Generalized Riemann-Hilbert problem on elliptic curve in dimensions 1 and 2

A. Matveeva¹ V. Poberezhny^{1,2}

¹HSE, ²ITEP

18 May 2018, Barcelona

Outline of the talk

- Problem statement
- 2 Overview of explicit solutions on the Riemann sphere
- 3 Generalization on an elliptic curve
- 4 One-dimensional case
- Two-dimensional case

Classical Riemann-Hilbert problem 1

Consider on a disc $D=\{z\in\mathbb{C},\,|z|<1\}$ linear differential equation

$$\frac{d}{dz}y(z) = \frac{\alpha}{z}y(z), \qquad z \in D, y \in \mathbb{C}\alpha \in \mathbb{C}$$

and $y(z)=z^{\alpha}$ a germ of solution in a neighborhood of some $z=z_0$. Under analytic continuation along the loop $\gamma_0\in\pi_1(D\setminus 0,z_0)$ around point z=0 it transforms into another germ $\widetilde{y}(z)$ solving the same equation:

$$y(z) = z^{\alpha} = e^{\alpha \ln z} \mapsto e^{\alpha(\ln z + 2\pi i)} = z^{\alpha} \cdot e^{2\pi i \alpha} = y(z) \cdot e^{2\pi i \alpha} = \widetilde{y}(z)$$

Multiplier $G_0=e^{2\pi\imath\alpha}$ is called (local) monodromy and describes the action of fundamental group on solution space.

Classical Riemann-Hilbert problem 2

In a similar way for Fuchsian system on Riemann sphere

$$\frac{d}{dz}Y(z) = \sum_{i=1}^n \frac{B_i}{z - a_i}Y(z), \quad z \in \mathbb{C}\setminus\{a_1, \ldots, a_n\}, \ y \in \mathbb{C}^p, \ B_i \in \mathrm{Mat}_{n\times n}(\mathbb{C})$$

correspondence $\gamma_i \to G_i$ gives rise to monodromy map:

$$\chi: \pi_1(\mathbb{C}\setminus\{a_1,\ldots,a_n\},z_0)\longrightarrow \mathrm{GL}_p(\mathbb{C})$$

Dependence on choice of initial germ and point z_0 can be neglected. The image of χ is called monodromy group of an equation. In coordinates it can be described as n-tuple (G_1, \ldots, G_n) defined up to an overall conjugation on constant non-degenerate $C \in \mathrm{GL}_p(\mathbb{C})$.

Classical Riemann-Hilbert problem 3

Riemann-Hilbert problem

Given n points $a_1,...,a_n$ on Riemann sphere $\overline{\mathbb{C}}$ and representation χ of fundamental group $\pi_1(\mathbb{C}\setminus\{a_1,...,a_n\})$ to construct a Fuchsian system having singular points $a_1,...,a_n$ and monodromy χ .

- Solved in negative by A. Bolibrukh in 1989
- Solved in positive for irreducible representations by A. Bolibrukh and V. Kostov independently in 1992.
- Different sufficient conditions of solvability are known.

Statement Overview on $\mathbb{C}P^1$ Generalization on $\Lambda(au)$ Dim. 1 Dim. 2

Generalization

Now we want to reformulate the problem so that it will make sense for all Riemann surfaces. We say that functions y(z) on sphere are sections $\varphi(z)$ in trivial bundle and instead of initial equation one can consider

$$d\varphi = \Omega \varphi$$
,

where Ω is connection in the same bundle.

For arbitrary Riemann surface due to combinatorial reasons, we need the bundle to be not trivial but semistable, i.e. $\frac{\deg D}{\operatorname{rk} D} \leq \frac{\deg E}{\operatorname{rk} E} \quad \forall D \subset E$.

For the set of singular points $\{a_1, \ldots, a_n\}$ and monodromy representation

$$\chi:\pi_1(X\setminus\{a_1,\ldots,a_n\})\to\mathrm{GL}_p(\mathbb{C})$$

of punctured Riemann surface X, to construct logarithmic connection in semistable bundle of degree zero with given singularities and monodromy representation.

