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Yomdin Singularities

Definition.

Let f = fm + fm+k + · · · ∈ C{x , y , z} be the decomposition of f into
its homogeneous parts, k ≥ 1.

Denote by C := V (fm) ⊂ P2 its tangent cone.

V := V (f ) is Yomdin-Lê if Sing(C) ∩ V (fm+k) = ∅ in P2.

Example: f = x2z + y3

f3

+ z6

f6

∈ C{x , y , z}.

SingP2(f3) = {[0 : 0 : 1]}.

VP2(f6) = {z = 0}.

SingP2(f3) ∩ VP2(f6) = ∅.
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[Luengo]

I. Luengo, The µ-constant stratum is not smooth, Invent. Math. 90
(1987), 139–152.
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Superisolated Singularities (k = 1) [Artal]

He was able to calculate the Jordan form of the monodromy.

How to compute it?

1 Resolution of singularities.

2 Eigenvalues: A’Campo’s formula.

3 Jordan blocks: Steenbrink’s spectral sequence.

Application: Counterexample to Yau’s conjecture.

Find two superisolated surface singularities having:

1 The same characteristic polynomials.

2 The same abstract topologies.

3 Different embedded topologies  Monodromy.
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Remark

No embedded resolution is known for Yomdin singularities for k ≥ 2.

There exists a special kind of toric embedded resolution for f with
just two exceptional divisors E0 and E1.

By contrast, the final total space produced has abelian quotient
singularities. Therefore, A’Campo and Steenbrink’s approach can not
be applied directly.
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Monodromy
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Milnor Fibration

Let (H, 0) ⊂ (Cn+1, 0) be a germ of hypersurface singularity defined
by a holomorphic function f : U → C. This means that

H = {x ∈ U | f (x) = 0}.

By Ehresmann’s Fibration Theorem, the restriction (0 < η << ε)

f | : f −1(Dη \ {0}) ∩ B2n+2
ε −→ Dη \ {0}

is a locally trivial fibration for all ε small enough.

Definition

The previous fibration is called the Milnor fibration of f and any of its
fibers F := {x ∈ Cn+1 : ||x|| ≤ ε, f (x) = η} is called the Milnor fiber.
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Monodromy Zeta Function

Let h : F → F , α̃(0) 7→ α̃(1) be the geometric monodromy. It is just
well defined up to homotopy.

Denoted by ϕ := Hq(h) : Hq(F ,C)→ Hq(F ,C) the induced
automorphisms on the complex cohomology groups.

Definition (Monodromy Zeta Function)

Z (f ; t) :=
∏

q≥0

det(id∗−t · Hq(h))︸ ︷︷ ︸
char. poly. of Hq(h)

(−1)q ∈ Q(Q[t])
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Embedded Resolution

Definition

An embedded resolution of (H, 0) ⊂ (Cn+1, 0) is a proper analytic
map π : X → (Cn+1, 0) such that:

1 X is a (smooth) manifold.

2 π is an isomorphism over X \ π−1(Sing(H)).

3 π−1(H) is a hypersurface with normal crossings on X .

Normal Crossing Divisor

The third condition above means that π−1(H) = (f ◦ π)−1(0) is locally
given by an equation of the form xm1

1 · . . . · xmk
k = 0.
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A’Campo’s Formula

Let π : X → (Cn+1, 0) be an embedded resolution of (H, 0).

Total transform: π∗(H) = Ĥ︸︷︷︸
strict transform

+
r∑

i=1

miEi

︸ ︷︷ ︸
exceptional divisor

.

Now, define

Ěi := Ei \
(
Ei ∩

(⋃

j 6=i

Ej ∪ Ĥ
))

.

Theorem ([A’Campo])

Z (f ; t) =
r∏

i=1

(1− tmi )χ(Ěi ).
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Example of a Plane Curve

Let us compute the monodromy zeta function of f = x5 + y12 using
A’Campo’s formula. The following picture represents an embedded
resolution:

5E1

Ĉ10E2

35E5

60E6

24E4

12E3

Ei ' P1(C) ' S2 =⇒ χ(Ei ) = 2

χ(Ě2) = χ(Ě5) = χ(Ě4) = 2− 2 = 0

χ(Ě1) = χ(Ě3) = 1

χ(Ě6) = −1

Z (f ; t) =
r∏

i=1

(1− tmi )χ(Ěi )
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This implies:

Z (f ; t) = (1− t60)−1(1− t5)(1− t12) =
(1− t5)(1− t12)

(1− t60)
.

The following picture provides the same information:

5E1

Ĉ10E2

35E5

60E6

24E4

12E3

⇐
= “contraction”

60

(5)(12)

[Veys]
Monodromy conjecture
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The Main Aim

Questions:

1 How to formalize this idea of “contraction” of the exceptional divisors
which do not contribute to the monodromy zeta function?

2 Can one directly compute the simplified resolution (without
computing the standard one and then perform the contractions)?

