Topological Quantum Field Theories and their application to Hodge theory

Ángel González Prieto

Universidad Complutense de Madrid

Joint work with Marina Logares and Vicente Muñoz

arXiv:1709.05724

6th April 2018

(日) (日) (日) (日) (日) (日) (日)

Monoidality

A **monoidal category** is a category C with a distinguished object $I \in C$ and a bifunctor

$$\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}.$$

•
$$(a \otimes b) \otimes c \stackrel{\cong}{\rightarrow} a \otimes (b \otimes c).$$

- $I \otimes a \xrightarrow{\cong} a$ and $a \otimes I \xrightarrow{\cong} a$.
- (Symmetric) $B_{a,b} : a \otimes b \rightarrow b \otimes a$ with $B_{b,a} \circ B_{a,b} = id_{a \otimes b}$.

Examples

- *R*-**Mod** with tensor product and *R*.
- Set with cartesian product and *.

The category of bordisms

Let $n \ge 1$. The category **Bord**_{*n*} is:

- Objects: (n 1)-dimensional closed oriented manifolds (maybe empty).
- **Morphisms**: $W : X_1 \to X_2$ is a *n*-dimensional compact manifold *W* such that $\partial W = X_1 \sqcup \overline{X}_2$, up to boundary preserving diffeomorphism (**oriented bordism**).

(日) (日) (日) (日) (日) (日) (日)

• **Composition**: Gluing of bordisms.

It is a symmetric monoidal category with disjoint union.

Topological Quantum Field Theories

Monoidal functor

A functor $F : (\mathcal{C}, \otimes_{\mathcal{C}}) \to (\mathcal{D}, \otimes_{\mathcal{D}})$ is said monoidal if:

•
$$I_{\mathcal{D}} \stackrel{\cong}{\to} F(I_{\mathcal{C}}).$$

•
$$\Delta_{a,b}: F(a) \otimes_{\mathcal{D}} F(b) \stackrel{\cong}{\to} F(a \otimes_{\mathcal{C}} b).$$

• (Symmetric) $\Delta_{F(b),F(a)} \circ B_{F(a),F(b)} = F(B_{a,b}) \circ \Delta_{a,b}$.

TQFT

A TQFT is a monoidal symmetric functor

$$Z$$
 : **Bord**_n \rightarrow k-Vect.

Classification of TQFTs for n = 1

$1-TQFT \iff k-\text{Vect}_0$

- Objects: $\{\emptyset, +, -\}$.
- Morphisms

Canonical form

 $Z(+) = V \qquad Z(-) = V^*$ $Z(\mu) = \text{ev} : V \otimes V^* \to k \qquad Z(\epsilon) = \text{coev} : k \to V^* \otimes V$ $Z(S^1)(1) = \dim(V) < \infty$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Classification of TQFTs for n = 2

2-*TQFT* \iff Frobenius algebras

Definition: A Frobenius algebra *A* is a commutative finite type *k*-algebra with an non-degenerate bilinear form *B* such that

Higher dimensions: Lurie's cobordism hypothesis (2009).

Relaxing monoidality

Problem: Duality implies that TQFT must be finite dimensional.

Lax monoidal TQFT

A lax monoidal TQFT is a lax monoidal symmetric functor

Z: **Bord**_n \rightarrow *R*-**Mod**.

Lax monoidality

The map

$$\Delta_{X_1,X_2}: Z(X_1)\otimes Z(X_2)\to Z(X_1\sqcup X_2)$$

is no longer an isomorphism.

Physical inspiration of TQFT

Let $\mathcal C$ be a category with final object \star and pullbacks (category of fields).

$$Z: \mathbf{Bord}_n \xrightarrow{\mathrm{Field \ theory}} \mathrm{Span}(\mathcal{C}) \xrightarrow{\mathrm{Quantization}} R-\mathbf{Mod}$$

The category of spans

- **Objects:** $Obj(Span(\mathcal{C})) = Obj(\mathcal{C}).$
- Morphisms: A morphism $S: c_1 \rightarrow c_2$ is a span in C

Physical inspiration of TQFT

$$Z: \operatorname{Bord}_n \xrightarrow{\operatorname{Field theory}} \operatorname{Span}(\mathcal{C}) \xrightarrow{\operatorname{Quantization}} R-\operatorname{Mod}$$

Field Theory

Let $\mathcal{G}:\text{Diff}_c^{or}\to\mathcal{C}$ be a monoidal contravariant functor sending pushforwards into pullbacks and define

$$\mathcal{F}_{\mathcal{G}}: \mathbf{Bord}_n \longrightarrow \mathrm{Span}(\mathcal{C}).$$

- Objects: $\mathcal{F}_{\mathcal{G}}(X) = \mathcal{G}(X)$.
- Morphisms: Given $W: X_1 \rightarrow X_2$, its image is the span

$$\mathcal{G}(X_1) \stackrel{\mathcal{G}(i_1)}{\longleftarrow} \mathcal{G}(W) \stackrel{\mathcal{G}(i_2)}{\longrightarrow} \mathcal{G}(X_2).$$

