

Positive solutions to linear systems

Meritxell Sáez

University of Copenhagen

Joint work with: Elisenda Feliu and Carsten Wiuf

10th of November, Barcelona

Table of Contents

[Linear systems](#page-15-0)

[Biochemical reaction networks](#page-45-0)

[More linear systems](#page-70-0)

Algebraic problem

Let R be a partially ordered ring and let $I \subseteq R[x_1, \ldots, x_n]$ be a 0-dimensional ideal. We want to determie $#V(I) \cap k(R)^n_{\geq 0}$

Descartes' rule of signs

Let $p(x) \in \mathbb{R}[x]$. The number of **sign changes** between two consecutive nonzero coefficients is an upper bound for the number of positive roots of $p(x)$. Moreover, their difference is an even number.

Sturm's theorem

Let $p(x) \in \mathbb{R}[x]$. Define recursively the so-called Sturm sequence by

$$
p_0(x) = p(x),
$$
 $p_1(x) = p'(x),$ $p_{i+1}(x) = -\text{rem}(p_{i-1}, p_i)$ $i \ge 1$.

The sequence stops when $p_{i+1} = 0$. Let p_m be the last nonzero polynomial.

For $c \in \mathbb{R}$, let $\sigma(c)$ be the number of **sign changes** in the sequence $p_0(c), \ldots, p_m(c)$.

Sturm's theorem

Let $p(x) \in \mathbb{R}[x]$. Define recursively the so-called Sturm sequence by

$$
p_0(x) = p(x),
$$
 $p_1(x) = p'(x),$ $p_{i+1}(x) = -rem(p_{i-1}, p_i)$ $i \ge 1$.

The sequence stops when $p_{i+1} = 0$. Let p_m be the last nonzero polynomial.

For $c \in \mathbb{R}$, let $\sigma(c)$ be the number of **sign changes** in the sequence $p_0(c), \ldots, p_m(c)$. Let $a < b$ and assume that neither a nor b are multiple roots of $p(x)$.

Then $\sigma(a) - \sigma(b)$ is the **number of distinct roots** of $p(x)$ in the interval (a, b) .

Sturm's theorem

Let $p(x) \in \mathbb{R}[x]$. Define recursively the so-called Sturm sequence by

$$
p_0(x) = p(x),
$$
 $p_1(x) = p'(x),$ $p_{i+1}(x) = -rem(p_{i-1}, p_i)$ $i \ge 1$.

The sequence stops when $p_{i+1} = 0$. Let p_m be the last nonzero polynomial.

For $c \in \mathbb{R}$, let $\sigma(c)$ be the number of **sign changes** in the sequence $p_0(c), \ldots, p_m(c)$. Let $a < b$ and assume that neither a nor b are multiple roots of $p(x)$. Then $\sigma(a) - \sigma(b)$ is the **number of distinct roots** of $p(x)$ in the interval (a, b) .

To count positive roots set $a = 0$ and $b = \infty$

Theorem of Kurtz

Let $m > 1$ and let

$$
p(x) = x^{2m+1} - c_1 x^{2m} + c_2 x^{2m-1} + \cdots + c_{2m} x - c_{2m+1}
$$

with $c_i > 0$ for all i and let $c_0 = 1$. If

$$
c_i^2 - 4c_{i-1}c_{i+1} > 0
$$

for all $i = 1, ..., 2m$, then $p(x)$ has $2m + 1$ distinct **positive real** roots.

Multivariate Descartes' rule for (at most) one positive real root

Let $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times n}$ be matrices with full rank. If for all index sets $J \subseteq [r]$ of cardinality *n* the sign of the products

 $\det(A_{[n],J})\det(B_{J,[n]})$

that are nonzero is always the same, and at least one is nonzero,

Multivariate Descartes' rule for (at most) one positive real root

Let $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times n}$ be matrices with full rank. If for all index sets $J \subseteq [r]$ of cardinality *n* the sign of the products

 $\det(A_{[n],J})\det(B_{J,[n]})$

that are nonzero is always the same, and at least one is nonzero, then there is at most one postive solution to

$$
Ax^B = y
$$

for any $y \in \mathbb{R}^n$.

