Contact structures with singularities

Cédric Oms

Universidad Politécnica de Catalunya

Seminari de Geometria Algebraica

May 25, 2018

Cédric Oms (UPC)

A (10) A (10) A (10)

Overview

Introduction

- Contact manifolds
- b-Symplectic manifolds

2 Singular contact manifolds

- Jacobi manifolds
- b-Contact geometry
- Local results for *b*-contact manifolds
- Geometry of Critical Set

Global results

• Existence of *b^m*-contact structures

Introduction

< □ > < □ > < □ > < □ > < □ >

A D N A B N A B N A B N

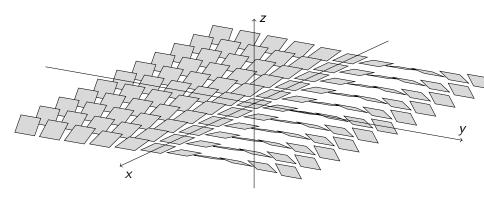
Definition

 $(M^{2n+1}, \ker \alpha)$ where $\alpha \in \Omega^1(M)$ satisfies $\alpha \wedge (d\alpha)^n \neq 0$ is a contact manifold.

Cédric Oms (UPC)

Contact structures with singularities

▶ ◀ 볼 ▶ 볼 ∽ ९. May 25, 2018 4 / 34



 $(\mathbb{R}^3, \ker(dz + xdy))$

< □ > < □ > < □ > < □ > < □ >

The Reeb vector field R_{α} defined by the equations

$$\left\{ egin{array}{l} i_{R_{lpha}}lpha=1\ i_{R_{lpha}}dlpha=0. \end{array}
ight.$$

Theorem (Gray stability)

Let ker α_t , $t \in [0, 1]$, be a smooth family of contact structures on M compact. Then there exists a isotopy ψ_t such that $\psi_t^* \alpha_t = \lambda_t \alpha_0$ for $\lambda_t : M \to \mathbb{R}^+$.

Theorem (Darboux theorem for contact manifolds)

Let $(M^{2n+1}, \ker \alpha)$ be a contact manifold and let $p \in M$. Then there exists an open neighbourhood $\mathcal{U} \ni p$ with coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n, z$ such that $\alpha|_{\mathcal{U}} = dz + \sum_{i=1}^n x_i dy_i$.

< □ > < □ > < □ > < □ > < □ > < □ >

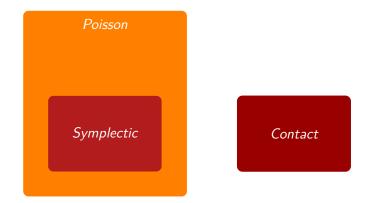
A symplectic manifold (M, ω) is a manifold equipped with a non-degenerate, closed 2-form.

Cédric Oms (UPC)

э May 25, 2018 7 / 34

< ∃⇒

・ロト ・回ト ・ヨト

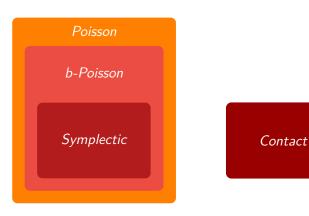


A Poisson manifold (M, Π) is a manifold equipped with bi-vector field Π that satisfies $[\Pi, \Pi] = 0$.

Cédric Oms (UPC)

э May 25, 2018 8 / 34

< ∃→



May 25, 2018 8 / 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (M^{2n}, Π) be an (oriented) Poisson manifold such that the map

 $p \in M \mapsto (\Pi(p))^n \in \Lambda^{2n}(TM)$

is transverse to the zero section, then $Z = \{p \in M | (\Pi(p))^n = 0\}$ is a hypersurface called *the critical hypersurface* and we say that Π is a *b*-**Poisson structure** on (M, Z).

2002: Radko classified *b*-Poisson surfaces.

Let (M^{2n}, Π) be an (oriented) Poisson manifold such that the map

$$p \in M \mapsto (\Pi(p))^n \in \Lambda^{2n}(TM)$$

is transverse to the zero section, then $Z = \{p \in M | (\Pi(p))^n = 0\}$ is a hypersurface called *the critical hypersurface* and we say that Π is a *b*-**Poisson structure** on (M, Z).

2012: Guillemin-Miranda-Pires: Local normal forms, ...

