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Statement

Classical Riemann-Hilbert problem 1

Consider on a disc D = {z € C, |z| < 1} linear differential equation

d @
Ey(z)_;y(z), zeD,yeCacC

and y(z) = z% a germ of solution in a neighborhood of some z = z.
Under analytic continuation along the loop 7o € 7m1(D \ 0, zp) around point
z = 0 it transforms into another germ y(z) solving the same equation:

y(2) = 2% = o7 1y eolinzh2m) — zo . g2ma — (7). @20 = §(z)

Multiplier Gy = €™ is called (local) monodromy and describes the action
of fundamental group on solution space.
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Statement

Classical Riemann-Hilbert problem 2

In a similar way for Fuchsian system on Riemann sphere

n

d B;
EY(Z) = ; z— a; Y(Z)7 VS (C\{ala ceey an}) ye va Bi € Matnxn((c)

correspondence ; — G; gives rise to monodromy map:
X :m(C\ {a1,...,an}, 20) — GL,(C)

Dependence on choice of initial germ and point zy can be neglected. The
image of x is called monodromy group of an equation. In coordinates it
can be described as n-tuple (Gy, ..., G,) defined up to an overall
conjugation on constant non-degenerate C € GL,(C).

A. Matveeva (HSE) Riemann-Hilbert on A(T) Barcelona 2018 4 /17



Statement

Classical Riemann-Hilbert problem 3

Riemann-Hilbert problem

Given n points ay, ..., a, on Riemann sphere C and representation y of
fundamental group m1(C \ {a1, ..., an}) to construct a Fuchsian system
having singular points ay, ..., a, and monodromy Y.

@ Solved in negative by A. Bolibrukh in 1989

@ Solved in positive for irreducible representations by A. Bolibrukh and
V. Kostov independently in 1992.

o Different sufficient conditions of solvability are known.
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Statement

Generalization

Now we want to reformulate the problem so that it will make sense for all
Riemann surfaces. We say that functions y(z) on sphere are sections ¢(z)
in trivial bundle and instead of initial equation one can consider

do = Qo,

where Q is connection in the same bundle.
For arbitrary Riemann surface due to combinatorial reasons, we need the

bundle to be not trivial but semistable, i.e. 982 < 9%8E yp c £,

For the set of singular points {a1,...,an} and monodromy representation
X T (X \ {31, cee a,,}) — GLP(C)

of punctured Riemann surface X, to construct logarithmic connection in
semistable bundle of degree zero with given singularities and monodromy
representation.
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Overview on CP*

One-dimensional (commutative) case on sphere

For given set of singularities {a;} and corresponding monodromies {g;} we
want to construct system of the following form:

n

dy(z) =3 2y (2).

Lz — a;
i=1

Locally this system has monodromies exp(2mib;) so we can set
bi = 5, log(gi)-
Let us take
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Overview on CP*

One-dimensional case. Global theory

From the topological condition g ... g, = 1 it follows that

1
2—m(lng1+...+|ng,,):k k € Z.

) 2 (5 s

y(z) = (zy(al))k has the same singularities and ramification as y(z) on C

and is holomorphic at infinity.

y
dz z—a Z— an z—a

dy(z):(;mlng1+ Lzlnen Kk )~
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Overview on CP*

Two-dimensional case

For the Fuchsian system

d B;

— = , € C\{a1,a, a3}, y € C2, B; € Mat C

57 (@) Z . al_)’(z) z € C\{a1, a2, a3}, y at2x2(C)
1=

Local monodromy G; is as usual conjugated to exp(2mB;). In general, it is

not possible to reconstruct global monodromy from the set of local ones.

For the irreducible representation, using the condition that G; - Gy - G3 = 1,
one can uniquely reconstruct global monodromy from the local ones.
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Generalization on A(T)

Statement of generalization

For the set of singular points {a1,...,a,} and monodromy representation
X m (A \ {a1,...,an}) = GL,(C)

to construct logarithmic connection in semistable bundle of degree zero on
the elliptic curve with given singular points and monodromy representation.

