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BASIC SETUP:

k arbitrary field,
R = k[[x1, . . . , xn]] ring of formal power series of dimension n,
m = (x1 . . . , xn) unique maximal ideal,
k = R/m residue field.

Theorem (Cohen structure theorems)

Let (A,n, k) be an equicharacteristic Artin local ring, then

A ∼=
k[[x1, . . . , xn]]

I

for some m-primary ideal I of k[[x1, . . . , xn]].
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Definition

An Artin ring A = R/I which satisfies any of the equivalent conditions
below is called a Gorenstein ring of dimension zero:

1 idA(A) <∞.
2 A is injective as a module over itself.

3 A ∼= EA(k) ∼= ωA.

4 τ(A) := dimk socA(A) = 1, where socA(A) := (0 :A n).

5 The ideal (0) in A is irreducible.
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Fact: Any Artin local ring (A,n) is a quotient of a certain Artin
Gorenstein ring (G ,m):

A ∼= G/H

Equivalently, given any Artin local ring A = R/I there exists an Artin
Gorenstein ring G = R/J such that J ⊂ I and hence

G = R/J � A = R/I .

Definition (Ananthnarayan 08’)

The Gorenstein colength of an Artin local ring A is

gcl(A) = min{`(G )− `(A) | G � A,G local Artin Gorenstein}

We call any G reaching this minimum minimal Gorenstein cover of A.

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Structure of Artin local rings
Artin Gorenstein rings
Gorenstein colength

Fact: Any Artin local ring (A,n) is a quotient of a certain Artin
Gorenstein ring (G ,m):

A ∼= G/H

Equivalently, given any Artin local ring A = R/I there exists an Artin
Gorenstein ring G = R/J such that J ⊂ I and hence

G = R/J � A = R/I .

Definition (Ananthnarayan 08’)

The Gorenstein colength of an Artin local ring A is

gcl(A) = min{`(G )− `(A) | G � A,G local Artin Gorenstein}

We call any G reaching this minimum minimal Gorenstein cover of A.

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Structure of Artin local rings
Artin Gorenstein rings
Gorenstein colength

Fact: Any Artin local ring (A,n) is a quotient of a certain Artin
Gorenstein ring (G ,m):

A ∼= G/H

Equivalently, given any Artin local ring A = R/I there exists an Artin
Gorenstein ring G = R/J such that J ⊂ I and hence

G = R/J � A = R/I .

Definition (Ananthnarayan 08’)

The Gorenstein colength of an Artin local ring A is

gcl(A) = min{`(G )− `(A) | G � A,G local Artin Gorenstein}

We call any G reaching this minimum minimal Gorenstein cover of A.

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Structure of Artin local rings
Artin Gorenstein rings
Gorenstein colength

Goal: Study of gcl(A).

Known bounds (Ananthnarayan 08’):

` (A/ω∗(ω)) ≤ min{`(A/q) : q ∼= q+} ≤ gcl(A) ≤ `(A)

Notation:
ωA canonical module of A,
ω∗
A(ωA) = 〈f (ωA) : f ∈ HomA(ωA,A)〉 trace ideal of ωA,

q+ := HomA(q, ωA) dual ideal of q.

Theorem (Ananthnarayan 08’)

Let A = R/I , I ⊆ m6 and assume 2 ∈ A∗. TFAE:

1 gcl(A) ≤ 2,

2 There exist an ideal q ∈ A with `(A/q) ≤ 2 such that q ∼= q+.

Roser Homs
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Macaulay duality provides an order-reversing bijection between Artin
local rings A = R/I and a sub-R-module of the ring of polynomials:

{m− primary ideals of ←→ {f.g. sub-k[[x1, . . . , xn]]-modules
k[[x1, . . . , xn]]} of k[y1, . . . , yn]}

I 7→

I⊥ := {g ∈ S | I ◦ g = 0}
M⊥ := {f ∈ R | f ◦M = 0} ← M

R = k[[x1, . . . , xn]], S = k[y1, . . . , yn].

