Contact structures with singularities

Cédric Oms

Universidad Politécnica de Catalunya

Seminari de Geometria Algebraica

May 25, 2018

Cédric Oms (UPC) [Contact structures with singularities](#page-38-0) May 25, 2018 1/34

4日下

G.

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim}$

Overview

[Introduction](#page-2-0)

- **[Contact manifolds](#page-3-0)**
- b[-Symplectic manifolds](#page-6-0)

2 [Singular contact manifolds](#page-17-0)

- **•** [Jacobi manifolds](#page-19-0)
- \bullet b[-Contact geometry](#page-24-0)
- Local results for *b*[-contact manifolds](#page-26-0)
- **[Geometry of Critical Set](#page-30-0)**

[Global results](#page-31-0)

Existence of b^m [-contact structures](#page-32-0)

[Introduction](#page-2-0)

重

 2990

イロト イ部 トイモ トイモト

 $(M^{2n+1},\ker\alpha)$ where $\alpha\in\Omega^1(M)$ satisfies $\alpha\wedge(d\alpha)^n\neq 0$ is a contact manifold.

Cédric Oms (UPC) [Contact structures with singularities](#page-0-0) May 25, 2018 4/34

一番

 299

イロト イ部 トイモ トイモト

 $(\mathbb{R}^3, \text{ker}(dz + xdy))$

一番

 2990

イロト イ部 トイヨ トイヨト

The Reeb vector field R_{α} defined by the equations

$$
\begin{cases} i_{R_{\alpha}}\alpha = 1\\ i_{R_{\alpha}}d\alpha = 0. \end{cases}
$$

Theorem (Gray stability)

Let ker α_t , $t\in[0,1]$, be a smooth family of contact structures on M \mathcal{L}_{t} compact. Then there exists a isotopy ψ_{t} such that $\psi_{t}^{*} \alpha_{t} = \lambda_{t} \alpha_{0}$ for $\lambda_t : M \to \mathbb{R}^+$.

Theorem (Darboux theorem for contact manifolds)

Let $(M^{2n+1},\ker\alpha)$ be a contact manifold and let $p\in M.$ Then there exists an open neighbourhood $\mathcal{U} \ni p$ with coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n, z$ such that $\alpha|_{\mathcal{U}} = d\mathsf{z} + \sum_{i=1}^n x_i dy_i.$

 QQ

イロト イ押ト イヨト イヨト

A symplectic manifold (M, ω) is a manifold equipped with a non-degenerate, closed 2-form.

Cédric Oms (UPC) [Contact structures with singularities](#page-0-0) May 25, 2018 7 / 34

÷,

不适

Kロト K個 K

 \leftarrow \equiv

 \mathbf{p}

A Poisson manifold (M*,* Π) is a manifold equipped with bi-vector field Π that satisfies $[\Pi, \Pi] = 0$.

重

→ 重→

 \mathbf{p}

4 ロト 4 何 ト 4 日

メロトメ 倒 トメ 君 トメ 君 トッ 君

 OQ

Let (M²ⁿ,Π) be an (oriented) Poisson manifold such that the map

 $p\in M\mapsto (\Pi(\rho))^n\in \Lambda^{2n}(\mathcal T\mathcal M)$

is transverse to the zero section, then $Z = \{p \in M | (\Pi(p))^n = 0\}$ is a hypersurface called the critical hypersurface and we say that Π is a b**-Poisson structure** on (M*,* Z).

2002: Radko classified b-Poisson surfaces.

Let (M^{2n},Π) be an (oriented) Poisson manifold such that the map

 $p\in M\mapsto (\Pi(\rho))^n\in \Lambda^{2n}(\mathcal T\mathcal M)$

is transverse to the zero section, then $Z = \{p \in M | (\Pi(p))^n = 0\}$ is a hypersurface called the critical hypersurface and we say that Π is a b**-Poisson structure** on (M*,* Z).

2012: Guillemin–Miranda–Pires: Local normal forms, ...

