Resolving some surface singularities with Weighted Blow-ups

Jorge Martín-Morales

- IUMA

Seminari de Geometria Algebraica (UB · UPC · UAB) Barcelona, March 9, 2018

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018

Introduction and Motivation

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018 2

Introduction Monodromy Q-resolutions A'Campo Steenbrink

Resolution Graph of $f = x^2 z + y^3 + z^6$

80 CHARTS AND 15 EXCEPTIONAL DIVISORS

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Introduction Monodromy Q-resolutions A'Campo Steenbrink

RESOLUTION GRAPH OF $f = x^2z + y^3 + z^6$

80 CHARTS AND 15 EXCEPTIONAL DIVISORS

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018

Yomdin Singularities

Definition.

- Let $f = f_m + f_{m+k} + \cdots \in \mathbb{C}\{x, y, z\}$ be the decomposition of f into its homogeneous parts, $k \ge 1$.
- Denote by $\mathbf{C} := V(f_m) \subset \mathbb{P}^2$ its tangent cone.
- V := V(f) is Yomdin-Lê if $Sing(\mathbf{C}) \cap V(f_{m+k}) = \emptyset$ in \mathbb{P}^2 .

Example:
$$f = x^2 z + y^3 + z^6 \in \mathbb{C}\{x, y, z\}.$$

• $\operatorname{Sing}_{\mathbb{P}^2}(f_3) = \{ [0:0:1] \}.$

•
$$V_{\mathbb{P}^2}(f_6) = \{z = 0\}.$$

• $\operatorname{Sing}_{\mathbb{P}^2}(f_3) \cap V_{\mathbb{P}^2}(f_6) = \emptyset.$

[LUENGO]

I. Luengo, The $\mu\text{-constant}$ stratum is not smooth, Invent. Math. 90 (1987), 139–152.

J. Martín-Morales (CUD Zaragoza)

3

イロト イポト イヨト イヨト

SUPERISOLATED SINGULARITIES (k = 1) [ARTAL]

He was able to calculate the Jordan form of the monodromy.

How to compute it?

- Resolution of singularities.
- 2 Eigenvalues: A'Campo's formula.
- Sordan blocks: Steenbrink's spectral sequence.

Application: Counterexample to Yau's conjecture.

Find two superisolated surface singularities having:

- The same characteristic polynomials.
- 2 The same abstract topologies.
- Oifferent embedded topologies ~> Monodromy.

Remark

- No embedded resolution is known for Yomdin singularities for $k \ge 2$.
- There exists a special kind of toric embedded resolution for f with just two exceptional divisors E_0 and E_1 .
- By contrast, the final total space produced has abelian quotient singularities. Therefore, A'Campo and Steenbrink's approach can not be applied directly.

イロト 不得下 イヨト イヨト

Monodromy

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018 8

< 回 ト < 三 ト < 三 ト

8 / 34

MILNOR FIBRATION

 Let (H,0) ⊂ (Cⁿ⁺¹,0) be a germ of hypersurface singularity defined by a holomorphic function f : U → C. This means that

$$H = \{\mathbf{x} \in U \mid f(\mathbf{x}) = 0\}.$$

• By Ehresmann's Fibration Theorem, the restriction (0 $<\eta<<\epsilon)$

$$f|:f^{-1}(\overline{D_\eta}\setminus\{0\})\cap\overline{B_\epsilon^{2n+2}}\longrightarrow\overline{D_\eta}\setminus\{0\}$$

is a locally trivial fibration for all ϵ small enough.

Definition

The previous fibration is called the *Milnor fibration* of f and any of its fibers $F := \{\mathbf{x} \in \mathbb{C}^{n+1} : ||\mathbf{x}|| \le \epsilon, f(\mathbf{x}) = \eta\}$ is called the *Milnor fiber*.