Fewnomial bound (Khovanskii)

A system of *n* real polynomials in *n* variables involving $1 + \ell + n$ distinct monomials has at most

$$
2^{\binom{\ell+n}{2}}(n+1)^{\ell+n}
$$

nondegenerate positive solutions.

Fewnomial bound (Khovanskii)

A system of n real polynomials in n variables involving $1 + \ell + n$ distinct monomials has at most

$$
2^{\binom{\ell+n}{2}}(n+1)^{\ell+n}
$$

nondegenerate positive solutions.

Systems supported on circuits (Bihan)

A polynomial system supported on a circuit has at most $n + 1$ nondegenerate positive solutions, and this bound is attained.

Circuit: $n + 2$ vectors in \mathbb{Z}^n that affinely span \mathbb{R}^n

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions, the solutions can be written as

$$
\{p_0(\mathcal{T})=0, x_i=\frac{p_i(\mathcal{T})}{q(\mathcal{T})}, i=1,\ldots,n\}
$$

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions, the solutions can be written as

$$
\{p_0(\mathcal{T})=0, x_i=\frac{p_i(\mathcal{T})}{q(\mathcal{T})}, i=1,\ldots,n\}
$$

There are algorithms based on groebner bases to find them

Rational univariate parametrisation

Given a system of complex polynomials with a finite number of solutions, the solutions can be written as

$$
\{p_0(\mathcal{T})=0, x_i=\frac{p_i(\mathcal{T})}{q(\mathcal{T})}, i=1,\ldots,n\}
$$

There are algorithms based on groebner bases to find them It is not clear how to study the **positivity** of the different solutions (work in progress)

Consider $A \in R^{n \times n}$, $b \in R^n$ and the equations

$$
Ax+b=0
$$

with det(A) $\neq 0$

Consider $A \in R^{n \times n}$, $b \in R^n$ and the equations

$$
Ax+b=0
$$

with det(A) $\neq 0$

We seek conditions that guarantee the **positivity** of the solution

Consider $A \in R^{n \times n}$, $b \in R^n$ and the equations

$$
Ax+b=0
$$

with det(A) $\neq 0$

We seek conditions that guarantee the **positivity** of the solution

If A^{-1} and $-b$ have nonnegative entries, then the solution is positive

Consider $A \in R^{n \times n}$, $b \in R^n$ and the equations

$$
Ax+b=0
$$

with det(A) $\neq 0$

We seek conditions that guarantee the **positivity** of the solution

If A^{-1} and $-b$ have nonnegative entries, then the solution is positive

We will associate a **multidigraph** to the system in order to give a different criteria

Graphs

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a labeled multidigraph with $\mathcal{N} = \{1, \dots, m+1\}$

Graphs

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a labeled multidigraph with $\mathcal{N} = \{1, \ldots, m+1\}$ and

$$
\mathcal{E}_{ji} = \{e \in \mathcal{E} \mid s(e) = j, t(e) = i\}
$$

The Laplacian of G is the $(m+1) \times (m+1)$ matrix $L = (L_{ii})$ with

$$
L_{ij} = \sum_{e \in \mathcal{E}_{ji}} \pi(e) \quad \text{for } i \neq j, \quad \text{and} \quad L_{ii} = -\sum_{k \neq i} L_{ki}
$$

Graphs

Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a labeled multidigraph with $\mathcal{N} = \{1, \dots, m+1\}$ and

$$
\mathcal{E}_{ji} = \{e \in \mathcal{E} \mid s(e) = j, t(e) = i\}
$$

The Laplacian of G is the $(m+1) \times (m+1)$ matrix $L = (L_{ii})$ with

$$
L_{ij} = \sum_{e \in \mathcal{E}_{ji}} \pi(e) \quad \text{for } i \neq j, \quad \text{and} \quad L_{ii} = -\sum_{k \neq i} L_{ki}
$$

The canonical multidigraph with Laplacian L is defined as the labeled multidigraph with node set $\mathcal{N} = \{1, \ldots, m+1\}$ and one edge $j \to i$ with label L_{ii} for each nonzero entry $L_{ii} \neq 0$, for $i \neq j$

Rooted spanning tree: connected subgraph containing all nodes and no cycles with all paths directed towards the root

