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Introduction

Introduction and Motivation
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RESOLUTION GRAPH OF f = x%z 4 y3 + 26

80 CHARTS AND 15 EXCEPTIONAL DIVISORS
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Introduction

YOMDIN SINGULARITIES

Definition.
o Let f = fy + fik + - € C{x,y, z} be the decomposition of f into
its homogeneous parts, k > 1.

e Denote by C := V/(f,,) C P? its tangent cone.

e V := V(f)is Yomdin-L& if Sing(C) N V(fy,. ) = () in P2,

Example: f = x*z4+ >+ 20 ¢ C{x,y, z}.
ITI ITI
3 6

@ Singp2(f3) = {[0:0:1]}.

o Vpa(fg) = {z =0}

e Singp2(f3) N Vpa(fs) = 0.

v
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[LUENGO]

I. Luengo, The p-constant stratum is not smooth, Invent. Math. 90
(1987), 139-152.
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SUPERISOLATED SINGULARITIES (k = 1) [ARTAL]

He was able to calculate the Jordan form of the monodromy.

How to compute it?
@ Resolution of singularities.
@ Eigenvalues: A'Campo’s formula.

© Jordan blocks: Steenbrink's spectral sequence.

Application: Counterexample to Yau's conjecture.
Find two superisolated surface singularities having:
© The same characteristic polynomials.

@ The same abstract topologies.

© Different embedded topologies ~» Monodromy.
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Introduction

REMARK

@ No embedded resolution is known for Yomdin singularities for k > 2.

@ There exists a special kind of toric embedded resolution for f with
just two exceptional divisors Ey and Ej.

@ By contrast, the final total space produced has abelian quotient
singularities. Therefore, A'Campo and Steenbrink’s approach can not
be applied directly.
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Monodromy
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MILNOR FIBRATION
e Let (H,0) C (C"™1,0) be a germ of hypersurface singularity defined
by a holomorphic function f : U — C. This means that
H={xe U] f(x)=0}.

@ By Ehresmann’s Fibration Theorem, the restriction (0 < 1 << €)

f: £1(D, \ {0}) N B2 — D, \ {0}
is a locally trivial fibration for all € small enough.
Definition

The previous fibration is called the Milnor fibration of f and any of its
fibers F:= {x € C"™1 : ||x|| < ¢, f(x) = n} is called the Milnor fiber.
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MONODROMY ZETA FUNCTION

o Let h: F — F, a(0) — a(1) be the geometric monodromy. It is just
well defined up to homotopy.

@ Denoted by ¢ := H9(h) : HY(F,C) — H9(F,C) the induced
automorphisms on the complex cohomology groups.

Definition (Monodromy Zeta Function)

Z(f:t) = [ [ det(id* —t - HI(h))D" € Q(Q[t])

q>0

char. poly. of Hi(h)
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EMBEDDED RESOLUTION

Definition
An embedded resolution of (H,0) C (C™1,0) is a proper analytic
map 7 : X — (C"*1,0) such that:

@ X is a (smooth) manifold.

@ 7 is an isomorphism over X \ 7 1(Sing(H)).

© 7 1(H) is a hypersurface with normal crossings on X.

Normal Crossing Divisor

The third condition above means that 7= *(H) = (f o 7)~%(0) is locally
given by an equation of the form x;™ - ... x* = 0.
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A’CAaMPO’S FORMULA

o Let 7: X — (C™1,0) be an embedded resolution of (H, 0).

r

N * pr— g . .

e Total transform: 7*(H) = \I—L + Zm,E,
strict transform i=1

N——

exceptional divisor

£ ::E,-\(Eim(UEjuﬁ>>.

J#i

@ Now, define

Theorem ([A’Campo])

r

Z(f ) =] - emp®.

i=1
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EXAMPLE OF A PLANE CURVE

Let us compute the monodromy zeta function of f = x° 4 y'2 using
A'Campo’s formula. The following picture represents an embedded
resolution:

P P \<E3 \
24F,

o E~PHC)~S? = x(E)=2

o X(E2) = x(Bs) = X(E)) =2-2=0 | 0\ TTr{_ gm(E)
o X(E) = () =1 (ro=]l0-emy
o y(Es)=-1

J. Martin-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 13 / 34



This implies:

(1—t5)(1 - t'2)
(1 — t90)

Z(f;t) =1 —t9)711 -5 - t1?) =

The following picture provides the same information:

7 - \<Es
355 24E,

“contraction”

e Zr 60 [Veys]
(12) ‘ (5)
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THE MAIN AIM

Questions:
© How to formalize this idea of “contraction” of the exceptional divisors
which do not contribute to the monodromy zeta function?

