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Problem

Algebraic problem

Let R be a partially ordered ring and let | C R[xy, ..., x,] be a
0-dimensional ideal.
We want to determie

#V(1) N k(R)Zo
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Previous results

Positive real roots of polynomials

Descartes’ rule of signs

Let p(x) € R[x]. The number of sign changes between two consecutive
nonzero coefficients is an upper bound for the number of positive roots of
p(x). Moreover, their difference is an even number.
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Previous results

Positive real roots of polynomials

Let p(x) € R[x]. Define recursively the so-called Sturm sequence by

po(x) = p(x), pi(x) =p'(x), pis1(x) = —rem(pi—1,p;) i > 1.

The sequence stops when p; 11 = 0. Let p,, be the last nonzero
polynomial.

For ¢ € R, let o(c) be the number of sign changes in the sequence
PO(C), X 7pm(c)-
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Previous results

Positive real roots of polynomials

Sturm'’s theorem

Let p(x) € R[x]. Define recursively the so-called Sturm sequence by
po(x) = p(x), pi(x) =p'(x), pis1(x) = —rem(pi—1,p;) i > 1.

The sequence stops when p; 11 = 0. Let p,, be the last nonzero
polynomial.

For ¢ € R, let o(c) be the number of sign changes in the sequence
po(c), - - -, Pm(c).

Let a < b and assume that neither a nor b are multiple roots of p(x).
Then o(a) — o(b) is the number of distinct roots of p(x) in the interval
(a, b].
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Previous results

Positive real roots of polynomials

Sturm'’s theorem

Let p(x) € R[x]. Define recursively the so-called Sturm sequence by
po(x) = p(x), pi(x) =p'(x), pis1(x) = —rem(pi—1,p;) i > 1.

The sequence stops when p; 11 = 0. Let p,, be the last nonzero
polynomial.

For ¢ € R, let o(c) be the number of sign changes in the sequence
po(c), - - -, Pm(c).

Let a < b and assume that neither a nor b are multiple roots of p(x).
Then o(a) — o(b) is the number of distinct roots of p(x) in the interval
(a, b].

To count positive roots set a =0 and b = o0
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Previous results

Positive real roots of polynomials

Theorem of Kurtz

Let m > 1 and let
p(x) = x2m+1 _ C1X2m + C2X2m_1 + -+ omX — Cm+t1
with ¢; > 0 for all / and let ¢ = 1. If

C,-2 —4ci_1¢41 >0

forall i=1,...,2m, then p(x) has 2m + 1 distinct positive real roots.
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Previous results

Multivariate polynomials

Multivariate Descartes’ rule for (at most) one positive real root

Let Ac R™" and B € R"™*" be matrices with full rank. If for all index
sets J C [r] of cardinality n the sign of the products

det(A[nLJ) det(B_L[n])

that are nonzero is always the same, and at least one is nonzero,
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Previous results

Multivariate polynomials

Multivariate Descartes’ rule for (at most) one positive real root

Let Ac R™" and B € R"™*" be matrices with full rank. If for all index
sets J C [r] of cardinality n the sign of the products

det(A[nLJ) det(B_L[n])

that are nonzero is always the same, and at least one is nonzero, then
there is at most one postive solution to

AxB =y

for any y € R".
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Previous results

Multivariate polynomials

Fewnomial bound (Khovanskii)

A system of n real polynomials in n variables involving 1 + ¢ + n distinct
monomials has at most

2(3") (n + 1)+"

nondegenerate positive solutions.
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Previous results

Multivariate polynomials

Fewnomial bound (Khovanskii)

A system of n real polynomials in n variables involving 1 + ¢ + n distinct
monomials has at most .

2(3") (n 4 1)+

nondegenerate positive solutions.

Systems supported on circuits (Bihan)

A polynomial system supported on a circuit has at most n+ 1
nondegenerate positive solutions, and this bound is attained.

