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Monoidality

A monoidal category is a category C with a distinguished
object I ∈ C and a bifunctor

⊗ : C × C → C.
(a⊗ b)⊗ c

∼=→ a⊗ (b ⊗ c).

I ⊗ a
∼=→ a and a⊗ I

∼=→ a.
(Symmetric) Ba,b : a⊗ b → b ⊗ a with Bb,a ◦ Ba,b = ida⊗b.

Examples
R-Mod with tensor product and R.
Set with cartesian product and ?.
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The category of bordisms

Let n ≥ 1. The category Bordn is:
Objects: (n − 1)-dimensional closed oriented manifolds
(maybe empty).
Morphisms: W : X1 → X2 is a n-dimensional compact
manifold W such that ∂W = X1 t X 2, up to boundary
preserving diffeomorphism (oriented bordism).
Composition: Gluing of bordisms.

It is a symmetric monoidal category with disjoint union.
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Topological Quantum Field Theories

Monoidal functor
A functor F : (C,⊗C)→ (D,⊗D) is said monoidal if:

ID
∼=→ F (IC).

∆a,b : F (a)⊗D F (b)
∼=→ F (a⊗C b).

(Symmetric) ∆F (b),F (a) ◦ BF (a),F (b) = F (Ba,b) ◦∆a,b.

TQFT
A TQFT is a monoidal symmetric functor

Z : Bordn → k -Vect.
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Classification of TQFTs for n = 1

1-TQFT ⇐⇒ k -Vect0

Objects: {∅,+,−}.
Morphisms

Canonical form
Z (+) = V Z (−) = V ∗

Z (µ) = ev : V ⊗ V ∗ → k Z (ε) = coev : k → V ∗ ⊗ V

Z (S1)(1) = dim(V ) <∞
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Classification of TQFTs for n = 2

2-TQFT ⇐⇒ Frobenius algebras

Definition: A Frobenius algebra A is a commutative finite type
k -algebra with an non-degenerate bilinear form B such that

B(ab, c) = B(a,bc).

Higher dimensions: Lurie’s cobordism hypothesis (2009).
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Relaxing monoidality

Problem: Duality implies that TQFT must be finite dimensional.

Lax monoidal TQFT
A lax monoidal TQFT is a lax monoidal symmetric functor

Z : Bordn → R-Mod.

Lax monoidality
The map

∆X1,X2 : Z (X1)⊗ Z (X2)→ Z (X1 t X2)

is no longer an isomorphism.
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Physical inspiration of TQFT

Let C be a category with final object ? and pullbacks (category
of fields).

Z : Bordn
Field theory−−−−−−→ Span(C)

Quantization−−−−−−−→ R-Mod

The category of spans
Objects: Obj(Span(C)) = Obj(C).
Morphisms: A morphism S : c1 → c2 is a span in C

d

�� ��
c1 c2
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Physical inspiration of TQFT

Z : Bordn
Field theory−−−−−−→ Span(C)

Quantization−−−−−−−→ R-Mod

Field Theory

Let G : Diffor
c → C be a monoidal contravariant functor sending

pushforwards into pullbacks and define

FG : Bordn −→ Span(C).

Objects: FG(X ) = G(X ).
Morphisms: Given W : X1 → X2, its image is the span

G(X1)
G(i1)←− G(W )

G(i2)−→ G(X2).
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C-Algebra

A C-algebra A is a pair of functors:

A : Cop → Ring B : C → A(?)-Mod

They agree on objects: A(c) = B(c) for all c ∈ C.
Beck-Chevaley condition: For a pullback diagram

d

f ′

��

g′ // c1

f
��

c2 g
// c

A(g)◦B(f ) = B(f ′)◦A(g′)

Ac = A(c) ∈ Ring f ∗ = A(f ) f! = B(f )
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Quantization

Given a C-algebra A, we define

QA : Span(C)→ A?-Mod.

Objects: QA(c) = Ac for c ∈ C.

Morphisms: Given a span S : c1
f← d

g→ c2, we define

QA(S) = g! ◦ f ∗ : Ac1

f∗−→ Ad
g!−→ Ac2

Construction of TQFT

Z : Bordn
FG−−→ Span(C)

QA−−→ R-Mod
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Representation varieties

Let G be a complex algebraic group and Γ a finitely generated
group. The representation variety is

XG(Γ) = Hom (Γ,G).

If Γ = π1(M) we denote XG(M) := XG(π1(M)).

Algebraic structure: Γ = 〈γ1, . . . , γs |Rα(γ1, . . . , γs) = 1〉.
We have an identification

ψ : Hom (Γ,G) −→ Gs

ρ 7→ (ρ(γ1), . . . , ρ(γs))

with the algebraic variety

Im ψ =
{

(g1, . . . ,gs) ∈ Gs |Rα(g1, . . . ,gs) = 1
}
.
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Mixed Hodge structure

Let X be a complex algebraic variety. There is a natural double
finite filtration

0 ⊆ . . . ⊆WsHk
c (X ;Q) ⊆Ws+1Hk

c (X ;Q) ⊆ . . . ⊆ Hk
c (X ;Q)

0 ⊇ . . . ⊇ F pHk
c (X ;Q)C ⊇ F p+1Hk

c (X ;Q)C ⊇ . . . ⊇ Hk
c (X ;Q)C

called the mixed Hodge structure.

