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Problem

Algebraic problem

Let R be a partially ordered ring and let I ⊆ R[x1, . . . , xn] be a
0-dimensional ideal.
We want to determie

#V (I ) ∩ k(R)n≥0
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Previous results One variable

Positive real roots of polynomials

Descartes’ rule of signs

Let p(x) ∈ R[x ]. The number of sign changes between two consecutive
nonzero coefficients is an upper bound for the number of positive roots of
p(x). Moreover, their difference is an even number.
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Previous results One variable

Positive real roots of polynomials

Sturm’s theorem

Let p(x) ∈ R[x ]. Define recursively the so-called Sturm sequence by

p0(x) = p(x), p1(x) = p′(x), pi+1(x) = −rem(pi−1, pi ) i ≥ 1.

The sequence stops when pi+1 = 0. Let pm be the last nonzero
polynomial.
For c ∈ R, let σ(c) be the number of sign changes in the sequence
p0(c), . . . , pm(c).

Let a < b and assume that neither a nor b are multiple roots of p(x).
Then σ(a)− σ(b) is the number of distinct roots of p(x) in the interval
(a, b].

To count positive roots set a = 0 and b =∞
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Previous results One variable

Positive real roots of polynomials

Theorem of Kurtz

Let m ≥ 1 and let

p(x) = x2m+1 − c1x
2m + c2x

2m−1 + · · ·+ c2mx − c2m+1

with ci ≥ 0 for all i and let c0 = 1. If

c2
i − 4ci−1ci+1 > 0

for all i = 1, . . . , 2m, then p(x) has 2m + 1 distinct positive real roots.
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Previous results Multivariate

Multivariate polynomials

Multivariate Descartes’ rule for (at most) one positive real root

Let A ∈ Rn×r and B ∈ Rr×n be matrices with full rank. If for all index
sets J ⊆ [r ] of cardinality n the sign of the products

det(A[n],J) det(BJ,[n])

that are nonzero is always the same, and at least one is nonzero,

then
there is at most one postive solution to

AxB = y

for any y ∈ Rn.
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Previous results Multivariate

Multivariate polynomials

Fewnomial bound (Khovanskii)

A system of n real polynomials in n variables involving 1 + `+ n distinct
monomials has at most

2(`+n
2 )(n + 1)`+n

nondegenerate positive solutions.

Systems supported on circuits (Bihan)

A polynomial system supported on a circuit has at most n + 1
nondegenerate positive solutions, and this bound is attained.

Circuit: n + 2 vectors in Zn that affinely span Rn
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Previous results Multivariate

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions,
the solutions can be written as

{p0(T ) = 0, xi =
pi (T )

q(T )
, i = 1, . . . , n}

There are algorithms based on groebner bases to find them

It is not clear how to study the positivity of the different solutions (work
in progress)
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Linear systems

Particular case: Linear systems

Consider A ∈ Rn×n, b ∈ Rn and the equations

Ax + b = 0

with det(A) 6= 0

We seek conditions that guarantee the positivity of the solution

If A−1 and −b have nonnegative entries, then the solution is positive

We will associate a multidigraph to the system in order to give a different
criteria
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Linear systems

Graphs

Let G = (N , E) be a labeled multidigraph with N = {1, . . . ,m + 1}

and

Eji = {e ∈ E | s(e) = j , t(e) = i}

The Laplacian of G is the (m + 1)× (m + 1) matrix L = (Lij) with

Lij =
∑
e∈Eji

π(e) for i 6= j , and Lii = −
∑
k 6=i

Lki

The canonical multidigraph with Laplacian L is defined as the labeled
multidigraph with node set N = {1, . . . ,m + 1} and one edge j → i with
label Lij for each nonzero entry Lij 6= 0, for i 6= j
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Linear systems

Graphs

Rooted spanning tree: connected subgraph containing all nodes and no
cycles with all paths directed towards the root

Matrix-Tree Theorem

Let L be the Laplacian of G and i , j ∈ N
Let L(i ,j) be the minor obtained from L removing row i and column j
Then

L(i ,j) = (−1)m+i+j ΥG(j),

where ΥG(j) is the sum of the labels of all spanning trees rooted at j
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Linear systems

Link

L =

(
A b

· · · ·

)
with column sums equal to zero

G an associated multidigraph

Proposition

det(A) = (−1)mΥG(m + 1)