・ 同 ト ・ ヨ ト ・ ヨ

Theorem (Guillemin–Miranda–Pires)

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \ldots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$\Pi = x_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}.$$

Symplectic foliation

- On $M \setminus Z$: symplectic leaves
- On Z: codimension 2 symplectic leaves

Away from Z: $\omega = \frac{1}{x_1} dx_1 \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i$.

<日

<</p>

Theorem (Guillemin–Miranda–Pires)

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \ldots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$\Pi = x_1^m \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}.$$

Symplectic foliation

- On $M \setminus Z$: symplectic leaves
- On Z: codimension 2 symplectic leaves

Away from Z: $\omega = \frac{1}{x_1^m} dx_1 \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i$.

< 回 > < 回 > < 回 >

Dual formulation

Assume $Z = f^{-1}(0)$.

{set of vector fields tangent to
$$Z$$
} = $\langle f \frac{\partial}{\partial f}, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \rangle$

<ロト < 四ト < 三ト < 三ト

Dual formulation

Assume $Z = f^{-1}(0)$.

{set of vector fields tangent to Z} =
$$\langle f \frac{\partial}{\partial f}, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \rangle$$

<u>Serre–Swan</u>: Existence of a bundle having the *b*-vector fields as sections and denote it ${}^{b}TM$ and its dual ${}^{b}T^{*}M$.

$${}^b\Omega^k(M) = \Lambda^k({}^bT^*M)$$

 $\omega = lpha \wedge rac{df}{f} + eta ext{ where } lpha \in \Omega^{k-1}(M), eta \in \Omega^k(M).$
 $d(lpha \wedge rac{df}{f} + eta) := dlpha \wedge rac{df}{f} + deta.$

通 ト イ ヨ ト イ ヨ ト

 (M^{2n}, Z, ω) is *b*-symplectic if it is equipped with $\omega \in {}^{b}\Omega^{2}(M)$ that is closed and everywhere of maximal rank as element of $\Lambda^{2}({}^{b}T^{*}M)$.

Examples:

•
$$(\mathbb{R}^{2n}, \frac{dx_1}{x_1} \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i)$$

• $(S^2, \frac{dh}{h} \wedge d\theta)$

Theorem (Guillemin–Miranda–Pires)

There is a one to one correspondance between b-symplectic and b-Poisson manifolds.

イロト 不得 トイヨト イヨト 二日

 (M^{2n}, Z, ω) is b^m -symplectic if it is equipped with $\omega \in {}^{b^m}\Omega^2(M)$ that is closed and everywhere of maximal rank as element of $\Lambda^2({}^{b^m}T^*M)$.

Examples:

•
$$(\mathbb{R}^{2n}, \frac{dx_1}{x_1^m} \wedge dy_1 + \sum_{i=2}^n dx_i \wedge dy_i)$$

• $(S^2, \frac{dh}{h^m} \wedge d\theta)$

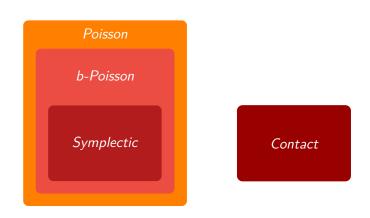
Theorem (Guillemin–Miranda–Pires)

There is a one to one correspondance between b^m -symplectic and b^m -Poisson manifolds.

イロト 不得下 イヨト イヨト 二日

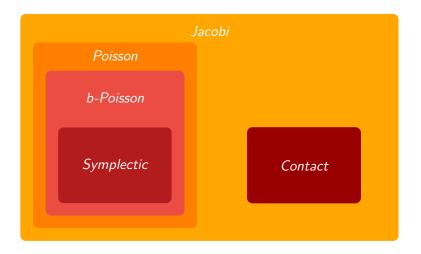
Singular contact manifolds

< □ > < 同 > < 回 > < 回 > < 回 >



May 25, 2018 14 / 34

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



Cédric Oms (UPC)

Contact structures with singularities

May 25, 2018 15 / 34

Jacobi manifolds

Definition

A Jacobi structure on a manifold M is a Lie algebra on $C^{\infty}(M)$ that is of local type, i.e. it is a bilinear, bidifferential operator satisfying Jacobi identity.