Rooted spanning tree: connected subgraph containing all nodes and no cycles with all paths directed towards the root

Matrix-Tree Theorem

Let L be the Laplacian of G and $i, j \in \mathcal{N}$

Let $L(i,j)$ be the minor obtained from L removing row i and column j

Rooted spanning tree: connected subgraph containing all nodes and no cycles with all paths directed towards the root

Matrix-Tree Theorem

Let L be the Laplacian of G and $i, j \in \mathcal{N}$

Let $L(i,j)$ be the minor obtained from L removing row i and column j Then

$$
L_{(i,j)}=(-1)^{m+i+j}\Upsilon_{\mathcal{G}}(j),
$$

where $\Upsilon_G(i)$ is the sum of the labels of all spanning trees rooted at j

$$
L = \left(\begin{array}{c|c} A & b \\ \hline \cdots & \cdots \end{array}\right)
$$
 with column sums equal to zero

$$
L = \left(\begin{array}{c|c} A & b \\ \hline \cdots & \cdots \end{array}\right)
$$
 with column sums equal to zero

 G an associated multidigraph

$$
L = \left(\begin{array}{c|c} A & b \\ \hline \cdots & \cdots \end{array}\right)
$$
 with column sums equal to zero

 G an associated multidigraph

Proposition

$$
\det(A) = (-1)^m \Upsilon_{\mathcal{G}}(m+1)
$$

If det(A) \neq 0, then the solution to $Ax + b = 0$ is

$$
x_i = \frac{\Upsilon_{\mathcal{G}}(i)}{\Upsilon_{\mathcal{G}}(m+1)} \qquad i = 1, \ldots, m
$$

 $z_1, \ldots, z_5 \in R_{>0}$

$$
\begin{pmatrix} -z_2 & 0 & z_4 \ -z_1 & -z_3 & 0 \ -z_2 & z_3 & -z_4 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} + \begin{pmatrix} 0 \ z_5 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}
$$

 $z_1, \ldots, z_5 \in R_{>0}$

$$
L = \begin{pmatrix} -z_2 & 0 & z_4 & 0 \\ -z_1 & -z_3 & 0 & z_5 \\ -z_2 & z_3 & -z_4 & 0 \\ \hline z_1 + 2z_2 & 0 & 0 & -z_5 \end{pmatrix}
$$

 $z_1, \ldots, z_5 \in R_{>0}$

 $z_1, \ldots, z_5 \in R_{>0}$

Therefore,

$$
\begin{aligned} \Upsilon_{\mathcal{G}}(2) =& \left(z_1+2\,z_2\right)z_4z_5-z_1z_4z_5=2z_2z_4z_5\\ \Upsilon_{\mathcal{G}}(4) =& -\text{det}(A) = \left(z_1+2\,z_2\right)z_3z_4 \end{aligned}
$$

 $z_1, \ldots, z_5 \in R_{>0}$

Therefore,

$$
\begin{aligned} \Upsilon_{\mathcal{G}}(2) =& \left(z_1+2\,z_2\right)z_4z_5-z_1z_4z_5=2z_2z_4z_5\\ \Upsilon_{\mathcal{G}}(4) =& -\text{det}(A) = \left(z_1+2\,z_2\right)z_3z_4 \end{aligned}
$$

$$
x_1 = \frac{z_5}{z_1 + 2z_2}
$$
 $x_2 = \frac{2z_2z_5}{(z_1 + 2z_2)z_3}$ $x_3 = \frac{z_2z_5}{(z_1 + 2z_2)z_4}$

P-graphs

 G is a **P-graph** if (i) $\mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-$

P-graphs

G is a **P-graph** if

$$
(i) \ \mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-
$$

(ii) All cycles in G contain at most one edge in \mathcal{E}^-

P-graphs

G is a **P-graph** if (i) $\mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-$ (ii) All cycles in G contain at most one edge in \mathcal{E}^- (iii) There is a map $\mu\colon \mathcal{E}^-\to \mathcal{P}(\mathcal{E}^+)$ such that for every $e\in \mathcal{E}^-$ (a) if $e' \in \mu(e)$, then $s(e) = s(e')$
P-graphs

