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motivation

Schneider-Lang Theorem in one variable

Theorem

Let fi,...,fx be meromorphic functions in C with f, f>

algebraically independent. Let K be a number field. Assume that
forall j=1,... k
G’ e K[f,...,

Then the set

S={z€C :zisnotapoleoff,fi(z) eK,j=1,...,k}

is finite.
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Schneider-Lang Theorem in one variable

Theorem

Let fi,...,fx be meromorphic functions in C with f, f>
algebraically independent. Let K be a number field. Assume that
forall j=1,... k

G’ e K[f,...,

Then the set
S={z€C :zisnotapoleoff,fi(z) eK,j=1,...,k}

is finite.

Corollary (Hermite-Lindemann)

For w € C* at least one of the numbers w, exp(w) is
transcendental.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants



motivation

Schwarz Lemma in one variable

Theorem

Let f be an analytic function in a disc {|z| < R} C C with at least
N zeroes in a disc {|z| < r} with r < R. Then

3r\ M
< () e,

where
|fl, = sup |f(z)].

|z|<~
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Schneider-Lang Theorem in several variables

Theorem (Bombieri 1970)

Let fi, ..., fx be meromorphic functions in C" with f, ..., 111
algebraically independent. Let K be a number field. Assume that
foralli=1,...,n, j=1,...,k

0

fi € KA, ..., fl.
82,"/6 [17 ,k]

Then the set
S={zeC" :zisnot apole of fj, fj(z) e K,j=1,... k}

is contained in an algebraic hypersurface.
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Hormander version of Schwarz lemma in several variables

Theorem

Let S C C" be a finite set. Let m be a positive integer. There
exists M(m) > 0 such that there exists r > 0 such that for R > r
and a function f analytic in the ball {|z| < R} C C" vanishing
with multiplicity > m at each point of S

M(m)
cln)-r
< (425 e

where c(n) is a constant depending only on n.
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motivation
Hormander version of Schwarz lemma in several variables

Theorem

Let S C C" be a finite set. Let m be a positive integer. There
exists M(m) > 0 such that there exists r > 0 such that for R > r
and a function f analytic in the ball {|z| < R} C C" vanishing
with multiplicity > m at each point of S

M(m)
cln)-r
< (425 e

where c(n) is a constant depending only on n.

Problem

Make the statement effective. In particular: what is the maximal
value of M(m)?
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motivation

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal
value of M?
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Waldschmidt constant should be Moreau constant

Make the statement effective. In particular: what is the maximal
value of M?

Theorem (Moreau)

Let S C C" be a finite set. Let m be a positive integer. There
exists r > 0 such that for R > r and a function f analytic in the
ball {|z| < R} C C" vanishing with multiplicity > m at each point

of S (mS)
exp(n) - r\ "
i< (220 e,

1%

where a(mS) is the initial degree of
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Waldschmidt constant should be Moreau constant

Make the statement effective. In particular: what is the maximal
value of M?

Theorem (Moreau)

Let S C C" be a finite set. Let m be a positive integer. There
exists r > 0 such that for R > r and a function f analytic in the
ball {|z| < R} C C" vanishing with multiplicity > m at each point

of S (mS)
exp(n) - r\ "
i< (220 e,

1%

where a(mS) is the initial degree of

The constant a(mS) is optimal.
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Symbolic powers

Definition

Let K be a field and let R = K][xg, . .., x| be the ring of
polynomials. For a homogeneous ideal 0 # | C R its m-th
symbolic power is

1M ="\ (I"ReNR).
PeAss(I)
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motivation
Symbolic powers

Definition

Let K be a field and let R = K][xg, . .., x| be the ring of
polynomials. For a homogeneous ideal 0 # | C R its m-th
symbolic power is

1M ="\ (I"ReNR).
PeAss(I)

Theorem (Zariski-Nagata)

Let X C PN(KK) be a projective variety (in particular reduced).
Then 1(X)(™) is generated by all forms which vanish along X to
order at least m.
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Symbolic powers of ideals of points

Let Z = {Py,...,Ps} be a finite set of points in PN(K). Then
1(Z)=1(P1)N...N01(Ps)

and
1(Z2)™) = [(P)™ N .. .0 I(Ps)™

for all m > 1.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants



motivation

The initial degree and the hero of the day

For a graded ideal [ its initial degree a(l) is the least number t
such that /; # 0.
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The initial degree and the hero of the day

Definition
For a graded ideal [ its initial degree a(l) is the least number t

such that /; # 0.
The Waldschmidt constant of | is the real number

(m)
a(l) = inf 27
m>1 m
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The initial degree and the hero of the day

Definition
For a graded ideal [ its initial degree a(l) is the least number t

such that /; # 0.
The Waldschmidt constant of | is the real number

(m) (m)
a(l) = inf 2y o)
m>1 m m— 00 m
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The initial degree and the hero of the day

Definition
For a graded ideal [ its initial degree a(l) is the least number t

such that /; # 0.
The Waldschmidt constant of | is the real number

(m) (m)
a(l) = inf a(lt™) _ lim M'
m>1 m m— 00 m

v

The Waldschmidt constant can be computed by subsequences.
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Completion of a list by Chudnovsky

Theorem (Farnik, Gwozdziewicz, Hejmej, Lampa-Baczynska,

Malara, Szpond 2017)

There exists a complete classification of all configurations Z of
points in P2 with

In particular all Waldschmidt constants for up to 8 points are
known.
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motivation
Completion of a list by Chudnovsky

Theorem (Farnik, Gwozdziewicz, Hejmej, Lampa-Baczynska,

Malara, Szpond 2017)

There exists a complete classification of all configurations Z of
points in P2 with