3 Does there exist a formula for calculating Z (f ; t) using this new kind
of resolutions even in higher dimension?
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Embedded Q-Resolutions
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Embedded Q-Resolution

Definition

An embedded Q-resolution of (H, 0) ⊂ (Cn+1, 0) is a proper analytic
map π : X → (Cn+1, 0) such that:

1 X is a V -manifold with abelian quotient singularities.

2 π is an isomorphism over X \ π−1(Sing(H)).

3 π−1(H) is a hypersurface with Q-normal crossings on X .

Q-Normal Crossing Divisor ([Steenbrink])

The third condition above means that π−1(H) = (f ◦ π)−1(0) is locally
given by function of the form xm1

1 · . . . · xmk
k : X (d;A)→ C.

X (d;A) := Cn+1/µd, G ⊂ GL(n + 1,C) abelian group acting
diagonally
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Classical Blow-up of C2

Consider

Ĉ2 :=
{

((x , y), [u : v ]) ∈ C2 × P1 | (x , y) ∈ [u : v ]
}
.

Then π : Ĉ2 → C2 is an isomorphism over Ĉ2 \ π−1(0).

The exceptional divisor E := π−1(0) is identified with P1.

The space Ĉ2 = U1 ∪ U2 can be covered by 2 charts each of them
isomorphic to C2.

C2 '−→ U1 = {u 6= 0} ⊂ Ĉ2

(x , y) 7→
(
(x , xy), [1 : y ]

)
.
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Behavior of π : Ĉ2 → C2

· · ·
U0 U1

π←−
smooth smooth

f = αx+ βy

C2 Ĉ2
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Weighted (p, q)-Blow-ups of C2

Let ω = (p, q) be a weight vector with coprime entries. As above,
consider the space

Ĉ2
ω :=

{
((x , y), [u : v ]ω) ∈ C2 × P1

ω | (x , y) ∈ [u : v ]ω
}
.

Then π : Ĉ2
ω → C2 is an isomorphism over Ĉ2

ω \ π−1(0).

The exceptional divisor E := π−1(0) is identified with P1
ω.

The space Ĉ2
ω = U1 ∪ U2 can be covered by 2 charts. For instance,

the first chart is given by

1st chart X (p;−1, q)
'−→ U1 = {u 6= 0} ⊂ Ĉ2

ω,

[(x , y)] 7→ ((xp, xqy), [1 : y ]ω).
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Behavior of π(p,q) : Ĉ2
(p,q) → C2

· · ·
U0 U1

π←−
singular singular

f = αxq + βyp (p) (q)

C2 Ĉ2
(p,q)
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Generalized A’Campo’s formula
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Generalized A’Campo’s Formula

Teorema (Cyclic case)

Let X0 = π−1(H) be the total transform and S = π−1(0) the exceptional
divisor. Consider Sm,d to be the set

{
s ∈ S

the local equation of X0 in s is given by the well-defined
function xmi : X (d ; a0, . . . , an)→ C.

}
.

Then, the monodromy zeta function of the complex monodromy of the
hypersurface (H, 0) is

Z (f ; t) =
∏

m,d

(1− tm/d)χ(Sm,d ).
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Comments about Proof of the Theorem

Theorem ([Dimca])

1 Assume π : X → U is a proper analytic map such that π induces an
isomorphism between X \ π−1(H) and U \ H.

2 Let g = f ◦ π denote the composition and j : X \ π−1(H) ↪→ X the
inclusion.

3 Let S be a finite stratification of the exceptional divisor π−1(0) such
that ψg

(
Rj∗CX\π−1(H)

)
is equivariantly S-constructible with respect

to the semisimple part of M.

Then,
Z (f ) =

∏

S∈S
Z (g , xS)χ(S),

where xS is an arbitrary point in the stratum S and Z (g , xS) is the zeta
function of the germ g at xS .
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Monodromy Zeta Function of a Q-Normal
Crossing Divisor

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by
xm1

1 · . . . · xmk
k : X (d ; a0, . . . , an)→ C, k ≥ 1, is

Z
(
xm1

1 · . . . · xmk
k : X (d ; a0, . . . , an)→ C; t

)
=

{
1− t

m1
d k = 1;

1 k ≥ 2,

Non-cyclic case

d  ` := lcm

(
d1

gcd(d1, a11)
, . . . ,

dr
gcd(dr , ar1)

)

J. Mart́ın-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 25 / 34



Introduction Monodromy Q-resolutions A’Campo Steenbrink

Monodromy Zeta Function of a Q-Normal
Crossing Divisor

Lemma (Cyclic case)

The monodromy zeta function of a normal crossing divisor given by
xm1

1 · . . . · xmk
k : X (d ; a0, . . . , an)→ C, k ≥ 1, is

Z
(
xm1

1 · . . . · xmk
k : X (d ; a0, . . . , an)→ C; t

)
=

{
1− t

m1
d k = 1;

1 k ≥ 2,

Non-cyclic case

d  ` := lcm

(
d1

gcd(d1, a11)
, . . . ,

dr
gcd(dr , ar1)

)

J. Mart́ın-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 25 / 34



Introduction Monodromy Q-resolutions A’Campo Steenbrink

Example 1

Let f = xp + yq and assume that e = gcd(p, q), p = p1e and q = q1e.
Consider π : Ĉ2

(q1,p1) → C2 the weighted blow-up at the origin.

m = p1q1e

(p1; q1,−1)(q1;−1, p1)

(e)· · ·
U0 U1

The set Sm,d is not empty for (m, d) = (p1q1e, 1), (p1q1e, q1),
(p1q1e, p1). Their Euler characteristics are

χ(Sp1q1e,1) = 2− (e + 2) = −e, χ(Sp1q1e,q1) = χ(Sp1q1e,p1) = 1.