If det(A) 6= 0, then the solution to Ax + b = 0 is

xi =
ΥG(i)

ΥG(m + 1)
i = 1, . . . ,m
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Meritxell Sáez (KU) Positive solutions 10th of November, Barcelona 13 / 34



Linear systems

Example

z1, . . . , z5 ∈ R>0 −z2 0 z4

−z1 −z3 0
−z2 z3 −z4

x1

x2

x3

+

 0
z5

0

 =

0
0
0



L =


−z2 0 z4 0
−z1 −z3 0 z5

−z2 z3 −z4 0

z1 + 2z2 0 0 −z5

 3 1 2

4

−z1
−z2

z1 + 2z2

z3

z5

z4

Therefore,

ΥG(2) = (z1 + 2 z2) z4z5 − z1z4z5 = 2z2z4z5

ΥG(4) =− det(A) = (z1 + 2 z2) z3z4

x1 =
z5

z1 + 2 z2
x2 =

2 z2z5

(z1 + 2 z2) z3
x3 =

z2z5

(z1 + 2 z2) z4
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Linear systems

P-graphs

G is a P-graph if

(i) E = E+ t E−

(ii) All cycles in G contain at most one edge in E−

(iii) There is a map µ : E− → P(E+) such that for every e ∈ E−
(a) if e′ ∈ µ(e), then s(e) = s(e′)
(b) if e′ ∈ µ(e), then every cycle containing e′ contains t(e)
(c) if e 6= e′, then µ(e) ∩ µ(e′) = ∅
(d) π(e) +

∑
e′∈µ(e)

π(e′) ∈ R≥0
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Linear systems

Positivity

Theorem

Let A ∈ Rm×m with det(A) 6= 0, b ∈ Rm, x = (x1, . . . , xm), and L the
associated Laplacian.
If there exists a P-graph with Laplacian L, then each component of the
solution to the linear system Ax + b = 0 is positive
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Linear systems

Example

L =


−z2 0 z4 0
−z1 −z3 0 z5

−z2 z3 −z4 0
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3 1 2.

4

−z1
−z2

z1 + 2z2

z3

z5

z4
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Biochemical reaction networks

Application:
Biochemical reaction networks
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Biochemical reaction networks

Biochemical reaction networks

X = {X1, . . . ,Xn} is a finite set of species
Denote x = (x1, . . . , xn) their concentrations

C is a finite subset of Zn
≥0 called complexes,

y = (y1, . . . , yn) ∼ y1X1 + · · ·+ ynXn

(C,R) is a labeled digraph without self-loops
The edges are defined by a set of reactions R
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Meritxell Sáez (KU) Positive solutions 10th of November, Barcelona 19 / 34



Biochemical reaction networks

Biochemical reaction networks

X = {X1, . . . ,Xn} is a finite set of species
Denote x = (x1, . . . , xn) their concentrations

C is a finite subset of Zn
≥0 called complexes,

y = (y1, . . . , yn) ∼ y1X1 + · · ·+ ynXn

(C,R) is a labeled digraph without self-loops
The edges are defined by a set of reactions R

r : yr
kr−−→ y ′r , kr ∈ R≥0

X1 X2

X1 + X3 X4

X2 + X5

k1

k2

k3

k4

k5 k6k7

Mass action kinetics: rate function for r ∈ R:

kr x
(yr )1

1 · · · x (yr )n
n
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Biochemical reaction networks

Mathematical model

ODE system: ẋ =
∂x

∂t
=
∑
r∈R

(y ′r − yr )kr x
(yr )1

1 · · · x (yr )n
n

Stoichiometric subspace: S = 〈y ′r − yr | r ∈ R〉 ⊆ Rn

The stoichiometric compatibility class of x0 ∈ Rn
≥0 is

Px0 := (x0 + S) ∩ Rn
≥0 = {x ∈ Rn

≥0 | x0 − x ∈ S}

Conservation laws: If ω ∈ S⊥ then
n∑

i=1
ωi ẋi = 0, so ω · x = T

Steady state equations:

ẋ = 0 i.e. 0 =
∑
r∈R

(y ′r − yr )kr x
(yr )1

1 · · · x (yr )n
n

Polynomial system of equations that defines the steady state variety
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Biochemical reaction networks

Steady state variety

The goal is to find a parametrization of the positive part of the steady
state variety or its intersection with a stoichiometric compatibility class

T1

T2

T3

x1

x2

steady state variety

How? Reducing the number of variables in the system by solving the
equations iteratively (using linearity)
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Biochemical reaction networks Reactant-noninteracting sets of species

Reactant-noninteracting sets

Definition

A subset U ⊆ X is reactant-noninteracting if

it does not contain a pair of species interacting as reactants,

the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations. The corresponding
steady state equations can be written as

Au + b = 0

with u the vector of concentrations of the species in U .