One-dimensional (commutative) case on sphere

For given set of singularities $\{a_i\}$ and corresponding monodromies $\{g_i\}$ we want to construct system of the following form:

$$dy(z) = \sum_{i=1}^{n} \frac{b_i}{z - a_i} y(z).$$

Locally this system has monodromies $exp(2\pi\imath b_i)$ so we can set $b_i=\frac{1}{2\pi\imath}log(g_i)$. Let us take

$$y(z) = \prod_{i=1}^{n} (z - a_i)^{\frac{1}{2\pi i} \ln g_i}, \quad \text{Im}(\ln g_i) \in [0, 2\pi i).$$

$$y(z) \xrightarrow{a_i} y(z)g_i$$

From the topological condition $g_1 \dots g_n = 1$ it follows that

$$\frac{1}{2\pi i}(\ln g_1 + \ldots + \ln g_n) = k \qquad k \in \mathbb{Z}.$$

$$y(z) \xrightarrow{z \to \infty} z^{\left(\sum_{i=1}^{n} \frac{1}{2\pi i} \ln g_i\right)} = z^k$$

 $\widetilde{y}(z) = \frac{y(z)}{(z-a_1)^k}$ has the same singularities and ramification as y(z) on \mathbb{C} and is holomorphic at infinity.

$$\frac{d\widetilde{y}(z)}{dz} = \left(\frac{\frac{1}{2\pi\imath}\ln g_1}{z - a_1} + \ldots + \frac{\frac{1}{2\pi\imath}\ln g_n}{z - a_n} - \frac{k}{z - a_1}\right)\widetilde{y}$$

For the Fuchsian system

$$\frac{d}{dz}y(z) = \sum_{i=1}^{3} \frac{B_i}{z - a_i}y(z), \quad z \in \mathbb{C} \setminus \{a_1, a_2, a_3\}, \ y \in \mathbb{C}^2, \ B_i \in \mathrm{Mat}_{2 \times 2}(\mathbb{C})$$

Local monodromy G_i is as usual conjugated to $exp(2\pi \imath B_i)$. In general, it is not possible to reconstruct global monodromy from the set of local ones.

For the irreducible representation, using the condition that $G_1 \cdot G_2 \cdot G_3 = 1$, one can uniquely reconstruct global monodromy from the local ones.

Statement of generalization

For the set of singular points $\{a_1, \ldots, a_n\}$ and monodromy representation

$$\chi:\pi_1\left(\Lambda_{\tau}\setminus\{a_1,\ldots,a_n\}\right)\to \mathrm{GL}_p(\mathbb{C})$$

to construct logarithmic connection in semistable bundle of degree zero on the elliptic curve with given singular points and monodromy representation.

Instead of z as holomorphic function on sphere we will be using first Riemann theta-function

$$\theta(z) = \theta_1(z|\tau) = i \sum_{m \in \mathbb{Z}} (-1)^m q^{(m-\frac{1}{2})^2} e^{(m-\frac{1}{2})2\pi i z},$$

where $q(\tau) = e^{i\pi\tau} = e^{i\pi x - \pi y}$ defines map from upper half plane $H = \{\tau \in \mathbb{C} | \operatorname{Im} \tau > 0\}$ into the unit circle $D = \{q \in \mathbb{C} \mid |q| < 1\}$.

Properties of theta-function

Ramification of $\theta(z)$ and its derivative.

$$\theta(z+1) = -\theta(z)$$

$$\theta(z+\tau) = -q^{-1}e^{-2\pi iz}\theta(z)$$

$$heta'(z+1) = - heta'(z) \ heta'(z+ au) = q^{-1} \mathrm{e}^{-2\pi i z} ig(2\pi i heta(z) - heta'(z) ig)$$

Therefore,

$$\frac{\theta'(z+1)}{\theta(z+1)} = \frac{\theta'(z)}{\theta(z)}$$
$$\frac{\theta'(z+\tau)}{\theta(z+\tau)} = \frac{\theta'(z)}{\theta(z)} - 2\pi i.$$

We also need expressions for the shifted theta functions. Let a be an arbitary point on Λ_{τ} .

$$\theta(z-a+1) = -\theta(z-a)$$

$$\theta(z-a+\tau) = -q^{-1}e^{-2\pi iz}\theta(z-a)e^{2\pi ia}$$

Dim. 1

Sections of one-dimensional vector bundles on Λ_{τ}

Instead of 2 maps on sphere, on elliptic curve it is convenient to consider 1 map and 2 shifts by 1 and by τ .

$$\#poles = \#zeroes$$

$$\varphi(z) \xrightarrow{a-cycle} \varphi(z) = \varphi(z+1)$$

$$\varphi(z) \xrightarrow{b-cycle} \varphi(z) \cdot e^{2\pi i \lambda} = \varphi(z+\tau)$$

$$\varphi(z) = \prod_{i=1}^{n} \theta^{k_i} (z-a_i), \quad k \in \mathbb{Z}, \quad \sum_{i=1}^{n} k_i = 0.$$

$$\varphi(z+1) = (-1)^{\sum k_i} \varphi(z) = \varphi(z)$$

$$\varphi(z+\tau) = \varphi(z) \cdot e^{2\pi i \sum k_i a_i}$$

$$\sum_{i=1}^{n} k_i a_i = \lambda.$$

Connections of one-dimensional vector bundles on Λ_{τ}

$$d\varphi(z) = \omega_{\lambda}(z)\varphi(z)$$

From $d\theta^{\alpha_i}(z-a_i) = \alpha_i \theta'(z-a_i) \theta^{\alpha_i-1}(z-a_i) dz$ we obtain

$$d\varphi = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i})}{\theta(z-a_{i})} \varphi dz, \quad \omega_{\lambda}(z) = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i})}{\theta(z-a_{i})} dz$$