Definition

S is an R-module with the CONTRACTION structure:

R × S −→ S

(xα1

1 · · · x
αn
n , yβ1

1 · · · y
βn
n ) 7→ xα ◦ yβ =

{
yβ1−α1

1 · · · yβn−αn
n , βi ≥ αi ;

0, otherwise.

Roser Homs
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A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦

y32

= 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32

= 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0

x1x
2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0

x1x
2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

A = R/I = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 )

x21 ◦ y32 = 0
x1x

2
2 ◦ y32 = 0

x42 ◦ y32 = 0

y32 ∈ I⊥

x21 ◦ y1y2 = 0
x1x

2
2 ◦ y1y2 = 0

x42 ◦ y1y2 = 0

y1y2 ∈ I⊥

y3
2 , y1y2, y

2
2 , y1, y2, 1 ∈ I⊥

I⊥ = 〈y32, y1y2〉

Roser Homs



Introduction
Main tool: Inverse systems

Characterization in low colength
Geometric interpretation of minimal Gorenstein covers

What happens for gcl(A) ≥ 3?

Hilbert functions and more
Computing Gorenstein colength

I = (x21 , x1x
2
2 , x

4
2 )

x1

x2

x42

x1x
2
2

x21
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I⊥ = 〈y1y2, y3
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I⊥ = 〈F1, . . . ,Fn〉, S≤i = {F ∈ S | deg(F ) ≤ i} sub-R-module of S .

(I⊥)i =
I⊥ ∩ S≤i + S<i

S<i
.

Hilbert function of an Artin local ring A = R/I of socle degree s:

HA(i) =


1, if i = 0,
n, if i = 1,
dimk(I⊥)i , if 2 ≤ i ≤ s,
0, if i ≥ s + 1.

Socle degree: soc deg(A) = max{deg(F1), . . . , deg(Fn)}.
Cohen-Macaulay type: τ(A) = µR(I⊥).

Proposition (Characterization of Artin Gorenstein rings)

An Artin local ring A = R/I is Gorenstein of socle degree s if and only
if I⊥ = 〈F 〉 for some polynomial F of degree s.

Roser Homs
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I⊥ = 〈F1, . . . ,Fn〉, S≤i = {F ∈ S | deg(F ) ≤ i} sub-R-module of S .

(I⊥)i =
I⊥ ∩ S≤i + S<i

S<i
.
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HA(i) =
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Fact: G = R/J, with J⊥ = 〈F 〉, is a Gorenstein cover of A = R/I if
and only if I⊥ ⊂ J⊥.

y1y2

y3
2 y1y

3
2

I⊥ = 〈y1y2, y3
2 〉 ⊂ 〈y1y3

2 〉 = J⊥

gcl(R/I ) ≤ `(R/J)− `(R/I ) = 2
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What happens for gcl(A) ≥ 3?

Hilbert functions and more
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Question: How do we know when a Gorenstein cover is minimal?

Definition

Let A = R/I be an Artin ring. For any F ∈ S such that I⊥ ⊂ J⊥ = 〈F 〉
we consider the ideal KF of R defined by

KF = (I⊥ :R J⊥).

Proposition

Let A = R/I be a local Artin algebra and a Gorenstein cover G = R/J of
A, with J = AnnF . Then,

(i) I⊥ = KF ◦ F ,

(ii) `(G )− `(A) = `(R/KF ).

Therefore, gcl(A) ≤ `(R/KF ) for any Gorenstein cover G = R/AnnF
and gcl(A) = `(R/KF ) whenever G = R/AnnF is a minimal cover.
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I I⊥ F KF HFR/I HFR/J gcl(A)
x21 , x1x2, x

4
2 y1, y

3
2 y2

1 + y4
2 x1, x2 1,2,1,1 1,2,1,1,1 1

x21 , x1x
2
2 , x

4
2 y1y2, y

3
2 y1y

3
2 x1, x

2
2 1,2,2,1 1,2,2,2,1 2
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Teter rings
Gorenstein colength 2
Low colength

Definition

A = R/I is Teter if I ⊆ m2 and there exists an Artin Gorenstein ring
G = R/J such that A ∼= G/Soc(G ) and we call G the Teter cover of A.