@ Can one directly compute the simplified resolution (without
computing the standard one and then perform the contractions)?

© Does there exist a formula for calculating Z(f; t) using this new kind
of resolutions even in higher dimension?
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Q-resolutions

Embedded Q-Resolutions
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EMBEDDED Q-RESOLUTION

Definition
An embedded Q-resolution of (H,0) C (C"*1,0) is a proper analytic
map 7 : X — (C"*1,0) such that:

@ X is a V-manifold with abelian quotient singularities.

@ 7 is an isomorphism over X \ m1(Sing(H)).

© 77 1(H) is a hypersurface with Q-normal crossings on X.

Q-Normal Crossing Divisor ([Steenbrink])

The third condition above means that 77 1(H) = (f o 7)~%(0) is locally
given by function of the form x;™ -...-x ™ : X(d; A) — C.

o X(d;A):=C" /1y, G C GL(n+1,C) abelian group acting
diagonally
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CLASSICAL BLow-UP OF C?

o Consider
& = {((xoy) o V) € C2 x B | (x,y) € [a V).
o Then 7 : C2 — C2 is an isomorphism over C2 \ 7~1(0).

The exceptional divisor E := w~=1(0) is identified with P*.

The space C2 = U1 U U> can be covered by 2 charts each of them
isomorphic to C2.

C? = U ={u#0} c C?
(xy) = ((oxy), (L))
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BEHAVIOR OF 7 : C? — (2

C2 c2
R IR
R . . .
smooth ‘ ‘ ‘ ‘ smooth
= ar + By
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WEIGHTED (p, g)-BLow-UPS OF C?

Let w = (p, q) be a weight vector with coprime entries. As above,
consider the space

€2 = {((xy).[u: vI) € C2 x BL | (xoy) € Tu: v, ).
@ Then 7 : @3} — C? is an isomorphism over @3, \ m71(0).

@ The exceptional divisor E := w~1(0) is identified with PL.

The space @i = U1 U U can be covered by 2 charts. For instance,
the first chart is given by

Ist chart | X(p; —1,q) —» Uy ={u#0} c C2,
()] = (P xy), L yle)-
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Q-resolutions

.2 2
BEHAVIOR OF 7(,q) : Cp, )y = C
c? C%p,q)
R I A O
e ® °
singular ‘ ‘ ‘ ‘ singular
f=az®+ By? (p) (q)

J. Martin-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 21/ 34



Generalized A'Campo’s formula
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GENERALIZED A’CAMPO’S FORMULA

Teorema (Cyclic case)
Let Xo = 7~ 1(H) be the total transform and S = 771(0) the exceptional

divisor. Consider Sp, 4 to be the set

scs the local equation of Xj in s is given by the well-defined
function x : X(d; ag, ..., an) — C. '

Then, the monodromy zeta function of the complex monodromy of the
hypersurface (H,0) is

Z(f;t) = [J(1 — em/9)xSma),

m,d
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COMMENTS ABOUT PROOF OF THE THEOREM

Theorem ([Dimcal)
© Assume 7 : X — U is a proper analytic map such that 7 induces an
isomorphism between X \ 771(H) and U\ H.
@ Let g = f o7 denote the composition and j : X \ 77 1(H) = X the
inclusion.

© Let S be a finite stratification of the exceptional divisor 7=1(0) such
that ¢ fg(Rj*gX\\ﬂ_—l(H)) is equivariantly S-constructible with respect
to the semisimple part of M.

Then,
z(f) =] 2(g, xs)X*),
Ses
where xs is an arbitrary point in the stratum S and Z(g, xs) is the zeta
function of the germ g at xs.

v
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MONODROMY ZETA FUNCTION OF A Q-NORMAL
CROSSING DIVISOR

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by
(™ ex o X(dyao, ... ap) = C k> 0s

m
1—-tad k=1,
Z(x™-...-x"™:X(d;ag,...,an) = C; t) = '
(1 k (d: a0 n) ) {1 k>2,
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MONODROMY ZETA FUNCTION OF A Q-NORMAL
CROSSING DIVISOR

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by
(™ ex o X(dyao, ... ap) = C k> 0s

m
1—-tad k=1,
Z(x™-...-x"™:X(d;ag,...,an) = C; t) = '
(1 k (d: a0 n) ) {1 k>2,

Non-cyclic case

d Y4 lcm ( % dr )
~ = ey
ged(d1, ai1) ged(dr, ar1)
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EXAMPLE 1

Let f = xP + y9 and assume that e = gcd(p, q), p = p1e and q = qre.
Consider 7 : C? — C? the weighted blow-up at the origin.