G is a **P-graph** if (i) $\mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-$ (ii) All cycles in G contain at most one edge in \mathcal{E}^- (iii) There is a map $\mu\colon \mathcal{E}^-\to \mathcal{P}(\mathcal{E}^+)$ such that for every $e\in \mathcal{E}^-$ (a) if $e' \in \mu(e)$, then $s(e) = s(e')$ (b) if $e' \in \mu(e)$, then every cycle containing e' contains $t(e)$

P-graphs

G is a **P-graph** if (i) $\mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-$ (ii) All cycles in G contain at most one edge in \mathcal{E}^- (iii) There is a map $\mu\colon \mathcal{E}^-\to \mathcal{P}(\mathcal{E}^+)$ such that for every $e\in \mathcal{E}^-$ (a) if $e' \in \mu(e)$, then $s(e) = s(e')$ (b) if $e' \in \mu(e)$, then every cycle containing e' contains $t(e)$ (c) if $e \neq e'$, then $\mu(e) \cap \mu(e') = \emptyset$

P-graphs

G is a **P-graph** if
\n(i)
$$
\mathcal{E} = \mathcal{E}^+ \sqcup \mathcal{E}^-
$$

\n(ii) All cycles in *G* contain at most one edge in \mathcal{E}^-
\n(iii) There is a map $\mu \colon \mathcal{E}^- \to \mathcal{P}(\mathcal{E}^+)$ such that for every $e \in \mathcal{E}^-$
\n(a) if $e' \in \mu(e)$, then $s(e) = s(e')$
\n(b) if $e' \in \mu(e)$, then every cycle containing e' contains $t(e)$
\n(c) if $e \neq e'$, then $\mu(e) \cap \mu(e') = \emptyset$
\n(d) $\pi(e) + \sum_{e' \in \mu(e)} \pi(e') \in R_{\geq 0}$

Positivity

Theorem

Let $A \in R^{m \times m}$ with $\det(A) \neq 0$, $b \in R^m$, $x = (x_1, \ldots, x_m)$, and L the associated Laplacian. If there exists a **P-graph** with Laplacian L , then each component of the solution to the linear system $Ax + b = 0$ is **positive**

$$
L = \begin{pmatrix} -z_2 & 0 & z_4 & 0 \\ -z_1 & -z_3 & 0 & z_5 \\ -z_2 & z_3 & -z_4 & 0 \\ \hline z_1 + 2z_2 & 0 & 0 & -z_5 \end{pmatrix}
$$

 $\mu(1 \longrightarrow 2) =$ $\mu(1 \xrightarrow{-z_2} 3) =$

$$
L = \begin{pmatrix} -z_2 & 0 & z_4 & 0 \\ -z_1 & -z_3 & 0 & z_5 \\ -z_2 & z_3 & -z_4 & 0 \\ \hline z_1 + 2z_2 & 0 & 0 & -z_5 \end{pmatrix}
$$

$$
\mu(1 \xrightarrow{-z_1} 2) = \{1 \xrightarrow{z_1} 4\}
$$

$$
\mu(1 \xrightarrow{-z_2} 3) = \{1 \xrightarrow{2z_2} 4\}
$$

Application: Biochemical reaction networks

 $\bullet \; \mathcal{X} = \{X_1, \ldots, X_n\}$ is a finite set of species Denote $x = (x_1, \ldots, x_n)$ their concentrations

- $\bullet \; \mathcal{X} = \{X_1, \ldots, X_n\}$ is a finite set of species Denote $x = (x_1, \ldots, x_n)$ their concentrations
- $\mathcal C$ is a finite subset of $\mathbb Z_{\geq 0}^n$ called complexes,

$$
y=(y_1,\ldots,y_n)\sim y_1X_1+\cdots+y_nX_n
$$

- $\bullet \; \mathcal{X} = \{X_1, \ldots, X_n\}$ is a finite set of species Denote $x = (x_1, \ldots, x_n)$ their concentrations
- $\mathcal C$ is a finite subset of $\mathbb Z_{\geq 0}^n$ called complexes,

$$
y=(y_1,\ldots,y_n)\sim y_1X_1+\cdots+y_nX_n
$$

 \bullet (C, R) is a labeled digraph without self-loops The edges are defined by a set of reactions $\mathcal R$