Theorem (Elias-Silva 17’)

Let A = R/I , I ⊆ m2, be an Artin ring with maximal ideal n, socle
degree s − 1 ≥ 1 and embd(A) > 1. Then the following conditions are
equivalent:

1 A is a Teter ring,

2 gcl(A) = 1,

3 there exists a degree s polynomial F ∈ S such that
I⊥ = (x1, . . . , xn) ◦ F ,

4 there exists an epimorphism of A-modules I⊥ −→ n.

In particular, if A is a Teter ring then the Cohen-Macaulay type of A is n.

Roser Homs
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Example (Minimal Gorenstein covers with non-unique Hilbert function)

A = k[[x1, x2]]/
(
x21 , x1x

2
2 , x

4
2

)
, HFA = {1, 2, 2, 1}, I⊥ = 〈y1y2, y3

2 〉,
τ(A) = 2, embd(A) = 2.

A is clearly not Gorenstein and, by Elias-Silva characterization, we can
also deduce that it is not Teter. Therefore, gcl(A) = 2.
G1, G2 are minimal Gorenstein covers of socle degree 4 and 5,
respectively:

G1 = R/J1, J⊥1 = 〈y1y3
2 〉, HFG1

= {1, 2, 2, 2, 1};
G2 = R/J2, J⊥2 = 〈y2

1 y2 + y5
2 〉, HFG2

= {1, 2, 2, 1, 1, 1}
`(G1)− `(A) = `(G2)− `(A) = 2.

KF1
= KF2

= (x1, x
2
2 ).
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Theorem (Elias-H. 17’)

Let A = R/I be an Artin ring with maximal ideal n and socle degree
s − 1 ≥ 1. We assume that A is neither Gorenstein nor Teter, I ⊆ m5

and char(k) 6= 2. Then the following conditions are equivalent:

(i) gcl(A) = 2,

(ii) after a linear isomorphism of R there exists a polynomial F ∈ S of
degree s or s + 1 such that I⊥ =

(
x1, . . . , xn−1, x

2
n

)
◦ F ,

(iii) there exists an epimorphism of A-modules f : I⊥ −→ q, where q is a
self-dual ideal of A by means of an isomorphism satisfying Teter’s
condition and `(A/q) = 2.

In particular, if gcl(A) = 2 then the Cohen-Macaulay type of A is n.
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Proposition (Elias-H.’17)

Let A = R/I be an Artin ring such that gcl(A) ≤ 2. If G = R/J is a
minimal Gorenstein cover of A, then

(i) embd(G ) = embd(A),

(ii) if A = R/I with dim(R) = embd(G ) = embd(A) and F is a
generator of J⊥, G = R/J, then I ⊂ KF and

I 2 ⊂ J ⊂ I .

Moreover, after a linear isomorphism of R we may assume:

KF =

 R if gcl(A) = 0
m if gcl(A) = 1
(x1, . . . , xn−1, x

2
n ) if gcl(A) = 2
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Gorenstein covers and integrals
Variety of Minimal Gorenstein Covers
Algorithms

Definition (Integral of a module with respect to an ideal)

Consider an R-module M of S . We define the integral of M with respect
to the ideal K , denoted by

∫
K
M, as∫

K

M = {G ∈ S | K ◦ G ⊂ M}.

Example

I⊥ = 〈y1, y3
2 〉, ∫

m

I⊥ = 〈y2
1 , y1y2, y

4
2 〉.

Example

I⊥ = 〈y1y2, y3
2 〉, ∫

m2

I⊥ = 〈y3
1 , y

2
1 y2, y1y

3
2 , y

5
2 〉.
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Proposition

Given a ring A = R/I of Gorenstein colength t and a minimal Gorenstein
cover G = R/AnnF of A,

(i) F ∈
∫
mt I
⊥;

(ii) for any H ∈
∫
mt I
⊥, the condition I⊥ ⊂ 〈H〉 does not depend on the

representative of the class H in

∫
mt I
⊥

I⊥
.