イロト イポト イヨト イヨト 二日

MONODROMY ZETA FUNCTION

- Let h: F → F, α̃(0) ↦ α̃(1) be the geometric monodromy. It is just well defined up to homotopy.
- Denoted by φ := H^q(h) : H^q(F, ℂ) → H^q(F, ℂ) the induced automorphisms on the complex cohomology groups.

Definition (Monodromy Zeta Function)

$$Z(f;t) := \prod_{q \ge 0} \underbrace{\det(\mathsf{id}^* - t \cdot H^q(h))}_{\mathsf{char. poly. of } H^q(h)} (-1)^q \in Q(\mathbb{Q}[t])$$

J. Martín-Morales (CUD Zaragoza)

EMBEDDED RESOLUTION

Definition

An embedded resolution of $(H, 0) \subset (\mathbb{C}^{n+1}, 0)$ is a proper analytic map $\pi: X \to (\mathbb{C}^{n+1}, 0)$ such that:

- X is a (smooth) manifold.
- 2 π is an isomorphism over $X \setminus \pi^{-1}(Sing(H))$.
- \Im $\pi^{-1}(H)$ is a hypersurface with normal crossings on X.

Normal Crossing Divisor

The third condition above means that $\pi^{-1}(H) = (f \circ \pi)^{-1}(0)$ is locally given by an equation of the form $x_1^{m_1} \cdot \ldots \cdot x_{\iota}^{m_k} = 0$.

A'CAMPO'S FORMULA

• Let $\pi: X \to (\mathbb{C}^{n+1}, 0)$ be an embedded resolution of (H, 0).

• Total transform:
$$\pi^*(H) = \underbrace{\widehat{H}}_{\text{strict transform}} + \underbrace{\sum_{i=1}^{i} m_i E_i}_{\text{exceptional divisor}}$$

• Now, define $\check{F}_{i} := F_{i} \setminus \left(F_{i} \cap \left(\bigcup F_{i} \cup \widehat{H} \right) \right)$

$$\check{E}_i := E_i \setminus \left(E_i \cap \left(\bigcup_{j \neq i} E_j \cup \widehat{H} \right) \right).$$

r

Theorem ([A'Campo])

$$Z(f;t) = \prod_{i=1}^r (1-t^{m_i})^{\chi(\check{E}_i)}.$$

J. Martín-Morales (CUD Zaragoza)

EXAMPLE OF A PLANE CURVE

Let us compute the monodromy zeta function of $f = x^5 + y^{12}$ using A'Campo's formula. The following picture represents an embedded resolution:

This implies:

$$Z(f;t) = (1-t^{60})^{-1}(1-t^5)(1-t^{12}) = rac{(1-t^5)(1-t^{12})}{(1-t^{60})}.$$

The following picture provides the same information:

The Main Aim

Questions:

- How to formalize this idea of "contraction" of the exceptional divisors which do not contribute to the monodromy zeta function?
- ② Can one directly compute the simplified resolution (without computing the standard one and then perform the contractions)?
- Obes there exist a formula for calculating Z(f; t) using this new kind of resolutions even in higher dimension?

Embedded **Q**-Resolutions

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

► < ☐ ► < Ξ ► < Ξ ►</p>
Barcelona, March 9, 2018

16 / 34

EMBEDDED **Q**-RESOLUTION

Definition

An embedded Q-resolution of $(H, 0) \subset (\mathbb{C}^{n+1}, 0)$ is a proper analytic map $\pi : X \to (\mathbb{C}^{n+1}, 0)$ such that:

- X is a V-manifold with abelian quotient singularities.
- **2** π is an isomorphism over $X \setminus \pi^{-1}(Sing(H))$.
- $\pi^{-1}(H)$ is a hypersurface with Q-normal crossings on X.

Q-Normal Crossing Divisor ([Steenbrink])

The third condition above means that $\pi^{-1}(H) = (f \circ \pi)^{-1}(0)$ is locally given by function of the form $x_1^{m_1} \cdot \ldots \cdot x_k^{m_k} : X(\mathbf{d}; A) \to \mathbb{C}$.