Theorem (Guillemin–Miranda–Pires)

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \ldots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$
\Pi=x_1\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial y_1}+\sum_{i=2}^n\frac{\partial}{\partial x_i}\wedge \frac{\partial}{\partial y_i}.
$$

Symplectic foliation

- On $M \setminus Z$: symplectic leaves
- On Z: codimension 2 symplectic leaves

Away from *Z*: $\omega = \frac{1}{\epsilon_0}$ $\frac{1}{x_1} dx_1 \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i.$

 QQ

Theorem (Guillemin–Miranda–Pires)

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \ldots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$
\Pi = x_1 \frac{m}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}.
$$

Symplectic foliation

- On $M \setminus Z$: symplectic leaves
- On Z: codimension 2 symplectic leaves

Away from *Z*: $\omega = \frac{1}{\kappa}$ $\frac{1}{x_1^m}$ d $x_1 \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i$.

æ

Dual formulation

Assume $Z = f^{-1}(0)$.

{set of vector fields tangent to
$$
Z
$$
} = $\langle f \frac{\partial}{\partial f}, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \rangle$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Dual formulation

Assume $Z = f^{-1}(0)$.

{set of vector fields tangent to
$$
Z
$$
} = $\langle f \frac{\partial}{\partial f}, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \rangle$

Serre–Swan: Existence of a bundle having the b-vector fields as sections and denote it $^b\, TM$ and its dual $^b\, T^\ast M$.

$$
{}^{b}\Omega^{k}(M) = \Lambda^{k}({}^{b}T^{*}M)
$$

$$
\omega = \alpha \wedge \frac{df}{f} + \beta \text{ where } \alpha \in \Omega^{k-1}(M), \beta \in \Omega^{k}(M).
$$

$$
d(\alpha \wedge \frac{df}{f} + \beta) := d\alpha \wedge \frac{df}{f} + d\beta.
$$

G.

 QQ

同下 4 三下 4 三

 (M^{2n}, Z, ω) is *b*-symplectic if it is equipped with $\omega \in {}^b \Omega^2(M)$ that is closed and everywhere of maximal rank as element of $\Lambda^2(\rm^bT^*\rm\textit{M}).$

Examples:

$$
\bullet \ (\mathbb{R}^{2n}, \frac{dx_1}{x_1} \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i)
$$

$$
\bullet \ (S^2, \frac{dh}{h} \wedge d\theta)
$$

Theorem (Guillemin–Miranda–Pires)

There is a one to one correspondance between b-symplectic and b-Poisson manifolds.

 Ω

 $\left\{ \left. \left. \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right| \times \left(\mathsf{H} \right) \right\}$

 (M^{2n}, Z, ω) is b^m -symplectic if it is equipped with $\omega \in {}^{b^m}\Omega^2(M)$ that is closed and everywhere of maximal rank as element of $\Lambda^2({}^{b^m}T^*M).$

Examples:

\n- \n
$$
\begin{array}{l}\n (\mathbb{R}^{2n}, \frac{dx_1}{x_1^m} \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i) \\
\mathbf{0} \ (S^2, \frac{dh}{h^m} \wedge d\theta)\n \end{array}
$$
\n
\n

Theorem (Guillemin–Miranda–Pires)

There is a one to one correspondance between b^m -symplectic and b ^m-Poisson manifolds.

KED KARD KED KED E VOOR

[Singular contact manifolds](#page-17-0)

4日下

J.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

重

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Jacobi manifolds

Definition

A Jacobi structure on a manifold M is a Lie algebra on $C^{\infty}(M)$ that is of local type, i.e. it is a bilinear, bidifferential operator satisfying Jacobi identity.

Jacobi manifolds

Definition

A Jacobi structure on a manifold M is a Lie algebra on $C^{\infty}(M)$ that is of local type, i.e. it is a bilinear, bidifferential operator satisfying Jacobi identity.