In particular, any F ′ ∈
∫
mt I
⊥ such that F ′ = F in

∫
mt I
⊥

I⊥
defines the

same minimal Gorenstein cover G = R/AnnF .
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Theorem

Let A = R/I be an Artin ring of Gorenstein colength t. There exists a

quasi-projective sub-variety MGC n(A) of Pk

( ∫
mt I
⊥

I⊥

)
, whose set of closed

points are the points [F ], F ∈
∫
mt I
⊥/I⊥, such that G = R/AnnF is a

minimal Gorenstein cover of A.

Definition

Given an Artin ring A = R/I of Gorenstein colength t, we call MGC n(A)
the minimal Gorenstein covers variety associated to A.

A closed point [F ] of MGC n(A) corresponds to a minimal Gorenstein
cover G = R/AnnF of A.

Roser Homs
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Consider A such that gcl(A) = t and an ideal K of R such that
`(R/K ) = t.

Sketch of the algorithm to compute MGC n(A)

For any n between embd(A) and `(A)− τ(A) + gcl(A)− 1:

1 k-basis F 1, . . . ,F h of
∫
mt I
⊥/I⊥.

2 F = a1F1 + · · ·+ ahFh.

3 ideal b ⊆ k[a1, . . . , ah] such that K ◦ F ⊆ I⊥ for all K .

4 ideal a ⊆ k[a1, . . . , ah] such that K ◦ F ( I⊥ for all K .

5 MGC n(A) = V+(b)\
⋂
K

V+(a).
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Algorithm to compute MGC (A) when gcl(A) = 1
Input:

k-basis b1, . . . , bt of the inverse system I⊥;

polynomials F1, . . . ,Fh such that F1, . . . ,Fh is a k-basis of
∫
m I⊥/I⊥.

Output:

ideal a ⊂ k[a1, · · · , ah] such that MCG (A) = Ph−1
k \V+(a).

Steps:

1 Define F = a1F1 + · · ·+ ahFh, where a1, . . . , ah are variables in k.

2 Build matrix A =
(
µαj
)
1≤|α|≤s+1,1≤j≤t , where xα ◦ F =

∑t
j=1 µ

α
j bj .

3 Compute the ideal a generated by all t-minors of A.
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Example (MGC (A) in Gorenstein colength 1)

A = k[[x1, x2]]/(x21 , x1x2, x
4
2 ), gcl(A) = 1.

Pk(
∫
m I⊥/I⊥) = P2

k, a closed point p = (a1 : a2 : a3) ∈ P2
k corresponds to

a polynomial F = a1y
4
2 + a2y1y2 + a3y

2
1 ∈

∫
m I⊥/I⊥.

Output of the algorithm: a = (a1a3), hence

MCG (A) = P2
k\V+(a1a3).
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Example (MGC (A) in Gorenstein colength 2)

A = k[[x1, x2]]/(x21 , x1x
2
2 , x

4
2 ), gcl(A) = 2.

Pk(
∫
m2 I
⊥/I⊥) = P6

k, a closed point p = (a1 : a2 : a3 : b1 : b2 : b3 : b4)
corresponds to a polynomial
F = a1y

4
2 + a2y1y

2
2 + a3y

2
1 + b1y

2
1 y2 + b2y1y

3
2 + b3y

5
2 + b4y

3
1 .

Output of the algorithm:

b = (b4) ⊂ k[a1, a2, a3, b1, b2, b3, b4];

a =
(
b22 − b1b3

)
⊂ k[a1, a2, a3, b1, b2, b3, b4].

Since MGC (A) ⊂ V+(b) = P5
k, a closed point

p = (a1 : a2 : a3 : b1 : b2 : b3) corresponds to a polynomial
F = a1y

4
2 + a2y1y

2
2 + a3y

2
1 + b1y

2
1 y2 + b2y1y

3
2 + b3y

5
2 .