Particular case: noninteracting sets
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Biochemical reaction networks Reactant-noninteracting sets of species

Positivity of the elimination

There are no conservation laws with support in U

Definition

Take the graph with node set U and edge set given, for every r ∈ R, by
the edges

Xi
(r , (y ′

r )j )−−−−−→ Xj if Xi in the reactant of r

and Xj in the product of r
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Biochemical reaction networks Reactant-noninteracting sets of species

Positivity of the elimination

Let T ⊆ R be such that r ∈ T if and only if there are at least two edges
corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank #U .
Assume that for each r ∈ T , there exists at most one species Xi ∈ U in
the product of r fulfilling:

if Xj ∈ U is in the reactant of r ,

then there is a path from Xi to Xj .

Further, assume the coefficient of Xi in the product of r is 1.

Then the solution to the elimination system is positive.

What if one wants to include the conservation laws?
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More linear systems

System’s structure

A =


A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ad 0

A0

 ∈ Rm×m, b =


b1

b2

...
bd

b0

 ∈ Rm

with A0 ∈ Rm0×m and b0 ∈ Rm0 arbitrary and for i = 1, . . . , d

(i) Ai is a square matrix of size mi

(ii) bi is a vector of size mi and nonzero in at most one entry
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More linear systems

Graph’s structure

Let G be a labeled multidigraph with m + 1 nodes and Laplacian L. Then
G is said to be A-compatible if

(i) There is not an edge from a node in Ni , i ≥ 0, to a node in Nj for
i 6= j , j ≥ 1

(ii) The `-th row of L agrees with the `-th row of A|b for
` 6∈ {j1, . . . , jd ,m + 1}

Nj

. . .

N1

. . .

Nd

...

Nk

N ′0

m + 1
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More linear systems

Positivity of the solution

Theorem

Assume det(A) 6= 0, the rows j1, . . . , jd of A are nonnegative and
bj1 , . . . , bjd are nonpositive.

Further, assume there exists an A-compatible P-graph G such that

(*) for ` ∈ {1, . . . ,m} and i ∈ {1, . . . , d}, any path from ji ∈ Ni to `
that contains an edge in E− goes through m + 1.

Then, each component of the solution to Ax + b = 0 is positive

Meritxell Sáez (KU) Positive solutions 10th of November, Barcelona 27 / 34



More linear systems

Positivity of the solution

Theorem

Assume det(A) 6= 0, the rows j1, . . . , jd of A are nonnegative and
bj1 , . . . , bjd are nonpositive.
Further, assume there exists an A-compatible P-graph G such that

(*) for ` ∈ {1, . . . ,m} and i ∈ {1, . . . , d}, any path from ji ∈ Ni to `
that contains an edge in E− goes through m + 1.

Then, each component of the solution to Ax + b = 0 is positive

Meritxell Sáez (KU) Positive solutions 10th of November, Barcelona 27 / 34



More linear systems

Positivity of the solution

Theorem

Assume det(A) 6= 0, the rows j1, . . . , jd of A are nonnegative and
bj1 , . . . , bjd are nonpositive.
Further, assume there exists an A-compatible P-graph G such that

(*) for ` ∈ {1, . . . ,m} and i ∈ {1, . . . , d}, any path from ji ∈ Ni to `
that contains an edge in E− goes through m + 1.