Circuit: n+ 2 vectors in Z" that affinely span R”
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Previous results

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions,
the solutions can be written as

{po(T)=0,x =" i=1,...,n}
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Previous results

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions,
the solutions can be written as

{po(T) =0,x; =

There are algorithms based on groebner bases to find them
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Previous results

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions,
the solutions can be written as

{po(T) =0,x; =

There are algorithms based on groebner bases to find them

It is not clear how to study the positivity of the different solutions (work
in progress)
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Linear systems

Particular case: Linear systems

Consider A € R™", b € R" and the equations
Ax+b=0

with det(A) # 0
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Linear systems

Particular case: Linear systems

Consider A € R™", b € R" and the equations
Ax+b=0

with det(A) # 0

We seek conditions that guarantee the positivity of the solution
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Linear systems

Particular case: Linear systems

Consider A € R™", b € R" and the equations
Ax+b=0

with det(A) # 0

We seek conditions that guarantee the positivity of the solution

If A=* and —b have nonnegative entries, then the solution is positive
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Linear systems

Particular case: Linear systems

Consider A € R™", b € R" and the equations
Ax+b=0

with det(A) # 0

We seek conditions that guarantee the positivity of the solution

If A=* and —b have nonnegative entries, then the solution is positive

We will associate a multidigraph to the system in order to give a different
criteria
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Linear systems

Let G = (N, ) be a labeled multidigraph with A" = {1,...,m+ 1}
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Linear systems
Graphs

Let G = (N, ) be a labeled multidigraph with A" = {1,...,m+ 1} and
Ei={ec&|s(e)=J, t(e) =i}
The Laplacian of G is the (m + 1) x (m+ 1) matrix L = (L;;) with

L,'J': Zw(e) fori;éj, and Lii:_szi

eng,' k#i
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Linear systems

Let G = (N, ) be a labeled multidigraph with A" = {1,...,m+ 1} and

Ei={ec&|s(e)=J, t(e) =i}
The Laplacian of G is the (m + 1) x (m+ 1) matrix L = (L;;) with

L,'J': Zw(e) fori;éj, and Lii:_szi

eng,' k#i

The canonical multidigraph with Laplacian L is defined as the labeled
multidigraph with node set A= {1,...,m+ 1} and one edge j — i with
label Lj; for each nonzero entry L;; # 0, for i # j
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Linear systems

Rooted spanning tree: connected subgraph containing all nodes and no
cycles with all paths directed towards the root
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Linear systems

Rooted spanning tree: connected subgraph containing all nodes and no
cycles with all paths directed towards the root

Matrix-Tree Theorem
Let L be the Laplacian of G and i,j € N/
Let L ;) be the minor obtained from L removing row i and column j
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Linear systems

Rooted spanning tree: connected subgraph containing all nodes and no
cycles with all paths directed towards the root

Matrix-Tree Theorem

Let L be the Laplacian of G and i,j € N/
Let L ;) be the minor obtained from L removing row i and column j
Then

Lijy = (=)™ Tg()),

where Tg(j) is the sum of the labels of all spanning trees rooted at j
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Linear systems

> with column sums equal to zero
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Linear systems

> with column sums equal to zero

G an associated multidigraph
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Linear systems

Alb .
L= with column sums equal to zero

G an associated multidigraph

Proposition
det(A) = (-1)"Tg(m+1)
If det(A) # 0, then the solution to Ax + b =10 is

_ Tg(i)
- Tg(m—F 1)

Xi
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Linear systems

Example

z1,...,25 € Ryg

—2Z2 0 Z4 X1 0 0
—zZ1 —Z3 0 x| +[z] =10
—27 73 —2z X3 0 0
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Linear systems

Example

z1,...,25 € Ryg

—22 0 Z4 0
[ = —21 —Z3 0 PAS
o —7 zz —zz| 0

71+ 22 0 0 —Z5
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Linear systems

Example
z1,...,25 € Ryg
z
—z 0 Z 0 =7 =
2 ' ) —
[ — —2Z1 —Z3 0 PAS Z4
—2> z3 —Za 0 721+ 22 4
21422 0 0 |-z ’
4
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Linear systems

Example
z1,...,25 € Ryg
z3
—z 0 Z 0 =7 =
2 ' ) —
[ — —2Z1 —Z3 0 Z5 Z4
—22 z3  —Z4 0 z1 + 222{ s
2142z 0 0 |-z ’
4
Therefore,

Tg(2) = (21 + 2 22) ZaZ5 — 2124275 = 2202475
Tg(4) = — det(A) = (21 + 222) 2324

Meritxell Sdez (KU) Positive solutions



Linear systems

Example

z1,...,25 € Ryg
z
—z 0 Z 0 =7 =
2 ' e — — R
[ — —2Z1 -zz 0 z5 7
—22 z3  —Z4 0 z1 + 222{ s
21422 0 0 |-z ’
4
Therefore,

