda with analytic methods)

Let I be a saturated ideal of points in $\mathbb{P}^{N}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I)}{N}.$$

Containment needed for the Demailly Conjecture

Conjecture (Bocci, Harbourne, Huneke)

Let I be a radical ideal of a finite set of points in \mathbb{P}^N . Let M be the irrelevant ideal. Then there is the containment

$$I^{(rN-(N-1))} \subset M^{(r-1)(N-1)}I^r$$

for all $r \geq 1$.

An improvement towards the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in $\mathbb{P}^{N}(\mathbb{C})$ with $N \geq 2$. Then

$$\frac{\alpha(I^{(k)})+1}{k+N-1} \leq \frac{\alpha(I^{(m)})}{m},$$

同 と く ヨ と く ヨ と …

æ

holds for all $k, m \ge 1$.

An improvement towards the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in $\mathbb{P}^{N}(\mathbb{C})$ with $N \geq 2$. Then

$$\frac{\alpha(I^{(k)})+1}{k+N-1} \leq \frac{\alpha(I^{(m)})}{m},$$

holds for all $k, m \ge 1$. In particular, for all $k \ge 1$

$$\frac{\alpha(I^{(k)})+1}{k+N-1} \leq \widehat{\alpha}(I).$$

(同) (同) (同)

An improvement towards the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in $\mathbb{P}^{N}(\mathbb{C})$ with $N \geq 2$. Then

$$\frac{\alpha(I^{(k)})+1}{k+N-1} \leq \frac{\alpha(I^{(m)})}{m},$$

holds for all $k, m \ge 1$. In particular, for all $k \ge 1$

$$\frac{\alpha(I^{(k)})+1}{k+N-1} \leq \widehat{\alpha}(I).$$

Corollary

The Demailly Conjecture holds in $\mathbb{P}^2(\mathbb{C})$

$$\frac{\alpha(I^{(k)})+1}{k+1} \leq \widehat{\alpha}(I).$$

Tomasz Szemberg Pedagogical University of Cracow

Waldschmidt constants

Theorem (Dumnicki-Tutaj-Gasińska, Fouli-Mantero-Xie 2016)

The Chudnovsky Conjecture holds for general points in \mathbb{P}^{N} .

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

(4回) (4回) (4回)

æ

Theorem (Dumnicki-Tutaj-Gasińska, Fouli-Mantero-Xie 2016)

The Chudnovsky Conjecture holds for general points in \mathbb{P}^{N} .

Theorem (Malara, Sz., Szpond 2017)

The Demailly Conjecture

$$\widehat{\alpha}(I) \geq rac{lpha(I^{(m)}) + N - 1}{m + N - 1}$$

・ 母 と ・ ヨ と ・ ヨ と

holds for $s \ge (m+1)^N$ very general points in \mathbb{P}^N .

Combinatorial inequality and a naive lower bound on the Waldschmidt constant

Lemma

For all $N \ge 3$, $m \ge 1$ and $k \ge m+1$ there is

$$\binom{k(m+N-1)+1}{N} \geq \binom{m+N-1}{N}(k+1)^N.$$

▲□→ ▲ □→ ▲ □→

æ

Combinatorial inequality and a naive lower bound on the Waldschmidt constant

Lemma

For all $N \ge 3$, $m \ge 1$ and $k \ge m+1$ there is

$$\binom{k(m+N-1)+1}{N} \geq \binom{m+N-1}{N}(k+1)^N.$$

Theorem

Let Z be a set of s very general points in \mathbb{P}^N . Then

 $\widehat{\alpha}(Z) \geq \lfloor \sqrt[N]{s} \rfloor.$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition (Waldschmidt decomposition in \mathbb{P}^N)

Let $H \cong \mathbb{P}^{N-1}$ be a hyperplane in \mathbb{P}^N and let Z be a subscheme in H. Let D be a divisor of degree d in \mathbb{P}^N . The Waldschmidt decomposition of D with respect to H and Z is the sum of \mathbb{R} -divisors

$$D = D' + \lambda \cdot H$$

such that $\deg(D') = d - \lambda$,

$$\frac{d-\lambda}{\operatorname{mult}_{Z} D'} \ge \widehat{\alpha}(H; \mathcal{O}_{H}(1), Z)$$
(1)

・ 同 ト ・ ヨ ト ・ ヨ ト

and λ is the least non-negative real number such that (1) is satisfied.

Theorem (Dumnicki, Sz., Szpond)

Let H_1, \ldots, H_s be $s \ge 2$ mutually distinct hyperplanes in \mathbb{P}^N . Let $a_1 \geq \ldots \geq a_s > 1$ be real numbers such that

$$a_1 - 1 > 0$$

 $a_1 a_2 - a_1 - a_2 > 0$
 \vdots
 $a_1 \dots a_{s-1} - \sum_{i=1}^{s-1} a_1 \dots \widehat{a_i} \dots a_{s-1} > 0$

and

$$a_1\ldots a_s - \sum_{i=1}^s a_1\ldots \widehat{a_i}\ldots a_s \leq 0.$$

A⊒ ▶ ∢ ∃

Lower bound on Waldschmidt constants

Theorem (Dumnicki, Sz., Szpond)

Let

$$Z_i = \{P_{i,1}, \ldots, P_{i,r_i}\} \in H_i \setminus \bigcup_{j \neq i} H_j$$

be the set of r_i points such that

$$\widehat{\alpha}(H_i; Z_i) \geq a_i$$

and let $Z = \bigcup_{i=1}^{s} Z_i$. Finally, let

$$q := \frac{a_1 \dots a_{s-1} - \sum_{i=1}^{s-1} a_1 \dots \widehat{a_i} \dots a_{s-1}}{a_1 \dots a_{s-1}} \cdot a_s + s - 1.$$

Then

$$\widehat{\alpha}(\mathbb{P}^N; Z) \geq q.$$

Tomasz Szemberg Pedagogical University of Cracow

Waldschmidt constants

Proposition

Let s be a positive integer and let k be an integer in the range $1 \le k \le s$. Let Z be a set of

$$r \ge r_k = k(s+1)^{N-1} + (s+1-k)s^{N-1}$$

very general points in \mathbb{P}^N . Then

$$\widehat{\alpha}(Z) \geq s+1-rac{s+1-k}{s+1}.$$

イロン イヨン イヨン イヨン

æ

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Tomasz Szemberg Pedagogical University of Cracow Waldso

Waldschmidt constants

æ