5
a(Z) < =.
a(z) < >
In particular all Waldschmidt constants for up to 8 points are
known.
Example
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Expected values of Waldschmidt constants for points

Nagata-type Conjecture

Let | be a saturated ideal of s > 0 very general points in PN(C).
Then
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Expected values of Waldschmidt constants for points

Nagata-type Conjecture

Let | be a saturated ideal of s > 0 very general points in PN(C).
Then

The Conjecture holds for

very general points.
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Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let | be a saturated ideal of points in PN(K). Then

~ all)+ N—-1
a(l) > —
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Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let | be a saturated ideal of points in PN(K). Then

a(l)+ N-1

a(l) > N

Conjecture (Demailly)

Let | be a saturated ideal of points in PV(K). Then

a(lm) + N -1

alh)z ===

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants



motivation
Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let | be a saturated ideal of points in PV(K). Then

’ a(l)+ N-1
N0t
Ly v

v

Conjecture (Demailly)

Let | be a saturated ideal of points in PN(K). Then

~ a(lmM)+ N -1
> .
all) 2 m+N-—1

The Chudnovsky Conjecture is the m = 1 case of the Demailly
Conjecture.
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Containment and a Chudnovsky-type statement

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)
Let | be a saturated ideal in K[xo, ...,xy]. Then for all m > Nr

[(m -y
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motivation
Containment and a Chudnovsky-type statement

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)
Let | be a saturated ideal in K[xo, ...,xy]. Then for all m > Nr

[(m -y

A

Corollary (Earlier proof by Skoda with analytic methods)

Let | be a saturated ideal of points in PN(K). Then

~ a(l)
a(l) > N
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Containment needed for the Demailly Conjecture

Conjecture (Bocci, Harbourne, Huneke)

Let | be a radical ideal of a finite set of points in PN. Let M be
the irrelevant ideal. Then there is the containment

J(IN=(N=1)) — pg(r=1)(N=1)r

forall r > 1.
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An improvement towards the Chudnovsky Conjecture

Theorem (Esnault — Viehweg 1983)

Let | be a radical ideal of a finite set of points in PN(C) with
N > 2. Then

a(1) +1 _ a(1(m)
k+ N—-1~ m ’
holds for all k,m > 1.
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An improvement towards the Chudnovsky Conjecture

Theorem (Esnault — Viehweg 1983)

Let | be a radical ideal of a finite set of points in PN(C) with
N > 2. Then

(1) +1 - a(1(m)
k+N—-1— m
holds for all k,m > 1. In particular, for all k > 1

a1y +1

N T <A .
k+N-1 — ()
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An improvement towards the Chudnovsky Conjecture

Theorem (Esnault — Viehweg 1983)

Let | be a radical ideal of a finite set of points in PN(C) with
N > 2. Then

a(l(k)) +1 - a(/(’"))

k+N—-1—~ m ~’
holds for all k,m > 1. In particular, for all k > 1

a1y +1

N T <A .
k+N-1 — ()

Corollary
The Demailly Conjecture holds in P?(C)

a(1K) 4+ 1
k41

< a(l).
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General points

Theorem (Dumnicki-Tutaj-Gasinska, Fouli-Mantero-Xie 2016)

The Chudnovsky Conjecture holds for general points in PN.
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General points

Theorem (Dumnicki-Tutaj-Gasinska, Fouli-Mantero-Xie 2016)

The Chudnovsky Conjecture holds for general points in PN.

Theorem (Malara, Sz., Szpond 2017)
The Demailly Conjecture

a(lmy + N -1

a(l) >
all) = m+N-—-1

holds for s > (m 4 1)V very general points in PV.
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Combinatorial inequality and a naive lower bound on the Waldschmidt
constant

Forall N >3, m>1and k> m+1 there is

<k(m+NN—1)+1> - (m+/l\\ll_1>(k+1)N'
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Combinatorial inequality and a naive lower bound on the Waldschmidt
constant

Forall N >3, m>1and k> m+1 there is

<k(m+NN—1)+1> - (m+/l\\ll_1>(k+1)N'

| A

Theorem

Let Z be a set of s very general points in PN. Then

a(2) > | ¥5).
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Waldschmidt decomposition

Definition (Waldschmidt decomposition in PV)

Let H =2 PN~1 be a hyperplane in PV and let Z be a subscheme in
H. Let D be a divisor of degree d in PN. The Waldschmidt
decomposition of D with respect to H and Z is the sum of
R-divisors

D=D+X-H

such that deg(D’) = d — A,

and X is the least non-negative real number such that (1) is
satisfied.
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Lower bound on Waldschmidt constants

Theorem (Dumnicki, Sz., Szpond)

Let Hy, ..., Hs be s > 2 mutually distinct hyperplanes in PN. Let
ai > ...> as > 1 be real numbers such that

ai—1>0
aiap—a;—a >0

s—1
a...85-1— »_,a1...3;...as-1 >0
i=1

and
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Lower bound on Waldschmidt constants

Theorem (Dumnicki, Sz., Szpond)

Let

Zi={Pj1,...,Pin} € H\|JH
J#i
be the set of r; points such that
a(Hi; Z) > a;
and let Z =\J;_; Z;. Finally, let

s—1
31...35_1—Zal...a;...as_l
]
G = ! cas+s—1.

Then
aPN;z) > q.
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An application

Proposition

Let s be a positive integer and let k be an integer in the range
1< k<s. Let Z be a set of

r>no=k(s+ 1)V 4 (s+1— k)sN?
very general points in PN. Then

s+1—k

al(Z) > 1-—
a(Z) > s+ 5ol
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Closing

omasz Szemberg Pedagogical University of Cracow Waldschmidt const:



	motivation