• $X(\mathbf{d}; A) := \mathbb{C}^{n+1}/\mu_{\mathbf{d}}$, $G \subset GL(n+1, \mathbb{C})$ abelian group acting diagonally

Classical Blow-up of \mathbb{C}^2

Consider

$$\widehat{\mathbb{C}}^2 := ig\{((x,y),[u:v])\in \mathbb{C}^2 imes \mathbb{P}^1 \mid (x,y)\in \overline{[u:v]}ig\}.$$

• Then $\pi: \widehat{\mathbb{C}}^2 \to \mathbb{C}^2$ is an isomorphism over $\widehat{\mathbb{C}}^2 \setminus \pi^{-1}(0)$.

- The exceptional divisor $E := \pi^{-1}(0)$ is identified with \mathbb{P}^1 .
- The space C² = U₁ ∪ U₂ can be covered by 2 charts each of them isomorphic to C².

$$\begin{array}{ccc} \mathbb{C}^2 & \stackrel{\simeq}{\longrightarrow} & U_1 = \{u \neq 0\} \subset \widehat{\mathbb{C}}^2 \\ (x,y) & \mapsto & \big((x,xy), [1:y] \big). \end{array}$$

Introduction Monodromy Q-resolutions A'Campo Steenbrink

Behavior of $\pi: \widehat{\mathbb{C}}^2 \to \mathbb{C}^2$

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

19 / 34

Weighted (p, q)-Blow-ups of \mathbb{C}^2

Let ω = (p, q) be a weight vector with coprime entries. As above, consider the space

$$\widehat{\mathbb{C}}^2_\omega := \big\{ ((x,y), [u:v]_\omega) \in \mathbb{C}^2 \times \mathbb{P}^1_\omega \mid (x,y) \in \overline{[u:v]}_\omega \big\}.$$

• Then $\pi: \widehat{\mathbb{C}}^2_{\omega} \to \mathbb{C}^2$ is an isomorphism over $\widehat{\mathbb{C}}^2_{\omega} \setminus \pi^{-1}(0)$.

- The exceptional divisor $E := \pi^{-1}(0)$ is identified with \mathbb{P}^1_{ω} .
- The space $\widehat{\mathbb{C}}^2_\omega = U_1 \cup U_2$ can be covered by 2 charts. For instance, the first chart is given by

1st chart
$$ig| \begin{array}{ccc} X(p;-1,q) & \stackrel{\simeq}{\longrightarrow} & U_1 = \{u \neq 0\} \ \subset \ \widehat{\mathbb{C}}^2_{\omega}, \\ [(x,y)] & \mapsto & ((x^p,x^qy),[1:y]_{\omega}). \end{array}$$

Introduction Monodromy Q-resolutions A'Campo Steenbrink

Behavior of $\pi_{(p,q)}: \widehat{\mathbb{C}}^2_{(p,q)} \to \mathbb{C}^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generalized A'Campo's formula

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

► < ☐ ► < Ξ ► < Ξ ►</p>
Barcelona, March 9, 2018

GENERALIZED A'CAMPO'S FORMULA

Teorema (Cyclic case)

Let $X_0 = \pi^{-1}(H)$ be the total transform and $S = \pi^{-1}(0)$ the exceptional divisor. Consider $S_{m,d}$ to be the set

 $\left\{\begin{array}{c|c}s\in S\\\text{function }x_i^m:X(d;a_0,\ldots,a_n)\to\mathbb{C}.\end{array}\right\}$

Then, the monodromy zeta function of the complex monodromy of the hypersurface (H, 0) is

$$Z(f;t) = \prod_{m,d} (1-t^{m/d})^{\chi(S_{m,d})}.$$

J. Martín-Morales (CUD Zaragoza)

Comments about Proof of the Theorem

Theorem ([Dimca])

- Assume $\pi: X \to U$ is a proper analytic map such that π induces an isomorphism between $X \setminus \pi^{-1}(H)$ and $U \setminus H$.
- Solution 2 Let g = f π denote the composition and j : X \ π⁻¹(H) → X the inclusion.
- Let S be a finite stratification of the exceptional divisor π⁻¹(0) such that ψ_g(Rj_{*}C_{X\π⁻¹(H)}) is equivariantly S-constructible with respect to the semisimple part of M.