$$
r: y_r \xrightarrow{k_r} y'_r, \quad \mathbf{k_r} \in \mathbb{R}_{\geq 0}
$$

- $\bullet \; \mathcal{X} = \{X_1, \ldots, X_n\}$ is a finite set of species Denote $x = (x_1, \ldots, x_n)$ their concentrations
- $\mathcal C$ is a finite subset of $\mathbb Z_{\geq 0}^n$ called complexes,

$$
y=(y_1,\ldots,y_n)\sim y_1X_1+\cdots+y_nX_n
$$

 \bullet (C, R) is a labeled digraph without self-loops The edges are defined by a set of reactions $\mathcal R$

$$
r: y_r \xrightarrow{k_r} y'_r, \quad \mathbf{k_r} \in \mathbb{R}_{\geq 0}
$$

Mass action kinetics: rate function for $r \in \mathcal{R}$:

$$
k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}
$$

ODE system: $\sqrt{2}$

$$
\dot{x} = \frac{\partial x}{\partial t} = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}
$$

ODE system:
$$
\dot{x} = \frac{\partial x}{\partial t} = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}
$$

Stoichiometric subspace: $S = \langle y'_r - y_r | r \in \mathcal{R} \rangle \subseteq \mathbb{R}^n$

The stoichiometric compatibility class of $x_0 \in \mathbb{R}^{\bm{n}}_{\geq \bm{0}}$ is

$$
P_{x_0} := (x_0 + S) \cap \mathbb{R}_{\geq 0}^n = \{ x \in \mathbb{R}_{\geq 0}^n \mid x_0 - x \in S \}
$$

ODE system:
$$
\dot{x} = \frac{\partial x}{\partial t} = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}
$$

Stoichiometric subspace: $S = \langle y'_r - y_r | r \in \mathcal{R} \rangle \subseteq \mathbb{R}^n$

The stoichiometric compatibility class of $x_0 \in \mathbb{R}^{\bm{n}}_{\geq \bm{0}}$ is

$$
P_{x_0} := (x_0 + S) \cap \mathbb{R}_{\geq 0}^n = \{ x \in \mathbb{R}_{\geq 0}^n \mid x_0 - x \in S \}
$$

Conservation laws: If $\omega \in S^{\perp}$ then \sum^{n} $i=1$ $\omega_i \dot{x}_i = 0$, so $\omega \cdot x = T$

Steady state equations:

$$
\dot{x} = 0
$$
 i.e. $0 = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}$

ODE system:
$$
\dot{x} = \frac{\partial x}{\partial t} = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}
$$

Stoichiometric subspace: $S = \langle y'_r - y_r | r \in \mathcal{R} \rangle \subseteq \mathbb{R}^n$

The stoichiometric compatibility class of $x_0 \in \mathbb{R}^{\bm{n}}_{\geq \bm{0}}$ is

$$
P_{x_0} := (x_0 + S) \cap \mathbb{R}_{\geq 0}^n = \{ x \in \mathbb{R}_{\geq 0}^n \mid x_0 - x \in S \}
$$

Conservation laws: If $\omega \in S^{\perp}$ then \sum^{n} $i=1$ $\omega_i \dot{x}_i = 0$, so $\omega \cdot x = T$

Steady state equations:

$$
\dot{x} = 0
$$
 i.e. $0 = \sum_{r \in \mathcal{R}} (y'_r - y_r) k_r x_1^{(y_r)_1} \cdots x_n^{(y_r)_n}$

Polynomial system of equations that defines the steady state variety

Steady state variety

The goal is to find a parametrization of the positive part of the steady state variety or its intersection with a stoichiometric compatibility class

Steady state variety

The goal is to find a parametrization of the positive part of the steady state variety or its intersection with a stoichiometric compatibility class

How? Reducing the number of variables in the system by solving the equations iteratively (using linearity)

Definition

A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if

Definition

- A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if
	- it does not contain a pair of species interacting as reactants,

Definition

- A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if
	- it does not contain a pair of species interacting as reactants,
	- the coefficient of every species in U in a reactant is 0 or 1.