▲ 同 ▶ → 三 ▶

Jacobi manifolds

Definition

A Jacobi structure on a manifold M is a Lie algebra on $C^{\infty}(M)$ that is of local type, i.e. it is a bilinear, bidifferential operator satisfying Jacobi identity.

Theorem (Lichnerowicz, Kirillov)

A Jacobi bracket is necessarily of the form

$$\{f,g\} = \Lambda(df,dg) + f(Rg) - g(Rf),$$

where $\Lambda \in \mathfrak{X}^2(M)$ and $R \in \mathfrak{X}(M)$ satisfy • $[\Lambda, \Lambda] = 2R \wedge \Lambda$, • $[\Lambda, R] = \mathcal{L}_R \Lambda = 0$.

Examples

- Poisson manifolds: R = 0.
- Contact manifolds $(M, \ker \alpha)$: R Reeb vector field, $\Lambda(df, dg) := d\alpha(X_f, X_g).$
- Locally conformally symplectic (l.c.s.) manifolds (M, ω, α) : $\Lambda(df, dg) := dg(\omega^{\sharp}df)$ and $R := \omega^{\sharp}\alpha$.

Remark

If (M, Λ, R) Jacobi then $(M \times \mathbb{R}, e^{-t}(\Lambda + \frac{\partial}{\partial t} \wedge R))$ is Poisson.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

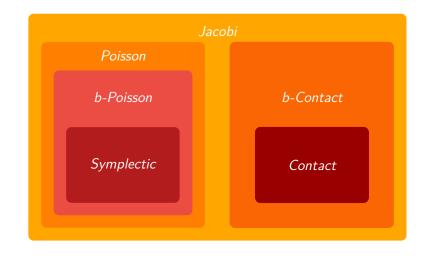
Characteristic leaves

Definition

The Hamiltonian vector fields are defined by $X_f := \Lambda^{\sharp}(df) + fR$.

 $\mathfrak{F}(M) = \{X_f | f \in C^{\infty}(M)\} = \operatorname{Im} \Lambda^{\sharp} + \langle R \rangle$ is integrable.

- $R \in Im\Lambda^{\sharp}$: even-dimensional leaves: l.c.s.
- $R \notin Im\Lambda^{\sharp}$: odd-dimensional leaves: contact.



 (M^{2n+1}, Z) is *b*-contact if there exists $\alpha \in {}^{b}\Omega^{1}(M)$ satisfying $\alpha \wedge (d\alpha)^{n} \neq 0$.

Cédric Oms (UPC)

Contact structures with singularities

May 25, 2018 20 / 34

э

< □ > < □ > < □ > < □ > < □ >

b-Jacobi

Definition

A Jacobi manifold (M^{2n+1}, Λ, R) is *b*-Jacobi if $\Lambda^n \wedge R \oplus 0$.

Theorem

There is a one to one correspondance between b-Jacobi and b-contact.

Examples

•
$$(\mathbb{R}^3, \ker(dx + y\frac{dz}{z})), R = \frac{\partial}{\partial x}$$

•
$$(\mathbb{R}^3, \ker(\frac{dz}{z} + xdy)), R = z\frac{\partial}{\partial z}.$$

<u>Remark</u>: The rank of ker α can change!

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (*b*-Darboux Theorem)

Let (M, Z, α) b-contact, $z \in Z$. There exists a local chart $(\mathcal{U}, z, x_1, y_1, \ldots, x_n, y_n)$ centered at p such that on \mathcal{U} the hypersurface Z is locally defined by z = 0 and

- 1 if $R_p \neq 0$
 - **1** ξ_p is singular, then in \mathcal{U}

$$\alpha = dx_1 + y_1 \frac{dz}{z} + \sum_{i=2}^n x_i dy_i,$$

2 ξ_p is regular, then in \mathcal{U}

$$\alpha = dx_1 + y_1 \frac{dz}{z} + \frac{dz}{z} + \sum_{i=2}^n x_i dy_i,$$

2) if $R_p = 0$, then at p

$$\alpha = \frac{dz}{z} + \sum_{i=1}^n x_i dy_i.$$

Cédric Oms (UPC)

Stability of *b*-contact structures

Theorem

Let (M, Z) compact b-manifold and let (ξ_t) , $t \in [0, 1]$ be a smooth path of b-contact structures. Then there exists an isotopy ϕ_t preserving the critical set Z such that $(\phi_t)_*\xi_0 = \xi_t$, or equivalently, $\phi_t^*\alpha_t = \lambda_t\alpha_0$ for a non-vanishing function λ_t .