Tg(2) = (21 + 2 22) ZaZ5 — 2124275 = 2202475
Tg(4) = — det(A) = (21 + 222) 2324

Zs 2275 2575
X = —umo— Xp = — 3= —
! z1+22 2 (z1+22) 23 3 (z14+22) 2z
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Linear systems

G is a P-graph if
(i E=ETULE
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Linear systems

G is a P-graph if
(i E=ETULE

(i) All cycles in G contain at most one edge in £~
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Linear systems

G is a P-graph if
(i) E=ETLE
(i) All cycles in G contain at most one edge in £~

(ili) Thereis a map pu: £~ — P(ET) such that for every e € £~
(a) if & € pu(e), then s(e) = s(e’)
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Linear systems

G is a P-graph if
(i) E=ETLE
(i) All cycles in G contain at most one edge in £~

(ili) Thereis a map pu: £~ — P(ET) such that for every e € £~
(a) if & € pu(e), then s(e) = s(e’)
(b) if ' € u(e), then every cycle containing €’ contains t(e)
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Linear systems

G is a P-graph if
(i) E=ETLE
(i) All cycles in G contain at most one edge in £~
(ili) Thereis a map pu: £~ — P(ET) such that for every e € £~
(a) if & € pu(e), then s(e) = s(e’)

(b) if ' € u(e), then every cycle containing €’ contains t(e)
(c) if e # ¢, then u(e) Npu(e’) =0
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Linear systems

G is a P-graph if
(i E=ETULE

(i) All cycles in G contain at most one edge in £~

(ili) Thereis a map pu: £~ — P(ET) such that for every e € £~
(a) if & € pu(e), then s(e) = s(e’)
(b) if ' € u(e), then every cycle containing €’ contains t(e)
(c) if e # ¢, then u(e) Npu(e’) =0

(d)

7r(e) + Z ’/T(e/) € RZO
e’ €pnle)
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Linear systems

Positivity

Let A€ R™™ with det(A) £ 0, b€ R™, x = (xq, ..., Xm), and L the

associated Laplacian.
If there exists a P-graph with Laplacian L, then each component of the

solution to the linear system Ax + b = 0 is positive
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Linear systems

Example

—2Z2 0 Z4 0
[ — -1 —zz 0 Z5
- —2Z2 Z3 —2Z4 0

71+ 22 0 0 —Z5
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Linear systems

Example

—2Z2 0 Z4 0
[ — —Z1 —z3 0 Z5
o —2 z3 —zz| 0
71+ 22 0 0 —2Z5
z3
—Z
R e
Z
z1+ 22 ‘ %
4
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Linear systems

Example

—2Z2 0 Z4 0
[ — -1 —zz 0 Z5
o —2 z3 —zz| 0
2142z 0 0 |-z
z
2
= _ pw(l—>2)=
3E—_—=1—25) )
) w(l —=3)=
z1+ 22 %
4
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Example

Linear systems

Meritxell Sdez (KU)

Positive solutions

—2Z2 0 Z4 0
—Z1 —z3 0 Z5
—2Z zz —zz| O
2142z 0 0 |-z
p(l—52) =
w(l —=3)=




Linear systems

Example

—2Z2 0 Z4 0
[ — —Z1 —z3 0 Z5
o —2 z3 —zz| 0
2142z 0 0 |-z
z
~2 _x p(l —=52)={1 254}
3 — 1———2
- 2
210222 % N(l i 3) = {1 i> 4}
4
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Application:
Biochemical reaction networks
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Biochemical reaction networks

Biochemical reaction networks

o X ={Xi,..., Xy} is a finite set of species

Denote x = (xi,. .., X,) their concentrations .
1

X1

k2
o [

X1+X34>X4

\ ok

X2+ Xs

X2
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Biochemical reaction networks

Biochemical reaction networks

o X ={Xi,..., Xy} is a finite set of species

Denote x = (xi,. .., X,) their concentrations .
1
e C is a finite subset of L%, called complexes, X1 X
k2
y =01 ¥n) 1 Xe 4+ yaXa 14

X1+X34>X4

\ /e

X2+ Xs
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Biochemical reaction networks

Biochemical reaction networks

o X ={Xi,..., Xy} is a finite set of species

Denote x = (xi,. .., X,) their concentrations .
1
o C is a finite subset of ZZ called complexes, X1 Xo
k2
:(y1a---a}/n)Ny1X1+"'+}/an k3[

e (C,R) is a labeled digraph without self-loops X1+ X3 B X4

The edges are defined by a set of reactions R \ %kﬁ

r: y,k—r>y;, kr € R> X2+ Xs
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Biochemical reaction networks