Theorem (Lichnerowicz, Kirillov)

A Jacobi bracket is necessarily of the form

$$
\{f,g\}=\Lambda(df,dg)+f(Rg)-g(Rf),
$$

where $\Lambda \in \mathfrak{X}^{2}(M)$ and $R \in \mathfrak{X}(M)$ satisfy \bullet $[\Lambda, \Lambda] = 2R \wedge \Lambda$, \bullet [Λ , R] = $\mathcal{L}_R\Lambda = 0$.

Examples

- Poisson manifolds: $R = 0$.
- Contact manifolds (M*,* ker *α*): R Reeb vector field, $\Lambda(df,dg) := d\alpha(X_f,X_g).$
- Locally conformally symplectic (l.c.s.) manifolds (M, ω, α) : $\mathcal{N}(df,dg) := dg(\omega^{\sharp}df)$ and $R := \omega^{\sharp}\alpha.$

Remark

If (M, Λ, R) Jacobi then $(M \times \mathbb{R}, e^{-t}(\Lambda + \frac{\partial}{\partial t} \wedge R))$ is Poisson.

Characteristic leaves

Definition

The Hamiltonian vector fields are defined by $X_f := \Lambda^\sharp(df) + fR.$

 $\mathfrak{F}(M)=\{X_{f}|f\in C^{\infty}(M)\}=\mathsf{Im}\Lambda^{\sharp}+\langle R\rangle$ is integrable.

- $R \in \text{Im}\Lambda^\sharp$: even-dimensional leaves: l.c.s.
- $R \notin \mathsf{Im}\Lambda^\sharp$: odd-dimensional leaves: contact.

 (M^{2n+1},Z) is *b*-contact if there exists $\alpha\in {}^b\Omega^1(M)$ satisfying $\alpha \wedge (d\alpha)^n \neq 0.$

造

 299

イロト イ部 トイモ トイモト

b-Jacobi

Definition

A Jacobi manifold (M^{2n+1},Λ,R) is *b*-Jacobi if $\Lambda^n\wedge R\pitchfork 0.$

Theorem

There is a one to one correspondance between b-Jacobi and b-contact.

Examples

•
$$
(\mathbb{R}^3, \ker(dx + y\frac{dz}{z}))
$$
, $R = \frac{\partial}{\partial x}$.

•
$$
(\mathbb{R}^3, \ker(\frac{dz}{z} + xdy))
$$
, $R = z\frac{\partial}{\partial z}$.

Remark: The rank of ker *α* can change!

 QQ

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

4 D F

Theorem (b-Darboux Theorem)

Let (M, Z, α) b-contact, $z \in Z$. There exists a local chart $(U, z, x_1, y_1, \ldots, x_n, y_n)$ centered at p such that on U the hypersurface Z is locally defined by $z = 0$ and

- **1** if $R_p \neq 0$
	- ¹ *ξ*^p is singular, then in U

$$
\alpha = dx_1 + y_1 \frac{dz}{z} + \sum_{i=2}^n x_i dy_i,
$$

² *ξ*^p is regular, then in U

$$
\alpha = dx_1 + y_1 \frac{dz}{z} + \frac{dz}{z} + \sum_{i=2}^n x_i dy_i,
$$

2 if $R_p = 0$, then at p

$$
\alpha = \frac{dz}{z} + \sum_{i=1}^n x_i dy_i.
$$

Stability of *b*-contact structures

Theorem

Let (M, Z) compact b-manifold and let (ξ_t) , $t \in [0, 1]$ be a smooth path of b-contact structures. Then there exists an isotopy ϕ_t preserving the critical set Z such that $(\phi_t)_*\xi_0 = \xi_t$, or equivalently, $\phi_t^*\alpha_t = \lambda_t\alpha_0$ for a non-vanishing function λ_t .