MCG (A) = P5
k\V+(b22 − b1b3)

and KF = (x1, x
2
2 ).
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What is going on for gcl(A) ≥ 3?

Example (Admissible KF in case gcl(A) = 3 and n = 2.)

Gt = k[[x1, x2]]/(x t1 , x
t
2), t ≥ 5,

with symmetric Hilbert function HFG ′ = {1, 2, . . . , t, t − 1, . . . , 1} and
socdeg(Gt) = 2t − 2, is a minimal Gorenstein cover of two non
isomorphic rings of colength 3:

1 A1,t = (x1, x2)2 ◦ Gt ;

2 A2,t = (x1, x
3
2 ) ◦ Gt .

There are two non-isomorphic admissible KF :

1 K1 = (x1, x2)2, HFR/K1
= {1, 2};

2 K2 = (x1, x
3
2 ), HFR/K2

= {1, 1, 1}.
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What happens for gcl(A) ≥ 3?

Questions we would like to answer:

There always exist a minimal Gorenstein cover G = R/J of A = R/I
such that I 2 ⊂ J ⊂ I?

embd(G ) = embd(A)?

Explicit computation of the Gorenstein colength for, at least, certain
families of Artin local rings.

Explicit computation of MGC (A) for higher colengths.
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Moltes gràcies!
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Analytic isomorphism of k-algebras
Natural questions in case gcl(A) = 2
Self-dual ideals
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Definition

Consider two k-algebras Ai = k[[x1, . . . , xn]]/Ii , for i = 1, 2. We say that
ϕ : A1 −→ A2 is an analytic k-algebra morphism if

1 ϕ|k = Id , and

2 ϕ is a ring morphism.

Definition

Consider a k-algebra morphism ϕ : A1 −→ A2. We say that ϕ is an
analytic k-algebra isomorphism if exists a morphism ψ : A2 −→ A1

such that ϕ ◦ ψ = IdA2
and ψ ◦ ϕ = IdA1

. This will be denoted by
A1
∼=ϕ A2.
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Example (Non-unique minimal Gorenstein covers)

A = k[[x1, x2, x3]]/
(
x1x2, x1x3, x2x3, x

2
2 , x

2
3 − x31

)
, HFA = {1, 3, 1, 1},

I⊥ = 〈x23 + x31 , x2〉, τ(A) = 2, embd(A) = 3. A is not Gorenstein nor
Teter.

i 0 1 2 3 4 5

HFA(i) 1 3 1 1 0 0
HFG (i) 1 3 1 1 1 1

1 3 2 1 1 0

J1 =
(
x1x2, x2x3, x

2
2 − x41 , x

2
1 x3, x

2
3 − x1x3 − x31

)
, J⊥1 = 〈y2

2 +y1y
2
3 +y3

3 +y4
1 〉

J2 =
(
x1x2, x2x3, x

2
2 − x41 , x

2
1 x3, x

2
3 − x31

)
, J⊥2 = 〈y4

1 + y1y
2
3 + y2

2 〉

HFR/J1
= HFR/J2

= {1, 3, 2, 1, 1}, KF1
= KF2

= (x1, x2, x
2
3 ).
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Example (Non-isomorphic base rings of a minimal Gorenstein cover)

G = k[[x1, x2, x3]]/
(
x23 , x1x2, x1x3, x

3
2 , x

3
1 + 3x22 x3

)
,

with Hilbert function {1, 3, 3, 1}. This ring has inverse system
J⊥ = 〈y2

2 y3 − y3
1 〉 and contains the following R-modules:

(i) (x2 − x1, x3, x
2
2 ) ◦ J⊥ = 〈y2

1 + y2y3, y
2
2 〉 = I⊥1 ;

(ii) (x1 + x2, x2 + x3, x
2
3 ) ◦ J⊥ = 〈y2

1 − y2y3, y2y3 + y2
2 〉 = I⊥2 ;

(iii) (x1, x2, x
2
3 ) ◦ J⊥ = 〈y2

1 , y2y3〉 = I⊥3 ;

(iv) m ◦ J⊥ = 〈y2
1 , y2y3, y

2
2 〉 = I⊥.