Biochemical reaction networks

o X ={Xi,..., Xy} is a finite set of species
Denote x = (xi,. .., X,) their concentrations

e C is a finite subset of ZZ called complexes,

:(y1a---a}/n)Ny1X1+"'+}/an

e (C,R) is a labeled digraph without self-loops
The edges are defined by a set of reactions R

ke
reoy, ——yl, kr € R>

Mass action kinetics: rate function for r € R:

kr X](-)’r)l . X,(1Yr)n

Meritxell Sdez (KU) Positive solutions

k1

X1

k2
o [

X1+X34>X4

\ /e

X2+ Xs

X2



Biochemical reaction networks

Mathematical model

ODE system: x = % = > (vl — yr)k: X§y')1 .. .X,gyr)n
ot rer
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Biochemical reaction networks

Mathematical model

ODE system: x = % = > (vl — yr)k: Xfy')l .. .X,gyr)n
ot rer

Stoichiometric subspace: S=(y/ —y, | re R) CR"

The stoichiometric compatibility class of xp € R is

Py = (x0+S)NRE;g ={x e Ry [ xo —x € S}
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Biochemical reaction networks

Mathematical model

ODE system: x = % = > (vl — yr)k: Xfy')l .. .X,gyr)n
ot rer

Stoichiometric subspace: S=(y, —y, | re R) CR"

The stoichiometric compatibility class of xp € R is

Py = (x0+S)NRE;g ={x e Ry [ xo —x € S}

n
Conservation laws: If w € S+ then wixi=0,sow-x=T
i=1

Steady state equations:

x=0 1ie. = Z(y; _ Yr)kr Xf}’r)l . .XI(’Yr)n
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Biochemical reaction networks

Mathematical model

ODE system: x = % = > (vl — yr)k: Xfy')l .. .X,gyr)n
ot rer

Stoichiometric subspace: S=(y, —y, | re R) CR"

The stoichiometric compatibility class of xp € R is

Py = (x0+S)NRE;g ={x e Ry [ xo —x € S}

n
Conservation laws: If w € S+ then wixi=0,sow-x=T
i=1

Steady state equations:

x=0 ie. 0= (v —y)k Oy
reR

Polynomial system of equations that defines the steady state variety
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Biochemical reaction networks

Steady state variety

The goal is to find a parametrization of the positive part of the steady
state variety or its intersection with a stoichiometric compatibility class
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Biochemical reaction networks

Steady state variety

The goal is to find a parametrization of the positive part of the steady
state variety or its intersection with a stoichiometric compatibility class

How? Reducing the number of variables in the system by solving the
equations iteratively (using linearity)
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Biochemical reaction networks

Reactant-noninteracting sets

Definition

A subset U C X is reactant-noninteracting if
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Biochemical reaction networks

Reactant-noninteracting sets

Definition

A subset U C X is reactant-noninteracting if

@ it does not contain a pair of species interacting as reactants,
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Biochemical reaction networks

Reactant-noninteracting sets

Definition

A subset U C X is reactant-noninteracting if
@ it does not contain a pair of species interacting as reactants,

o the coefficient of every species in U in a reactant is 0 or 1.
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Biochemical reaction networks

Reactant-noninteracting sets

Definition
A subset U C X is reactant-noninteracting if
@ it does not contain a pair of species interacting as reactants,

o the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations.
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Biochemical reaction networks

Reactant-noninteracting sets

Definition
A subset U C X is reactant-noninteracting if
@ it does not contain a pair of species interacting as reactants,

o the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations. The corresponding
steady state equations can be written as

Au+b=0

with u the vector of concentrations of the species in U.
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Biochemical reaction networks

Reactant-noninteracting sets

Definition

A subset U C X is reactant-noninteracting if

@ it does not contain a pair of species interacting as reactants,

o the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations. The corresponding
steady state equations can be written as

Au+b=0

with u the vector of concentrations of the species in U.