C-Algebra

A C-algebra A is a pair of functors:

$$A: \mathcal{C}^{op} \to \mathbf{Ring}$$
 $B: \mathcal{C} \to A(\star)$ -Mod

- They agree on objects: A(c) = B(c) for all $c \in C$.
- Beck-Chevaley condition: For a pullback diagram

$$d \xrightarrow{g'} c_1$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$c_2 \xrightarrow{g} c$$

$$A(g) \circ B(f) = B(f') \circ A(g')$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\mathcal{A}_c = \mathcal{A}(c) \in \mathbf{Ring}$ $f^* = \mathcal{A}(f)$ $f_! = \mathcal{B}(f)$

Quantization

Given a C-algebra A, we define

 $\mathcal{Q}_{\mathcal{A}}: \operatorname{Span}(\mathcal{C}) \to \mathcal{A}_{\star}\operatorname{-Mod}.$

- Objects: $Q_A(c) = A_c$ for $c \in C$.
- Morphisms: Given a span $S: c_1 \xleftarrow{f} d \xrightarrow{g} c_2$, we define

$$\mathcal{Q}_{\mathcal{A}}(\mathcal{S}) = g_! \circ f^* : \mathcal{A}_{c_1} \xrightarrow{f^*} \mathcal{A}_d \xrightarrow{g_!} \mathcal{A}_{c_2}$$

Construction of TQFT

$$Z: \mathbf{Bord}_n \xrightarrow{\mathcal{F}_{\mathcal{G}}} \mathrm{Span}(\mathcal{C}) \xrightarrow{\mathcal{Q}_{\mathcal{A}}} R-\mathbf{Mod}$$

Representation varieties

Let *G* be a complex algebraic group and Γ a finitely generated group. The **representation variety** is

 $\mathfrak{X}_{G}(\Gamma) = \operatorname{Hom}(\Gamma, G).$

If $\Gamma = \pi_1(M)$ we denote $\mathfrak{X}_G(M) := \mathfrak{X}_G(\pi_1(M))$.

Algebraic structure: $\Gamma = \langle \gamma_1, \dots, \gamma_s | R_{\alpha}(\gamma_1, \dots, \gamma_s) = 1 \rangle$. We have an identification

$$\psi: \operatorname{Hom}(\Gamma, G) \longrightarrow G^{s}$$

$$\rho \mapsto (\rho(\gamma_{1}), \dots, \rho(\gamma_{s}))$$

with the algebraic variety

$$\operatorname{Im} \psi = \left\{ (g_1, \ldots, g_s) \in G^s \, | \, R_\alpha(g_1, \ldots, g_s) = 1 \right\}.$$

Mixed Hodge structure

Let X be a complex algebraic variety. There is a natural double finite filtration

$$0 \subseteq \ldots \subseteq W_{s}H^{k}_{c}(X;\mathbb{Q}) \subseteq W_{s+1}H^{k}_{c}(X;\mathbb{Q}) \subseteq \ldots \subseteq H^{k}_{c}(X;\mathbb{Q})$$

$$0 \supseteq \ldots \supseteq F^{p}H^{k}_{c}(X;\mathbb{Q})_{\mathbb{C}} \supseteq F^{p+1}H^{k}_{c}(X;\mathbb{Q})_{\mathbb{C}} \supseteq \ldots \supseteq H^{k}_{c}(X;\mathbb{Q})_{\mathbb{C}}$$

called the mixed Hodge structure.

(日)

Deligne-Hodge polynomial

$$H_c^{k;p,q}(X) = Gr_F^p \, Gr_{p+q}^W \, H_c^k(X;\mathbb{Q}) \qquad h_c^{k;p,q}(X) = \dim H_c^{k;p,q}(X)$$

Deligne-Hodge polynomial

$$e(X) = \sum_{k} \sum_{p,q} (-1)^{k} h_{c}^{k;p,q}(X) \, u^{p} v^{q} \in \mathbb{Z}[u^{\pm 1}, v^{\pm 1}].$$

Generalized Euler characteristic

$$e(X_1 \sqcup X_2) = e(X_1) + e(X_2)$$
 $e(X_1 \times X_2) = e(X_1) e(X_2).$

Defines a ring homomorphism $e : K \operatorname{Var}_{\mathbb{C}} \to \mathbb{Z}[u^{\pm 1}, v^{\pm 1}]$.

Example: Smooth projective varieties

Hodge's theorem

If X is a smooth projective variety

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X).$$

$$0 = W_{k-1} \subseteq W_k = H^k(X; \mathbb{Q}) \qquad F^p = \bigoplus_{s \ge p} H^{s,k-s}(X)$$

$$H^{k;p,q}_{c}(X) = H^{p,q}(X)$$
 $e(X) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X) u^{p} v^{q}$

• $e(\mathbb{C}P^n) = 1 + uv + \ldots + u^n v^n \Rightarrow e(\mathbb{C}^n) = u^n v^n$.

•
$$e(\text{Proj curve}) = 1 - gu - gv + uv$$
.

Arithmetic method

Problem

Compute $e(\mathfrak{X}_G(\Sigma_g))$ for Σ_g the genus g surface.