(q1,p1)
s qpepy
. ° m =Dpiqie
(q1:—1,p1) ‘ ‘ ‘ ‘ (p1;q1,—1)

The set Sp, 4 is not empty for (m, d) = (p1qg1e,1), (p1qie, q1),
(p1g1e, p1). Their Euler characteristics are
X(Splqle,l) =2—(e+2)=—e, X(Splqleych) = X(Spmle,m) =1L

_ (A=tP)(1—t9)

Now, we apply A’Campo’s formula and obtain Z(f; t) e
—te)e
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EXAMPLE 2

Assume % < % are two irreducible fractions and gcd(qi1, g2) = 1. Let C
be the complex plane curve with Puiseux expansion

PL 3
Yy = X% + x9%2,

(Q2) °

¢ &
—x—>
50 % <7T_2 B B - S— 50
(@) P () (1) & (p1)

Figure: Embedded Q-resolution of C = {y = xa o+ X%} c C?
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Yomdin _Gracies
SPECTRAL SEQUENCE FOR SURFACES

m H(DY)

1,25

AH(DY) - a (D) o a HP(DY)

0,15 01 lse@0ls
6
A H(D®)
o (D) ... o H* (DY) @ o H3(D!y ... o« H*(DI
o (DY)
0 05 0s
eHO(DM) e (D) o H(DI)
. y
. e H(D)
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Yomdin _Gracies
STEENBRINK’S SPECTRAL SEQUENCE FOR SURFACES

4

Grl H(F, C) H*(F,C) — P Gr/"H*(F,C)
1,25 -
0. Gr{" H3(F,C) - 0
C - e 0 r..“.Gré’VHz(FAC) e 0 -0
| 05] 06]\ }5
0 Gry' H*(F,C) 0
}5

Gr H3(F, C)

J. Martin-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 29 / 34



CHARACTERISTIC POLYNOMIAL

tm—1 X(]PQ\C) m
A o)(t) = (Gl b : 3 1 H Aé(C,P)(t )
PeSing(C)

o x(P2\C)=(m*=3m+3)— > jcp
P&Sing(C)

o A(c,p)(t) denotes the characteristic polynomial of (C, P)

m; ged(mj,k)a;

o A() =TIt 1) = Ak(E) =TI (£5709 ~1)
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JORDAN BLOCKS
3-JORDAN BLOCKS (FOR A # 1)

— (m)
AGrgVH(t) - H AGr(l)/VH(CYP)(t)
PeSing(C)
° AGr(‘{VH(c P)(t) encodes the Jordan blocks of size 2 of (C, P).

o A(t) =TI (t™ —1)" = AO(t) =[], (tecd®m) — 1)

Remark.
The 3-Jordan blocks does not depend on k > 1. J
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JORDAN BLOCKS
2-JORDAN BLOCKS FOR A # 1

A (m) N +k
NI S TR TG R O el
SHEA Apppy)(t) (m)

P
P€Sing(C) AGrgVH(C,P)(t)g, : (t — 1)b1(NF+(k))

o Al(t) and A)(t) were defined previously.
o AU is the polynomial resulting from A() deleting the factor t — 1.

@ The action of the monodromy on H(Dp) and the cohomology itself
are completely determined by the pair (P2, C).
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Yomdin  Gracies
JORDAN BLOCKS

2-JORDAN BLOCKS FOR A =1

S o)1+ Y b(NR(K)

P&Sing(C) PeSing(C)

@ rp is the number of local branches of the germ (C, P)
@ r is the number of irreducible components of C C P?

° Nl_i(k) is the dual graph of the semistable reduction of (C, P)
modified according to k.

Remark.

Note that for k = 1 the graph NTF (k) =TF is contractible, thus its first
Betti number is zero, and one exactly obtains the description in [Artal].

J. Martin-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 33 /34



MOLTES GRACIES !

J. Martin-Morales (jorge@unizar.es)

:“ % Centro Universitario IUMA @
Yy ¢ de la Defensa zaragoza - :

Seminari de Geometria Algebraica (UB - UPC - UAB)
Barcelona, March 9, 2018

J. Martin-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018

34 /34



	Introduction
	Monodromy
	Q-resolutions
	A'Campo
	Steenbrink
	Yomdin
	Gràcies