<日

<</p>

Symplectization and Contactization

- Poissonization of a *b*-Jacobi manifold gives a *b*-Poisson manifold
- $(M, Z, \ker \alpha)$ b-contact $\implies (M \times \mathbb{R}, Z \times \mathbb{R}, d(e^t \alpha))$ b-symplectic.
- (M, Z, ω) b-symplectic with Liouville vector field X and H hypersurface ↑ X. Then (H, H ∩ Z, i_Xω) is b-contact.

Example

Take $(\mathbb{R}^4, \omega = \frac{dz}{z} \wedge dt + dx \wedge dy)$ and the Liouville vector field $X = t \frac{\partial}{\partial t} + x \frac{\partial}{\partial x}$.

$$i_X\omega = t\frac{dz}{z} + xdy$$

•
$$H_1 = \{(1, y, z, t) | y, z, t \in \mathbb{R}\} \pitchfork X$$
 and $i_X \omega|_{H_1} = dy + t \frac{dz}{z}$.
• $H_2 = \{(x, y, z, 1) | x, y, z \in \mathbb{R}\} \pitchfork X$ and $i_X \omega|_{H_2} = \frac{dz}{z} + xdy$.

< □ > < 同 > < 回 > < 回 > < 回 >

Geometry of Critical Set

First local model:

- Contact leaf where the foliation is singular,
- Two l.c.s. leaves where the foliation is regular.

<u>Second local model</u>: The induced structure is l.c.s.

Global results

2

< □ > < □ > < □ > < □ > < □ >

Theorem

Let M^{2n+1} be an almost contact manifold. Then M admits a contact structure.

- Gromov ('69) for *M* open
- 2 Martinet–Lutz ('71, '77) for dimM = 3
- Seiges, Thomas, Casals, Pancholi, Presas, Etnyre for dimM = 5
- Borman–Eliashberg–Murphy ('15) for all dimensions

Existence of b^m -contact structures

Question

Given a (2n + 1)-manifold M with an embedded hypersurface Z does there exist a b^m -contact structure on (M, Z)?

Convex surfaces

Definition

A hypersurface $\Sigma \subset (M, \alpha)$ is convex if there exist a vector field X satisfying $\mathcal{L}_X \alpha = g \alpha$ that is transverse to Σ .

Theorem (Giroux)

In dimension 3, all surfaces are C^{∞} -close to convex ones.

(4) (5) (4) (5)

Corollary (vertically invariant)

There is a tubular neighbourhood around $\Sigma = \{z = 0\}$ such that

 $\alpha = udz + \beta$

where $\beta \in \Omega^1(Z)$ and $u \in C^{\infty}(Z)$.

Replace z by a function f_{ϵ} satisfying

•
$$f_{\epsilon}(x) = x$$
 for $x \in \mathbb{R} \setminus [-2\epsilon, 2\epsilon]$,
• $f_{\epsilon}(x) = -\frac{1}{x^{2m-1}}$ for $x \in [-\epsilon, 0[\cup]0, \epsilon]$,
• $f'_{\epsilon}(x) > 0$.

Then $\alpha_{\epsilon} := udf_{\epsilon} + \beta$ is a b^{2m} -contact form coinciding with α outside of an ϵ -neighbourhood of Z.

- 4 回 ト 4 三 ト 4 三 ト

Theorem

Let $(M, \ker \alpha)$ be a (2n + 1)-dimensional contact manifold. For each convex hypersurface Σ , there exists a b^{2k} -contact structure realizing Σ as critical set.

Corollary

Let M be a closed 3-dimensional manifold and let $\tilde{\Sigma} \subset M$ be a surface. Then there exists a surface $\Sigma \ C^{\infty}$ -close to $\tilde{\Sigma}$ such that there exists a b^{2k} -contact structure on (M, Σ) .

Questions

- What about the case m = 2k + 1?
- Non-convex hypersurfaces?
- Is the almost contact condition a necessary condition for higher dimensions?

Thanks!

2

イロト イヨト イヨト イヨト