 QQ

Symplectization and Contactization

- Poissonization of a b-Jacobi manifold gives a b-Poisson manifold
- $(M, Z, \ker \alpha)$ b-contact $\implies (M \times \mathbb{R}, Z \times \mathbb{R}, d(e^t \alpha))$ b-symplectic.
- \bullet (M, Z, ω) b-symplectic with Liouville vector field X and H hypersurface $\Uparrow X$. Then $(H, H \cap Z, i_X \omega)$ is b-contact.

Example

Take $(\mathbb{R}^4, \omega = \frac{dz}{z})$ $\frac{dz}{z}$ ∧ dt $+$ dx ∧ dy) and the Liouville vector field $X = t\frac{\partial}{\partial t} + x\frac{\partial}{\partial x}$ *∂*x .

$$
i_X\omega = t\frac{dz}{z} + xdy
$$

\n- \n
$$
H_1 = \{(1, y, z, t) | y, z, t \in \mathbb{R}\} \land X \text{ and } i_X \omega |_{H_1} = dy + t \frac{dz}{z}.
$$
\n
\n- \n $H_2 = \{(x, y, z, 1) | x, y, z \in \mathbb{R}\} \land X \text{ and } i_X \omega |_{H_2} = \frac{dz}{z} + x \, dy.$ \n
\n

4 0 8

目

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Geometry of Critical Set

First local model:

- Contact leaf where the foliation is singular,
- Two I.c.s. leaves where the foliation is regular.

Second local model: The induced structure is l.c.s.

[Global results](#page-31-0)

重

 2990

イロト イ部 トイモ トイモト

Theorem

Let M^{2n+1} be an almost contact manifold. Then M admits a contact structure.

- Gromov ('69) for M open
- 2 Martinet–Lutz ('71, '77) for dim $M = 3$
- **3** Geiges, Thomas, Casals, Pancholi, Presas, Etnyre for dim $M = 5$
- ⁴ Borman–Eliashberg–Murphy ('15) for all dimensions

Existence of b^m -contact structures

Question

Given a $(2n+1)$ -manifold M with an embedded hypersurface Z does there exist a b ^m-contact structure on (M*,* Z)?

Convex surfaces

Definition

A hypersurface $\Sigma \subset (M, \alpha)$ is convex if there exist a vector field X satisfying $\mathcal{L}_{X}\alpha = g\alpha$ that is transverse to Σ .

Theorem (Giroux)

In dimension 3, all surfaces are C^{∞} -close to convex ones.

Corollary (vertically invariant)

There is a tubular neighbourhood around $\Sigma = \{z = 0\}$ such that

 $\alpha = u$ dz + β

where $\beta \in \Omega^1(Z)$ and $u \in C^{\infty}(Z)$.

Replace z by a function f_{ϵ} satisfying

\n- \n
$$
\epsilon(x) = x
$$
 for $x \in \mathbb{R} \setminus [-2\epsilon, 2\epsilon]$,\n
\n- \n $\epsilon(\epsilon(x)) = -\frac{1}{x^{2m-1}}$ for $x \in [-\epsilon, 0[\cup]0, \epsilon]$,\n
\n- \n $f'_{\epsilon}(x) > 0$.\n
\n

Then $\alpha_\epsilon:=\mathsf{udf}_\epsilon+\beta$ is a b^{2m} -contact form coinciding with α outside of an ϵ -neighbourhood of Z.

Theorem

Let $(M, \ker \alpha)$ be a $(2n + 1)$ -dimensional contact manifold. For each convex hypersurface Σ , there exists a b^{2k}-contact structure realizing Σ as critical set.

Corollary

Let M be a closed 3-dimensional manifold and let $\tilde{\Sigma} \subset M$ be a surface. Then there exists a surface Σ C[∞]-close to $\tilde{\Sigma}$ such that there exists a b 2k -contact structure on (M*,* Σ).

つへへ

Questions

- What about the case $m = 2k + 1$?
- Non-convex hypersurfaces?
- Is the almost contact condition a necessary condition for higher dimensions?

4 **D**

э

Thanks!

重

 2990

イロト イ部 トイモ トイモト