Definition

- A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if
	- it does not contain a pair of species interacting as reactants,
	- the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations.

Definition

A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if

- it does not contain a pair of species interacting as reactants,
- the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations. The corresponding steady state equations can be written as

$$
Au + b = 0
$$

with u the vector of concentrations of the species in U .

Definition

A subset $\mathcal{U} \subseteq \mathcal{X}$ is reactant-noninteracting if

- it does not contain a pair of species interacting as reactants,
- the coefficient of every species in U in a reactant is 0 or 1.

All monomials are linear in these concentrations. The corresponding steady state equations can be written as

$$
Au+b=0
$$

with u the vector of concentrations of the species in U .

Particular case: noninteracting sets

There are no conservation laws with support in U

There are no conservation laws with support in $\mathcal U$

Definition

Take the graph with node set U and edge set given, for every $r \in \mathcal{R}$, by the edges

> $X_i \xrightarrow{(r,\ (y_i')_i)} X_j$ if X_i in the reactant of r and $X_{\!j}$ in the product of r

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank $\#\mathcal{U}$.

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank $\#U$. Assume that for each $r \in \mathcal{T}$, there exists at most one species $X_i \in \mathcal{U}$ in the **product** of r fulfilling:

> if $X_i \in \mathcal{U}$ is in the reactant of r, then there is a path from X_i to $X_j.$

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank $\#U$. Assume that for each $r \in \mathcal{T}$, there exists at most one species $X_i \in \mathcal{U}$ in the **product** of r fulfilling:

if $X_i \in \mathcal{U}$ is in the reactant of r,

then there is a path from X_i to $X_j.$

Further, assume the $\mathop{\rm coefficient}\nolimits X_i$ in the product of r is $\mathbf 1.$

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank $\#U$. Assume that for each $r \in \mathcal{T}$, there exists at most one species $X_i \in \mathcal{U}$ in the **product** of r fulfilling:

if $X_i \in \mathcal{U}$ is in the reactant of r,

then there is a path from X_i to $X_j.$

Further, assume the $\mathop{\rm coefficient}\nolimits X_i$ in the product of r is $\mathbf 1.$

Then the solution to the elimination system is positive.

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2

Theorem

Assume that the matrix of the elimination system has maximal rank $\#U$. Assume that for each $r \in \mathcal{T}$, there exists at most one species $X_i \in \mathcal{U}$ in the **product** of r fulfilling:

if $X_i \in \mathcal{U}$ is in the reactant of r,

then there is a path from X_i to $X_j.$

Further, assume the $\mathop{\rm coefficient}\nolimits X_i$ in the product of r is $\mathbf 1.$

Then the solution to the elimination system is positive.

What if one wants to include the conservation laws?

System's structure

$$
A = \begin{pmatrix} A_1 & 0 & \cdots & 0 & 0 \\ 0 & A_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & A_d & 0 \\ \hline A_0 & & & & \end{pmatrix} \in R^{m \times m}, \qquad b = \begin{pmatrix} b^1 \\ b^2 \\ \vdots \\ b^d \\ \hline b^0 \end{pmatrix} \in R^m
$$

with $A_0 \in R^{m_0 \times m}$ and $b^0 \in R^{m_0}$ arbitrary and for $i=1,\ldots,d$

 (i) A_i is a square matrix of size m_i (ii) b^i is a vector of size m_i and nonzero in at most one entry

Graph's structure

Let G be a labeled multidigraph with $m + 1$ nodes and Laplacian L. Then G is said to be **A-compatible** if

 (\sf{i}) There is not an edge from a node in \mathcal{N}_i , $i\geq 0$, to a node in \mathcal{N}_j for $i \neq j, j \geq 1$

Graph's structure

Let G be a labeled multidigraph with $m+1$ nodes and Laplacian L. Then G is said to be **A-compatible** if

- (\sf{i}) There is not an edge from a node in \mathcal{N}_i , $i\geq 0$, to a node in \mathcal{N}_j for $i \neq j, j \geq 1$
- (ii) The ℓ -th row of L agrees with the ℓ -th row of A|b for $\ell \notin \{j_1, \ldots, j_d, m + 1\}$

Positivity of the solution

Theorem

Assume det(A) \neq 0, the rows j_1, \ldots, j_d of A are nonnegative and b_{j_1},\ldots,b_{j_d} are nonpositive.