Particular case: noninteracting sets
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Biochemical reaction networks

Positivity of the elimination

There are no conservation laws with support in U
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Biochemical reaction networks

Positivity of the elimination

There are no conservation laws with support in U

Definition
Take the graph with node set &/ and edge set given, for every r € R, by
the edges

(r, (¥));)

Xi ——= X; if X; in the reactant of r

and Xj in the product of r
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2

Assume that the matrix of the elimination system has maximal rank #U.
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2

Assume that the matrix of the elimination system has maximal rank #U.
Assume that for each r € T, there exists at most one species X; € U/ in
the product of r fulfilling:

if X; € U is in the reactant of r,
then there is a path from X; to X;.
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2

Theorem

Assume that the matrix of the elimination system has maximal rank #U.
Assume that for each r € T, there exists at most one species X; € U/ in
the product of r fulfilling:

if X; € U is in the reactant of r,
then there is a path from X; to X;.

Further, assume the coefficient of X; in the product of r is 1.
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2

Theorem

Assume that the matrix of the elimination system has maximal rank #U.
Assume that for each r € T, there exists at most one species X; € U/ in
the product of r fulfilling:

if X; € U is in the reactant of r,
then there is a path from X; to X;.

Further, assume the coefficient of X; in the product of r is 1.

Then the solution to the elimination system is positive.
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Biochemical reaction networks

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2

Theorem

Assume that the matrix of the elimination system has maximal rank #U.
Assume that for each r € T, there exists at most one species X; € U/ in
the product of r fulfilling:

if X; € U is in the reactant of r,
then there is a path from X; to X;.

Further, assume the coefficient of X; in the product of r is 1.

Then the solution to the elimination system is positive.

What if one wants to include the conservation laws?
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More linear systems

System'’s structure

AA 0 - 0 0 b
0 A --- 0 0 b?
A= oo [ eRr™m, b= : eR™
0 0 -~ A O bY
Ao b0

with Ag € R™*™ and b° € R™ arbitrary and for i =1,...,d

(i) Aj is a square matrix of size m;
(i) b"is a vector of size m; and nonzero in at most one entry

Meritxell Sdez (KU) Positive solutions



More linear systems

Graph’s structure

Let G be a labeled multidigraph with m + 1 nodes and Laplacian L. Then
G is said to be A-compatible if

(i) There is not an edge from a node in AV, i > 0, to a node in A for
i#j,j=1

PENG
OREO
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More linear systems

Graph’s structure

Let G be a labeled multidigraph with m + 1 nodes and Laplacian L. Then
G is said to be A-compatible if

(i) There is not an edge from a node in AV, i > 0, to a node in A for
i#jj=1
(ii) The ¢-th row of L agrees with the ¢-th row of A|b for

é%{jl?"'ajdam_Fl}
@ m+1</@

Meritxell Sdez (KU) Positive solutions




More linear systems

Positivity of the solution

Theorem

Assume det(A) # 0, the rows ji, ..., jq of A are nonnegative and
bj,, ..., bj, are nonpositive.
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More linear systems

Positivity of the solution

Theorem

Assume det(A) # 0, the rows ji, ..., jq of A are nonnegative and

bj,, ..., bj, are nonpositive.

Further, assume there exists an A-compatible P-graph G such that

(*) for £ € {1,...,m} and i € {1,...,d}, any path from j; € N; to ¢
that contains an edge in £~ goes through m + 1.
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More linear systems

Positivity of the solution

Theorem

Assume det(A) # 0, the rows ji, ..., jq of A are nonnegative and

bj,, ..., bj, are nonpositive.

Further, assume there exists an A-compatible P-graph G such that

(*) for £ € {1,...,m} and i € {1,...,d}, any path from j; € N; to ¢
that contains an edge in £~ goes through m + 1.

Then, each component of the solution to Ax + b = 0 is positive
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More linear systems

Elimination system

IfU C X let
Siy i={we St | supp(w) U} C St

conservation laws that relate the species in U/ only
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More linear systems

Elimination system

IfU C X let
Siy i={we St | supp(w) U} C St

conservation laws that relate the species in U/ only

Definition

Let {w!,...,w?} be a basis of S;;. The elimination system for U is
xi=20 XielUu
wex=T; i=1,...,d
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More linear systems

Elimination system
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conservation laws that relate the species in U/ only

Definition

Let {w!,...,w?} be a basis of S;;. The elimination system for U is
xi=20 XielUu
wex=T; i=1,...,d

For reactant-noninteracting sets the system is linear and satisfies the
hypothesis
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More linear systems

Elimination system

IfU C X let
Siy i={we St | supp(w) U} C St

conservation laws that relate the species in U/ only

Definition

Let {w!,...,w?} be a basis of S;;. The elimination system for U is
xi=20 XielUu
wex=T; i=1,...,d