Then,

$$Z(f) = \prod_{S \in S} Z(g, x_S)^{\chi(S)},$$

where x_S is an arbitrary point in the stratum S and $Z(g, x_S)$ is the zeta function of the germ g at x_S .

Monodromy Zeta Function of a \mathbb{Q} -Normal Crossing Divisor

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by $x_1^{m_1} \cdot \ldots \cdot x_k^{m_k} : X(d; a_0, \ldots, a_n) \to \mathbb{C}, \ k \ge 1$, is

$$Z\left(x_1^{m_1}\cdot\ldots\cdot x_k^{m_k}:X(d;a_0,\ldots,a_n)\to\mathbb{C};\ t\right)=\begin{cases}1-t^{\frac{m_1}{d}} & k=1;\\ 1 & k\geq 2,\end{cases}$$

J. Martín-Morales (CUD Zaragoza)

Barcelona, March 9, 2018

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Monodromy Zeta Function of a \mathbb{Q} -Normal Crossing Divisor

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by $x_1^{m_1} \cdot \ldots \cdot x_k^{m_k} : X(d; a_0, \ldots, a_n) \to \mathbb{C}, \ k \ge 1$, is

$$Z\left(x_1^{m_1}\cdot\ldots\cdot x_k^{m_k}:X(d;a_0,\ldots,a_n)\to\mathbb{C};\ t\right)=\begin{cases}1-t^{\frac{m_1}{d}} & k=1;\\ 1 & k\geq 2,\end{cases}$$

Non-cyclic case

$$d \quad \rightsquigarrow \quad \ell := \mathsf{lcm}\left(\frac{d_1}{\mathsf{gcd}(d_1, a_{11})}, \dots, \frac{d_r}{\mathsf{gcd}(d_r, a_{r1})}\right)$$

EXAMPLE 1

Let $f = x^p + y^q$ and assume that e = gcd(p, q), $p = p_1 e$ and $q = q_1 e$. Consider $\pi : \widehat{\mathbb{C}}^2_{(q_1, p_1)} \to \mathbb{C}^2$ the weighted blow-up at the origin.

The set $S_{m,d}$ is not empty for $(m, d) = (p_1q_1e, 1)$, (p_1q_1e, q_1) , (p_1q_1e, p_1) . Their Euler characteristics are

$$\chi(S_{\rho_1q_1e,1}) = 2 - (e+2) = -e, \qquad \chi(S_{\rho_1q_1e,q_1}) = \chi(S_{\rho_1q_1e,\rho_1}) = 1.$$

Now, we apply A'Campo's formula and obtain $Z(f; t) = \frac{(1-t^p)(1-t^q)}{(1-t^{\frac{pq}{e}})^e}$.

EXAMPLE 2

Assume $\frac{p_1}{q_1} < \frac{p_2}{q_2}$ are two irreducible fractions and $gcd(q_1, q_2) = 1$. Let **C** be the complex plane curve with Puiseux expansion

 $y = x^{\frac{p_1}{q_1}} + x^{\frac{p_2}{q_2}}.$

J. Martín-Morales (CUD Zaragoza)

3

SPECTRAL SEQUENCE FOR SURFACES

STEENBRINK'S SPECTRAL SEQUENCE FOR SURFACES

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018

CHARACTERISTIC POLYNOMIAL

$$\Delta_{(V,0)}(t) = \frac{(t^m - 1)^{\chi(\mathbb{P}^2 \setminus \mathbb{C})}}{t - 1} \prod_{P \in \operatorname{Sing}(\mathbb{C})} \Delta_{(\mathbb{C},P)}^k(t^{m+k})$$