Positivity of the solution

Theorem

Assume det(A) \neq 0, the rows j_1, \ldots, j_d of A are nonnegative and b_{j_1},\ldots,b_{j_d} are nonpositive. Further, assume there exists an A-compatible P-graph G such that (*) for $\ell \in \{1, \ldots, m\}$ and $i \in \{1, \ldots, d\}$, any **path** from $j_i \in \mathcal{N}_i$ to ℓ that contains an edge in \mathcal{E}^- goes through $m+1$.

Positivity of the solution

Theorem

Assume det(A) $\neq 0$, the rows j_1, \ldots, j_d of A are nonnegative and b_{j_1},\ldots,b_{j_d} are nonpositive. Further, assume there exists an A-compatible P-graph G such that (*) for $\ell \in \{1, \ldots, m\}$ and $i \in \{1, \ldots, d\}$, any **path** from $j_i \in \mathcal{N}_i$ to ℓ that contains an edge in \mathcal{E}^- goes through $m+1$. Then, each component of the solution to $Ax + b = 0$ is **positive**

If $U \subseteq \mathcal{X}$ let

$$
\mathcal{S}_{\mathcal{U}}^{\perp}:=\{\omega\in\mathcal{S}^{\perp}\mid\operatorname{supp}(\omega)\subseteq\mathcal{U}\}\subseteq\mathcal{S}^{\perp}
$$

conservation laws that relate the species in U only

If $U \subseteq \mathcal{X}$ let

$$
\mathcal{S}_{\mathcal{U}}^{\perp}:=\{\omega\in\mathcal{S}^{\perp}\mid\operatorname{supp}(\omega)\subseteq\mathcal{U}\}\subseteq\mathcal{S}^{\perp}
$$

conservation laws that relate the species in U only

Definition

Let $\{\omega^1,\ldots,\omega^d\}$ be a basis of $S_{\mathcal{U}}^{\perp}.$ The elimination system for \mathcal{U} is

$$
\begin{cases} \dot{x}_i = 0 & X_i \in \mathcal{U} \\ \omega^i \cdot x = T_i & i = 1, \dots, d \end{cases}
$$

If $\mathcal{U} \subseteq \mathcal{X}$ let

$$
\mathcal{S}_{\mathcal{U}}^{\perp}:=\{\omega\in\mathcal{S}^{\perp}\mid\operatorname{supp}(\omega)\subseteq\mathcal{U}\}\subseteq\mathcal{S}^{\perp}
$$

conservation laws that relate the species in U only

Definition

Let $\{\omega^1,\ldots,\omega^d\}$ be a basis of $S_{\mathcal{U}}^{\perp}.$ The elimination system for \mathcal{U} is

$$
\begin{cases} \dot{x}_i = 0 & X_i \in \mathcal{U} \\ \omega^i \cdot x = T_i & i = 1, \dots, d \end{cases}
$$

For reactant-noninteracting sets the system is linear and satisfies the hypothesis

If $U \subseteq \mathcal{X}$ let

$$
\mathcal{S}_{\mathcal{U}}^{\perp}:=\{\omega\in\mathcal{S}^{\perp}\mid\operatorname{supp}(\omega)\subseteq\mathcal{U}\}\subseteq\mathcal{S}^{\perp}
$$

conservation laws that relate the species in U only

Definition

Let $\{\omega^1,\ldots,\omega^d\}$ be a basis of $S_{\mathcal{U}}^{\perp}.$ The elimination system for \mathcal{U} is

$$
\begin{cases} \dot{x}_i = 0 & X_i \in \mathcal{U} \\ \omega^i \cdot x = T_i & i = 1, \dots, d \end{cases}
$$

For reactant-noninteracting sets the system is linear and satisfies the hypothesis

The criteria for positivity applies considering only the species not in the support of $\mathcal{S}_{\mathcal{U}}^{\perp}$

Positivity of the elimination

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient > 2 in the graph for U_0