Now, we apply A’Campo’s formula and obtain Z (f ; t) = (1−tp)(1−tq)

(1−t
pq
e )e

.
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Example 2

Assume p1
q1
< p2

q2
are two irreducible fractions and gcd(q1, q2) = 1. Let C

be the complex plane curve with Puiseux expansion

y = x
p1
q1 + x

p2
q2 .

E0
(p1)(q1)

Ĉ

π2←− E0
(p1)(q1)

Ĉ
(q2)

E1P

Figure: Embedded Q-resolution of C = {y = x
p1
q1 + x

p2
q2 } ⊂ C2.
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Spectral Sequence for Surfaces

�H0(D
[2]
+ )

NH0(D
[1]
+ )

1,2δ

OO

NH1(D
[1]
+ ) NH2(D

[1]
+ )

•H0(D
[0]
+ )

0,1δ

OO

•H1(D
[0]
+ )

0,1δ

OO

NH0(D [2])
⊕

•H2(D
[0]
+ )

1δ⊕ 0,1δ

OO

•H3(D
[0]
+ ) •H4(D

[0]
+ )

•H0(D [1])

0δ

OO

•H1(D [1])

0δ

OO

•H2(D [1])

0δ

OO

•H0(D [2])

0δ

OO

J. Mart́ın-Morales (CUD Zaragoza) Resolving some surface singularities Barcelona, March 9, 2018 28 / 34



Introduction Monodromy Q-resolutions A’Campo Steenbrink Yomdin Gràcies

Steenbrink’s Spectral Sequence for Surfaces

GrW0 H2(F ,C) H2(F ,C)
4⊕

i=0

GrWi H2(F ,C)

0

1,2δ

OO

GrW1 H2(F ,C) 0

C

0,1δ

OO

0

0,1δ

OO

GrW2 H2(F ,C)

1δ⊕ 0,1δ

OO

0 0

0

0δ

OO

GrW3 H2(F ,C)

0δ

OO

0

0δ

OO

GrW4 H2(F ,C)

0δ

OO
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Characteristic Polynomial

∆(V ,0)(t) =
(tm − 1)χ(P2\C)

t − 1

∏

P∈Sing(C)

∆k
(C,P)(tm+k)

χ(P2 \ C) = (m2 − 3m + 3)−
∑

P∈Sing(C)

µ(C,P)

∆(C,P)(t) denotes the characteristic polynomial of (C,P)

∆(t) =
∏

i (t
mi − 1)ai =⇒ ∆k(t) =

∏
i

(
t

mi
gcd(mi ,k) − 1

)gcd(mi ,k)ai
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Jordan Blocks
3-Jordan Blocks (for λ 6= 1)

∆GrW0 H(t) =
∏

P∈Sing(C)

∆
(m)

GrW0 H(C,P)
(t)

∆GrW0 H(C,P)
(t) encodes the Jordan blocks of size 2 of (C,P).

∆(t) =
∏

i

(
tmi − 1

)ai =⇒ ∆(`)(t) =
∏

i

(
tgcd(`,mi ) − 1

)ai

Remark.

The 3-Jordan blocks does not depend on k ≥ 1.
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Jordan Blocks
2-Jordan Blocks for λ 6= 1

∆GrW1 H(t) =
1

∆H1(D0)(t)

∏

P∈Sing(C)

∆̃
(m)
(C,P)(t) ·∆k

GrW0 H(C,P)
(tm+k)

∆
(m)

GrW0 H(C,P)
(t)3 · (t − 1)b1(NΓP

+(k))

∆`(t) and ∆(`)(t) were defined previously.

∆̃(`) is the polynomial resulting from ∆(`) deleting the factor t − 1.

The action of the monodromy on H1(D0) and the cohomology itself
are completely determined by the pair (P2,C).
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Jordan Blocks
2-Jordan Blocks for λ = 1

∑

P∈Sing(C)

(rP − 1)− (r − 1) +
∑

P∈Sing(C)

b1(NΓP
+(k))

rP is the number of local branches of the germ (C,P)

r is the number of irreducible components of C ⊂ P2

NΓP
+(k) is the dual graph of the semistable reduction of (C,P)

modified according to k .

Remark.

Note that for k = 1 the graph NΓP
+(k) = ΓP

+ is contractible, thus its first
Betti number is zero, and one exactly obtains the description in [Artal].
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Moltes gràcies !

J. Mart́ın-Morales (jorge@unizar.es)

- IUMA
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