Then, each component of the solution to Ax + b = 0 is positive
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More linear systems Application: Elimination of variables

Elimination system

If U ⊆ X let
S⊥U := {ω ∈ S⊥ | supp(ω) ⊆ U} ⊆ S⊥

conservation laws that relate the species in U only

Definition

Let {ω1, . . . , ωd} be a basis of S⊥U . The elimination system for U is{
ẋi = 0 Xi ∈ U
ωi · x = Ti i = 1, . . . , d

For reactant-noninteracting sets the system is linear and satisfies the
hypothesis

The criteria for positivity applies considering only the species not in the
support of S⊥U
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ẋi = 0 Xi ∈ U
ωi · x = Ti i = 1, . . . , d

For reactant-noninteracting sets the system is linear and satisfies the
hypothesis

The criteria for positivity applies considering only the species not in the
support of S⊥U
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More linear systems Application: Elimination of variables

Positivity of the elimination

Let T ⊆ R be such that r ∈ T if and only if there are at least two edges
corresponding to r or there is a coefficient ≥ 2 in the graph for U0

Theorem

Assume that the matrix of the elimination system has maximal rank #U .
Assume that for each r ∈ T , there exists at most one species Xi ∈ U0 in
the product of r fulfilling

if Xj ∈ U0 is in the reactant of r ,

then there is a path from Xi to Xj

Further, assume the coefficient of Xi in the product of r is 1

Then the solution to the elimination system is positive
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More linear systems Application: Elimination of variables

Example

Consider the following reaction network

X1 + U2
k1−−→ U1 + U3 U4

k2−−⇀↽−−
k3

X1 U1
k4−−→ U2

X1 + U3
k5−−→ U4 + U5 U4

k6−−→ U3 + U5 U5
k7−−⇀↽−−
k8

0

U = {U1,U2,U3,U4,U5} is reactant-noninteracting

S⊥U = 〈(1, 1, 0, 0, 0, 0)〉 and U0 = {U3,U4,U5}
Elimination system: 0 = u1 + u2 − T

0 = −k4u1 + k1x1u2, 0 = k1x1u2 − k5x1u3 + k6u4,

0 = k5x1u3 − (k2 + k6)u4 + k3x1, 0 = k5x1u3 + k6u4 − k7u5 + k8

linear in u1, . . . , u5
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More linear systems Application: Elimination of variables

Example

Consider the following reaction network

X1 + U2
k1−−→ U1 + U3 U4

k2−−⇀↽−−
k3

X1 U1
k4−−→ U2

X1 + U3
k5−−→ U4 + U5 U4

k6−−→ U3 + U5 U5
k7−−⇀↽−−
k8

0

U = {U1,U2,U3,U4,U5} is reactant-noninteracting

S⊥U = 〈(1, 1, 0, 0, 0, 0)〉 and U0 = {U3,U4,U5}
Elimination system: 0 = u1 + u2 − T

0 = −k4u1 + k1x1u2, 0 = k1x1u2 − k5x1u3 + k6u4,

0 = k5x1u3 − (k2 + k6)u4 + k3x1, 0 = k5x1u3 + k6u4 − k7u5 + k8

linear in u1, . . . , u5
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More linear systems Application: Elimination of variables

Example

X1 + U2
k1−−→ U1 + U3 U4

k2−−⇀↽−−
k3

X1 U1
k4−−→ U2

X1 + U3
k5−−→ U4 + U5 U4

k6−−→ U3 + U5 U5
k7−−⇀↽−−
k8

0

U = {U1,U2,U3,U4,U5}, U0 = {U3,U4,U5}

U3 U4 U5

(r5, 1)

(r6, 1)

(r6, 1)

(r5, 1)

The set T is {
X1 + U3

k5−−→ U4 + U5, U4
k6−−→ U3 + U5

}
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More linear systems Application: Elimination of variables

Example

The solution is

u1 =
Tx1k2

k1x1 + k4

u2 =
k4T

k1x1 + k4

u3 =
k1k3k6x1 + k3k4k6 + (k2 + k6)k1k4T

k2k5 (k1x1 + k4)

u4 =
x1 (k1k3x1 + k3k4 + k1k4T )

k2 (k1x1 + k4)
,

u5 =
2 k1k3k6x

2
1 + (2 k4k3k6 + k1k2k8 + k1k4(k2 + 2 k6)T )x1 + k2k4k8

k2k7 (k1x1 + k4)
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More linear systems Application: Elimination of variables

Conclusions

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the
reaction network

We extended the criteria to some more general linear systems inspired in
steady state systems with conservation laws

The conditions for the second case translate into conditions on the
reaction network as well
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Meritxell Sáez (KU) Positive solutions 10th of November, Barcelona 33 / 34



More linear systems Application: Elimination of variables

Conclusions

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the
reaction network

We extended the criteria to some more general linear systems inspired in
steady state systems with conservation laws

The conditions for the second case translate into conditions on the
reaction network as well
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Thank you for your attention

Questions?
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