 $\omega(z)$ has logarithmic singularities in the points a_i . Let us check how it changes under the shifts by 1 and τ .

$$\omega_{\lambda}(z+1) = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i}+1)}{\theta(z-a_{i}+1)} dz = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i})}{\theta(z-a_{i})} dz = \omega_{\lambda}$$

$$\omega_{\lambda}(z+\tau) = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i}+\tau)}{\theta(z-a_{i}+\tau)} dz = \sum_{i=1}^{n} \alpha_{i} \frac{\theta'(z-a_{i})}{\theta(z-a_{i})} dz - 2\pi i \sum_{i=1}^{n} \alpha_{i} = \omega_{\lambda}$$

tatement Overview on ${\Bbb CP}^1$ Generalization on $\Lambda(au)$ Dim. ${f 1}$ Dim. ${f 2}$

Explicit solution

Theorem

For given elliptic curve Λ_{τ} , singular points $\{a_1,\ldots,a_n\}$ and monodromy data g_1,\ldots,g_n,λ one-dimensional Riemann problem is positively solvable in trivial bundle if and only if $\lambda=\sum_{k=1}^n\alpha_ka_k+p+q\tau$ for some integer p,q and normalized set α_1,\cdots,α_n , where $e^{2\pi\imath\alpha_k}=g_k$. The corresponding connection form in the bundle has the form

 $\theta'(z-a_k)$

$$\omega_{\lambda}(z) = \sum_{k=1}^{n} \alpha_{k} \frac{\theta'(z - a_{k})}{\theta(z - a_{k})} dz$$

In general case, solution can be given by the same formula in the bundle $\mathcal{O}_{\sum_{k=1}^n \alpha_k a_k - \lambda}(0)$ and there are no other solutions.

Local theory

Consider $\{a_1, \ldots, a_n\} \in \Lambda_{\tau}$, $a_i \neq a_j$ and complex $\alpha_i, \beta_i, \gamma_i, \delta_i$, $i = 1, \ldots, n$ such that

$$\sum_{i=1}^{n} \left(\begin{array}{cc} \alpha_{i} & \beta_{i} \\ \gamma_{i} & \delta \end{array} \right) = 0$$

Then matrix 1-form

$$\Omega(z) = \sum_{i=1}^{n} \frac{\begin{pmatrix} \alpha_{i}\theta'(z-a_{i}) & \beta_{i}\frac{\theta'(0)}{\theta(-2\lambda)}\theta(z-a_{i}-2\lambda) \\ \gamma_{i}\frac{\theta'(0)}{\theta(2\lambda)}\theta(z-a_{i}+2\lambda) & -\delta_{i}\theta'(z-a_{i}) \end{pmatrix}}{\theta(z-a_{i})} dz,$$

defines a logarithmic connection on $E\simeq \mathcal{O}_{\lambda}(0)\oplus \mathcal{O}_{-\lambda}(0)$ with residues

$$\operatorname{Res}_{z=a_i} \Omega(z) = \begin{pmatrix} \alpha_i & \beta_i \\ \gamma_i & \delta_i \end{pmatrix}$$

Global theory

Theorem

Consider an irreducible representation

$$\chi_0:\pi_1\left(\mathbb{C}\mathrm{P}^1\setminus\{d_1,d_2,d_3\}\right) o \mathrm{SL}(2,\mathbb{C}).$$

The Riemann problem for χ_0 can be solved explicitly, consider (B_1, B_2, B_3) any triple of residues giving the solution on sphere.

Then 1-form $\Omega(z)$ constructed above with the use of triple (B_1,B_2,B_3) and arbitrary parameter λ defines a logarithmic connection $\widetilde{\nabla}=d-\widetilde{\Omega}(z)$ in semistable vector bundle $\mathcal{O}_{\lambda}(0)\oplus\mathcal{O}_{-\lambda}(0)$ with singular points $\{a_1,a_2,a_3\}$ and monodromy representation

$$\chi: \pi_1(\Lambda_\tau \setminus \{a_1, a_2, a_3\}) \to \mathrm{SL}(2, \mathbb{C}),$$

such that
$$\chi_{\mathrm{ind}} = \chi_0, \;\; \chi(\gamma_{\mathsf{a}}) = 1$$
 and $\chi(\gamma_{\mathsf{b}}) \sim \exp\left(2\pi i \int\limits_0^\tau \widetilde{\Omega}(z)\right).$

Thank you for your attention!