For reactant-noninteracting sets the system is linear and satisfies the
hypothesis

The criteria for positivity applies considering only the species not in the
support of SIj

Meritxell Sdez (KU) Positive solutions



More linear systems

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2 in the graph for Uy
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More linear systems

Positivity of the elimination

Let 7 C R be such that r € T if and only if there are at least two edges
corresponding to r or there is a coefficient > 2 in the graph for Uy

Theorem

Assume that the matrix of the elimination system has maximal rank #U.
Assume that for each r € T, there exists at most one species X; € Uy in
the product of r fulfilling

if X; € Up is in the reactant of r,
then there is a path from X; to X;

Further, assume the coefficient of X; in the product of ris 1

Then the solution to the elimination system is positive

Meritxell Sdez (KU) Positive solutions



More linear systems

Example

Consider the following reaction network

k:
X1+U2k—1>U1+U3 U4:2X1 Ulk—4>U2
k3
k
Xi+Us =25 Up+Us  Up 25 U3+ Us  Us==0
ks
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More linear systems

Example

Consider the following reaction network

X1+U2k—1>U1+U3 U4\L—2\X1 Ulk—4>U2
k3
X1+U3k—5>U4—|—U5 Uy —— Us + Us Us=—0

U = {Uy, Uz, U3, Us, Us} is reactant-noninteracting
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More linear systems

Example

Consider the following reaction network

X1+U2k—1>U1+U3 U4\k—2X1 Ulk—4>U2
k3
X1+U3k—5>U4—|—U5 Uy —— Us + Us U540

U = {Uy, Uz, U3, Us, Us} is reactant-noninteracting
Sﬁ =((1,1,0,0,0,0)) and Uy = {U3, Ua, Us}
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More linear systems

Example

Consider the following reaction network

X1+U2k—1>U1+U3 U4\k—2X1 Ulk—4>U2
k3
X+ Us 25 Uyt Us Up X5 Us+Us Us == 0
ks

U = {Uy, Uz, U3, Us, Us} is reactant-noninteracting

St = ((1,1,0,0,0,0)) and Uy = {Us, Us, Us}

Elimination system: 0 =u; +up — T

0 = —kauy + kixyuo, 0 = kixyup — ksxyuz + keua,

0= ksxiuz — (k2 + k6)U4 + k3x1, 0= ksxiusz + keus — kyus + kg

linear in us, ..., us

Meritxell Sdez (KU) Positive solutions



More linear systems

Example
k1 k2 k4
X1+ Uy — Uy + Us U =—X; U — U
ks
X1+U3k—5>U4+U5 U4k—6>U3+U5 U5é0
kg

U= {Ui, Us, U3, Us, Us}, Uy = { U3, Us, Us }
(r571)
r5,1) (/'6,1)

Us—/——= Us——Us

(r671)
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More linear systems

Example
k1 k2 k4
X1+ Uy — Uy + Us U =—X; U — U
ks
X1+U3k—5>U4+U5 U4k—6>U3+U5 U5é0
kg

U= {Ui, Us, U3, Us, Us}, Uy = { U3, Us, Us }
(r571)
r5,1) (/'6,1)

Us—/——= Us——Us

(r671)

The set T is
{X1+U3k—5>U4+U5, U4k—6>U3+U5}

Meritxell Sdez (KU) Positive solutions



More linear systems
Example

The solution is

. TX1k2
e kix1 + ka
ka T
2= kixi + ka
us = ki kskex1 + kskake + (k2 + k@)k1k4T
ko ks (k1X1 + k4)
Uy — X1 (k1k3X1 + kaks + kiky T)
ko (kix1 + ka) ’
s = 2 k1k3k6X12 + (2 kaks ke + ki kokg + k1k4(k2 +2 kﬁ)T)X]_ + kokakg

kokz (kix1 + ka)

Meritxell Sdez (KU) Positive solutions



More linear systems

Conclusions

We got a criteria for the positivity of the solution to linear systems
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Conclusions

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the
reaction network
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More linear systems

Conclusions

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the
reaction network

We extended the criteria to some more general linear systems inspired in
steady state systems with conservation laws
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More linear systems

Conclusions

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the
reaction network

We extended the criteria to some more general linear systems inspired in
steady state systems with conservation laws

The conditions for the second case translate into conditions on the
reaction network as well

Meritxell Sdez (KU) Positive solutions



Thank you for your attention

Questions?

Meritxell Sdez (KU) Positive solutions
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