Instead of z as holomorphic function on sphere we will be using first
Riemann theta-function

( ) ’T _ZZ( 1 (m—§ e(m——)27rzz
meZ

where g(7) = €' = "™~ defines map from upper half plane

H = {r € C|Im7 > 0} into the unit circle D = {q € C||q| < 1}.
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Generalization on A(T)

Properties of theta-function

Ramification of #(z) and its derivative.

0(z+1) =—-6(2)
9(2 + T) — _qflef2ﬂ'l'26(z)

0'(z+1)=-0'(2)
0'(z+71)=q te 2™2(2mif(z) — 0'(z))
Therefore,
0'(z+1)  0'(2)
0(z+1)  6(z2)
(z+71)  0(2)
0(z+7)  6(z)
We also need expressions for the shifted theta functions. Let a be an
arbitary point on A;.

0(z—a+1)=—-0(z—a)
0(2 —a+ T) — _q—le—27rzzg(z _ a)e27rza
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Dim. 1

Sections of one-dimensional vector bundles on A,

Instead of 2 maps on sphere, on elliptic curve it is convenient to consider 1
map and 2 shifts by 1 and by 7.

#poles = #zeroes

o(2) =L o(2) = p(z + 1)
(2) =2 o(z2) - ™ = p(z+7)
o(z) = ; 0ki(z — a;), ke, zn:k,- =0.
=1 =1
Pz +1) = (~1)Zkp(z) = o(2)
oz +7) = p(z) - T k2

i k,-a,- =\
i=1
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Dim. 1

Connections of one-dimensional vector bundles on A-

di(z) = wa(2)¢(2)
From d0%(z — a;) = a;0'(z — a;)0%~1(z — a;)dz we obtain
P LA Gt IS S N A} P8
SO—i:1 '9(2—3,')90 7 g _’.:1 "0(z - a;)

w(z) has logarithmic singularities in the points a;. Let us check how it
changes under the shifts by 1 and 7.

“ 9/(2 —aj + 1) “ 9,(2 — a,-)
A +1) =D g myds =) arge—ydz =

i=1 i=1 i)
= O(z-aitT) . =~ O0(z—a)
W)\(Z—i—T)—iz_;Od,a(z_ai_’_T)dz—;Od H(Z—a)d —271'12()(,—00)\
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Explicit solution

Theorem

For given elliptic curve A, singular points {a1,...,an,} and monodromy
data g1, ..., 8n, A one-dimensional Riemann problem is positively solvable
in trivial bundle if and only if X\ = Y] _; axak + p + q7 for some integer
p,q and normalized set o, - - - , o, where e*™% = g

The corresponding connection form in the bundle has the form

In general case, solution can be given by the same formula in the bundle
Osr_ o,a,-A(0) and there are no other solutions.
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Dim. 2
Local theory

Consider {a1,...,an} € A, a; # aj and complex «;, B;,7i,0;, i =1,...,n

such that .
S ()=
i N i

Then matrix 1-form

aill(z—a)  Bigr oz —ai—2))
"\ g0z — ai+2)) —5;0'(z — a;)

Q(z) = Z 0z — ) dz,

i=1

defines a logarithmic connection on E ~ 0,(0) & O_(0) with residues

Res Q(z) = < @i ? )

z=aj Vi
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Global theory

Consider an irreducible representation

X0 - 71 (CPl \ {dl, do, d3}) — SL(2, C)

The Riemann problem for xo can be solved explicitly, consider (Bi, By, B3)
any triple of residues giving the solution on sphere.

Then 1-form Q(z) constructed above with the use of triple (Bi, Bz, B3)
and arbitrary parameter \ defines a logarithmic connection V = d — Q(z)
in semistable vector bundle O(0) & O_(0) with singular points

{a1, a2, a3} and monodromy representation

X . 1 (/\7- \ {31, ao, 33}) — SL(Q,C),

such that xing = x0, Xx(7a) =1 and x(7») ~ exp (27rif§~2(z)> .
0
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Thank you for your attention!
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