•
$$\chi(\mathbb{P}^2 \setminus \mathbf{C}) = (m^2 - 3m + 3) - \sum_{P \in \text{Sing}(\mathbf{C})} \mu_{(\mathbf{C},P)}$$

• $\Delta_{(\mathbf{C},P)}(t)$ denotes the characteristic polynomial of (\mathbf{C},P)

•
$$\Delta(t) = \prod_i (t^{m_i} - 1)^{a_i} \implies \Delta^k(t) = \prod_i \left(t^{\frac{m_i}{\gcd(m_i,k)}} - 1\right)^{\gcd(m_i,k)a_i}$$

J. Martín-Morales (CUD Zaragoza)

JORDAN BLOCKS 3-Jordan Blocks (for $\lambda \neq 1$)

$$\Delta_{\operatorname{Gr}_0^WH}(t) = \prod_{P\in\operatorname{Sing}(\mathbf{C})} \Delta_{\operatorname{Gr}_0^WH_{(\mathbf{C},P)}}^{(m)}(t)$$

• $\Delta_{\mathsf{Gr}_0^W H_{(\mathsf{C},P)}}(t)$ encodes the Jordan blocks of size 2 of (C,P) .

•
$$\Delta(t) = \prod_i (t^{m_i} - 1)^{a_i} \implies \Delta^{(\ell)}(t) = \prod_i (t^{\gcd(\ell, m_i)} - 1)^{a_i}$$

Remark.

The 3-Jordan blocks does not depend on $k \ge 1$.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

JORDAN BLOCKS 2-Jordan Blocks for $\lambda \neq 1$

$$\Delta_{\mathsf{Gr}_{1}^{W}H}(t) = \frac{1}{\Delta_{H^{1}(D_{0})}(t)} \prod_{P \in \mathsf{Sing}(\mathbf{C})} \frac{\widetilde{\Delta}_{(\mathbf{C},P)}^{(m)}(t) \cdot \Delta_{\mathsf{Gr}_{0}^{W}H_{(\mathbf{C},P)}}^{k}(t^{m+k})}{\Delta_{\mathsf{Gr}_{0}^{W}H_{(\mathbf{C},P)}}^{(m)}(t)^{3} \cdot (t-1)^{b_{1}(N\Gamma_{+}^{P}(k))}}$$

- $\Delta^{\ell}(t)$ and $\Delta^{(\ell)}(t)$ were defined previously.
- $\widetilde{\Delta}^{(\ell)}$ is the polynomial resulting from $\Delta^{(\ell)}$ deleting the factor t-1.
- The action of the monodromy on H¹(D₀) and the cohomology itself are completely determined by the pair (P², C).

JORDAN BLOCKS 2-Jordan Blocks for $\lambda = 1$

$$\sum_{P\in \mathsf{Sing}(\mathsf{C})} (r_P - 1) - (r - 1) + \sum_{P\in \mathsf{Sing}(\mathsf{C})} b_1(\mathsf{N}\Gamma^P_+(k))$$

• r_P is the number of local branches of the germ (**C**, *P*)

- r is the number of irreducible components of $\mathbf{C} \subset \mathbb{P}^2$
- NΓ^P₊(k) is the dual graph of the semistable reduction of (C, P) modified according to k.

Remark.

Note that for k = 1 the graph $N\Gamma^{P}_{+}(k) = \Gamma^{P}_{+}$ is contractible, thus its first Betti number is zero, and one exactly obtains the description in [Artal].

MOLTES GRÀCIES !

J. Martín-Morales (jorge@unizar.es)

Seminari de Geometria Algebraica (UB \cdot UPC \cdot UAB) Barcelona, March 9, 2018

J. Martín-Morales (CUD Zaragoza)

Resolving some surface singularities

Barcelona, March 9, 2018

A B F A B F