Deligne’s theorem

VarC

##

Hk
c (−,Q) // Q-Vect

MHS

99
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Deligne-Hodge polynomial

Hk ;p,q
c (X ) = Grp

F GrW
p+q Hk

c (X ;Q) hk ;p,q
c (X ) = dim Hk ;p,q

c (X )

Deligne-Hodge polynomial

e(X ) =
∑

k

∑
p,q

(−1)khk ;p,q
c (X ) upvq ∈ Z[u±1, v±1].

Generalized Euler characteristic

e(X1 t X2) = e(X1) + e(X2) e(X1 × X2) = e(X1) e(X2).

Defines a ring homomorphism e : KVarC → Z[u±1, v±1] .
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Example: Smooth projective varieties

Hodge’s theorem
If X is a smooth projective variety

Hk (X ,C) =
⊕

p+q=k

Hp,q(X ).

0 = Wk−1 ⊆Wk = Hk (X ;Q) F p =
⊕
s≥p

Hs,k−s(X )

Hk ;p,q
c (X ) = Hp,q(X ) e(X ) =

∑
p,q

(−1)p+qhp,q(X ) upvq

e(CPn) = 1 + uv + . . .+ unvn ⇒ e(Cn) = unvn.
e(Proj curve) = 1− gu − gv + uv .
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Arithmetic method

Problem
Compute e(XG(Σg)) for Σg the genus g surface.

Based on Katz’ theorem of polynomial counting.
Hausel and Rodriguez-Villegas (2008). G = GL(n,C),
arbitrary g. Twisted.
Hausel, Letellier and Rodrigez-Villegas (2011).
G = GL(n,C), arbitrary g. Generic semi-simple marked
points.
Mereb (2015). G = SL(n,C), arbitrary g. Twisted.

In terms of generating functions.
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Geometric method

Based on Hodge monodromy representation.
Logares, Muñoz and Newstead (2013). G = SL(2,C),
g = 1,2. At most 1 marked point.
Logares and Muñoz (2014). G = SL(2,C), g = 1. At most
2 marked points.
Martı́nez and Muñoz (2016). G = SL(2,C), arbitrary g.
Martı́nez (2017). G = PGL(2,C), arbitrary g.
Baraglia and Hekmati (2017). G = GL(2,C),GL(3,C),
SL(2,C),SL(3,C), arbitrary g.

Explicit expressions.
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Field theory for representation varieties

Goal
Construct a TQFT that computes e(XG(Σg)).

Remark: Instead of Bordn, we will use Bordpn, the category of
n-dimensional (pairs) bordisms with a marked finite subset.

Z : Bordpn
Field theory−−−−−−→
FG

Span(VarC)
Quantization−−−−−−−→
QA

R-Mod

We define G : Diffpor
c → VarC by

G(M,A) = Hom (Π(M,A)︸ ︷︷ ︸
Fund. groupoid

,G),

for M a compact manifold and A ⊆ M finite.
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Quantization via mixed Hodge modules

Saito’s mixed Hodge modules

Complex algebraic
=⇒ Abelian monoidal

=⇒ Ring
variety X categoryMX KMX

MX contains variations of Hodge structures on X .
M? = MHS, category of mixed Hodge structures.
Hodge monodromy representation can be understood in
this context.
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Quantization for representation varieties

Properties

Every KMX has a natural KMHS-module structure.

For f : X → Y regular we have KMHS-module morphisms

f∗, f! : KMX → KMY , f ∗, f ! : KMY → KMX .

f ∗ is also a ring homomorphism.

Beck-Chevalley condition for pairs (f ∗, f!) and (f∗, f !).

For the projection cX : X → ?

(cX )!(1) = [H•
c (X ;Q)].

For representation varieties
KM = (f ∗, f!) is a VarC-algebra with KM? = KMHS.
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Main theorem

Z = QKM ◦ FG : Bordpn → KMHS-Mod

Let W be a closed manifold, seen as a bordism W : ∅ → ∅, and
A ⊆W finite. We have Z (W ,A) : KMHS→ KMHS.

Z (W ,A)(1) = [H•c (X(W );Q)]× [H•c (G;Q)]|A|−1,

e (Z (W ,A)(1)) = e(G)|A|−1e(X(W )).

Theorem (G-P, Logares, Muñoz)
There exists a lax monoidal TQFT computing Deligne-Hodge
polynomials of representation varieties.
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TQFT in surfaces

Set n = 2 (surfaces). The genus g closed orientable surface Σg
with g + 1 marked points can be writen as Σg = D ◦ T g ◦ D.

e(X(Σg)) =
1

e(G)g

[
Z (D) ◦ Z (T )g ◦ Z (D)(1)

]
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G(∅) = 1 G(S1) = G

G(D) = G(D) = G G(T ) = G4

Field Theory morphisms

FG(D) =
[
1←− 1 i−→ G

]
FG(D) =

[
G i←− 1 −→ 1

]
FG(T ) =

[
G

p←− G4 s−→ G
g ←[ (g,g1,g2,h) 7→ hg[g1,g2]h−1

]

Morphisms of the TQFT

Z (D) = i! Z (D) = i∗ Z (T ) = s!p∗
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Concluding remarks
It is enough to compute three linear maps.
Also valid for the parabolic case and non-orientable
manifolds.
Functor of 2-categories.
General method of construction of TQFTs.

Future work
Explicit computations.
Reformulation of geometric method in this framework.
Can we remove lax monoidality?
Is WG = 〈Z (T )g i!(1)〉∞g=0 ⊆ KMG finite dimensional?
New perspectives for mirror symmetry for character
varieties.
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Thank you
for your attention
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