A1 = R/I1, A2 = R/I2 and A3 = R/I3 are non-isomorphic rings with
Hilbert function {1, 3, 2} and Gorenstein colength 2.

A = R/I has Hilbert function {1, 3, 3} and Gorenstein colength 1.
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Example

A = k[[x1, x2]]/
(
x21 , x1x

2
2 , x

4
2

)
, I⊥ = 〈y1y2, y3

2 〉. F1 = y1y
3
2 and

F2 = y2
1 y2 + y5

2 generate inverse systems of two non-isomorphic minimal
covers of A. We have epimorphisms:

δF1
: I⊥ −→ q = (x1, x

2
2 )/I

y1y2 7−→ x22
y3
2 7−→ x1

δF2
: I⊥ −→ q = (x1, x

2
2 )/I

y1y2 7−→ x1
y3
2 7−→ x22

q = (x1, x
2
2 )/I is a self-dual ideal of A. Also `(A/q) = `(K⊥F1

) = 2.
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Proposition

Let A = R/I be a non-Gorenstein local Artin ring of socle degree s. Then

gcl(A) = 1 if and only if there exist a polynomial F =
∑h

j=1 ajFj ∈
∫
m I⊥,

where F1, . . . ,Fh is a k-basis of
∫
m
I⊥

I⊥
, such that dimk(m ◦ F ) = dimk I

⊥.

Proposition

Given a non-Gorenstein non-Teter local Artin ring A = R/I , gcl(A) = 2 if

and only if there exist a polynomial F =
∑2

i=1

∑h
j=1 a

i
jF

i
j ∈

∫
m2 I
⊥, where

F i
1, . . . ,F

i
h is a k-basis of

∫
mi I
⊥∫

mi−1 I⊥
, i = 1, 2, such that

(L1, . . . , Ln−1, L
2
n) ◦ F = I⊥ for suitable independent linear forms Li .
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Algorithm to compute MGC (A) when gcl(A) = 2

A = R/I Artin local ring of socle degree s and n ≥ 2.

Input:

k-basis b1, . . . , bt of the inverse system I⊥ obtained by the
integration method;

F 1
1 , . . . ,F

1
h1

such that F 1
1 , . . . ,F

1
h1

is a k-basis of
∫
m I⊥/I⊥.

F 2
1 , . . . ,F

2
h2

such that F 2
1 , . . . ,F

2
h2

is a k-basis of
∫
m2 I
⊥/
∫
m I⊥.

Output:

-1, if all saturation ideals are R;

The index of the first minor that provides a non-empty variety,
otherwise.
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Steps:

1 Define F =
∑h1

i=1 a
1
i F

1
i +

∑h2

i=1 a
2
i F

2
i , where a11, . . . , a

1
h1
, a21, . . . , a

2
h2

are variables in k and v = (v1, . . . , vn).

2 Build matrix A =
(
µi
j

)
1≤i≤n,1≤j≤t+h1

, where

xi ◦ F =
∑t

j=1 µ
i
jbj +

∑t+h1

j=t+1 µ
i
jF

1
j .

3 Build matrix B =
(
A2 v

)
as an horizontal concatenation of

A2 =
(
µi
j

)
1≤i≤n,t+1≤j≤t+h1

and the column vector v .

4 Compute the ideal I2 generated by all minors of order 2 of B.

5 Build matrix V = (ρk,lj ), where (vlxk − vkxl) ◦ F =
∑t

j=1 ρ
k,l
j bj and

ρk,lj = vlµ
k
j − vkµ

l
j for any 1 ≤ k < l ≤ n.

6 Build matrix U as a vertical concatenation of V and
xα ◦ F =

∑t
j=1 µ

α
j bj , where 2 ≤ |α| ≤ s + 1.

7 Compute the ideal It generated by all minors G1, . . . ,Gr of order t of
U.

8 Compute the saturation ideal (I2 : G∞).
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