Positivity of the elimination

Let $\mathcal{T} \subseteq \mathcal{R}$ be such that $r \in \mathcal{T}$ if and only if there are at least two edges corresponding to r or there is a coefficient ≥ 2 in the graph for \mathcal{U}_0

Theorem

Assume that the matrix of the elimination system has maximal rank $\#U$. Assume that for each $r \in \mathcal{T}$, there exists at most one species $X_i \in \mathcal{U}_0$ in the **product** of r fulfilling

> if $X_i \in U_0$ is in the reactant of r, then there is a path from X_i to X_i

Further, assume the ${\sf coefficient}$ of X_i in the product of r is ${\bf 1}$

Then the solution to the elimination system is positive

Consider the following reaction network

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

Consider the following reaction network

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

 $U = \{U_1, U_2, U_3, U_4, U_5\}$ is reactant-noninteracting

Consider the following reaction network

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

 $U = \{U_1, U_2, U_3, U_4, U_5\}$ is reactant-noninteracting $S_{\mathcal{U}}^{\perp}=\langle (1,1,0,0,0,0)\rangle$ and $\mathcal{U}_0=\{U_3,U_4,U_5\}$

Consider the following reaction network

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

 $\mathcal{U} = \{U_1, U_2, U_3, U_4, U_5\}$ is reactant-noninteracting $S_{\mathcal{U}}^{\perp}=\langle (1,1,0,0,0,0)\rangle$ and $\mathcal{U}_0=\{U_3,U_4,U_5\}$ Elimination system: $0 = u_1 + u_2 - T$

 $0 = -k_4u_1 + k_1x_1u_2$, $0 = k_1x_1u_2 - k_5x_1u_3 + k_6u_4$ $0 = k_5x_1u_3 - (k_2 + k_6)u_4 + k_3x_1$, $0 = k_5x_1u_3 + k_6u_4 - k_7u_5 + k_8$

linear in u_1, \ldots, u_5

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

 $U = \{U_1, U_2, U_3, U_4, U_5\}, U_0 = \{U_3, U_4, U_5\}$

$$
X_1 + U_2 \xrightarrow{k_1} U_1 + U_3 \qquad U_4 \xrightarrow[k_3]{k_2} X_1 \qquad U_1 \xrightarrow{k_4} U_2
$$

$$
X_1 + U_3 \xrightarrow{k_5} U_4 + U_5 \qquad U_4 \xrightarrow{k_6} U_3 + U_5 \qquad U_5 \xrightarrow[k_8]{k_7} 0
$$

 $U = \{U_1, U_2, U_3, U_4, U_5\}, U_0 = \{U_3, U_4, U_5\}$

The set T is

$$
\big\{X_1+U_3 \stackrel{k_5}{\longrightarrow} U_4+U_5, \quad U_4 \stackrel{k_6}{\longrightarrow} U_3+U_5\big\}
$$

The solution is

$$
u_1 = \frac{Tx_1k_2}{k_1x_1 + k_4}
$$

\n
$$
u_2 = \frac{k_4T}{k_1x_1 + k_4}
$$

\n
$$
u_3 = \frac{k_1k_3k_6x_1 + k_3k_4k_6 + (k_2 + k_6)k_1k_4T}{k_2k_5(k_1x_1 + k_4)}
$$

\n
$$
u_4 = \frac{x_1(k_1k_3x_1 + k_3k_4 + k_1k_4T)}{k_2(k_1x_1 + k_4)},
$$

\n
$$
u_5 = \frac{2 k_1k_3k_6x_1^2 + (2 k_4k_3k_6 + k_1k_2k_8 + k_1k_4(k_2 + 2 k_6)T)x_1 + k_2k_4k_8}{k_2k_7(k_1x_1 + k_4)}
$$

We got a criteria for the positivity of the solution to linear systems

We got a criteria for the positivity of the solution to linear systems For the elimination of species, the criteria translates into conditions on the reaction network

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the reaction network

We extended the criteria to some more general linear systems inspired in steady state systems with conservation laws

We got a criteria for the positivity of the solution to linear systems

For the elimination of species, the criteria translates into conditions on the reaction network

We extended the criteria to some more general linear systems inspired in steady state systems with conservation laws

The conditions for the second case translate into conditions on the reaction network as well

Thank you for your attention Questions?