Based on Katz' theorem of polynomial counting.

- Hausel and Rodriguez-Villegas (2008). G = GL(n, C), arbitrary g. Twisted.
- Hausel, Letellier and Rodrigez-Villegas (2011).
 G = GL(n, C), arbitrary g. Generic semi-simple marked points.
- Mereb (2015). $G = SL(n, \mathbb{C})$, arbitrary g. Twisted.

In terms of generating functions.

Geometric method

Based on Hodge monodromy representation.

- Logares, Muñoz and Newstead (2013). G = SL(2, C), g = 1, 2. At most 1 marked point.
- Logares and Muñoz (2014). G = SL(2, C), g = 1. At most 2 marked points.
- Martínez and Muñoz (2016). $G = SL(2, \mathbb{C})$, arbitrary g.
- Martínez (2017). $G = PGL(2, \mathbb{C})$, arbitrary g.
- Baraglia and Hekmati (2017). *G* = *GL*(2, ℂ), *GL*(3, ℂ), *SL*(2, ℂ), *SL*(3, ℂ), arbitrary *g*.

Explicit expressions.

Field theory for representation varieties

Goal

Construct a TQFT that computes $e(\mathfrak{X}_G(\Sigma_g))$.

Remark: Instead of **Bord**_{*n*}, we will use **Bordp**_{*n*}, the category of *n*-dimensional (pairs) bordisms with a marked finite subset.

$$Z: \operatorname{Bordp}_n \xrightarrow{\operatorname{Field theory}} \operatorname{Span}(\operatorname{Var}_{\mathbb{C}}) \xrightarrow{\operatorname{Quantization}} R\operatorname{-Mod}$$

We define $\mathcal{G}: \mathbf{Diffp}_c^{or} \to \mathbf{Var}_{\mathbb{C}}$ by

$$\mathcal{G}(M, A) = \operatorname{Hom}(\underbrace{\Pi(M, A)}, G),$$

Fund. groupoid

for *M* a compact manifold and $A \subseteq M$ finite.

Quantization via mixed Hodge modules

- \mathcal{M}_X contains variations of Hodge structures on X.
- $\mathcal{M}_{\star} = \mathbf{MHS}$, category of mixed Hodge structures.
- Hodge monodromy representation can be understood in this context.

(日) (日) (日) (日) (日) (日) (日)

Quantization for representation varieties

Properties

- Every KM_X has a natural K**MHS**-module structure.
- For $f: X \to Y$ regular we have KMHS-module morphisms

 $f_*, f_! : \mathrm{K}\mathcal{M}_X \to \mathrm{K}\mathcal{M}_Y, \qquad f^*, f^! : \mathrm{K}\mathcal{M}_Y \to \mathrm{K}\mathcal{M}_X.$

 f^* is also a ring homomorphism.

- Beck-Chevalley condition for pairs $(f^*, f_!)$ and $(f_*, f_!)$.
- For the projection $c_X : X \to \star$

$$(c_X)_!(1) = [H^{\bullet}_c(X; \mathbb{Q})].$$

For representation varieties

 $K\mathcal{M} = (f^*, f_!)$ is a **Var**_{\mathbb{C}}-algebra with $K\mathcal{M}_* = K$ **MHS**.

Main theorem

$\textit{Z} = \mathcal{Q}_{K\mathcal{M}} \circ \mathcal{F}_{\mathcal{G}}: \textit{Bordp}_n \rightarrow K\textit{MHS-Mod}$

Let *W* be a closed manifold, seen as a bordism $W : \emptyset \to \emptyset$, and $A \subseteq W$ finite. We have Z(W, A) : K**MHS** $\to K$ **MHS**.

$$Z(W,A)(1) = [H^ullet_{\mathcal{C}}(\mathfrak{X}(W);\mathbb{Q})] imes [H^ullet_{\mathcal{C}}(G;\mathbb{Q})]^{|A|-1},$$

$$e(Z(W,A)(1)) = e(G)^{|A|-1}e(\mathfrak{X}(W)).$$

Theorem (G-P, Logares, Muñoz)

There exists a lax monoidal TQFT computing Deligne-Hodge polynomials of representation varieties.

TQFT in surfaces

Set n = 2 (surfaces). The genus g closed orientable surface Σ_g with g + 1 marked points can be writen as $\Sigma_g = \overline{D} \circ T^g \circ D$.

$$e(\mathfrak{X}(\Sigma_g)) = rac{1}{e(G)^g} \left[Z(\overline{D}) \circ Z(T)^g \circ Z(D)(1)
ight]$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$egin{aligned} \mathcal{G}(\emptyset) &= 1 & \mathcal{G}(S^1) = G \ \mathcal{G}(D) &= \mathcal{G}(\overline{D}) = G & \mathcal{G}(T) = G^4 \end{aligned}$$

Field Theory morphisms

$$\mathcal{F}_{\mathcal{G}}(D) = \left[1 \xleftarrow{i} G
ight] \qquad \mathcal{F}_{\mathcal{G}}(\overline{D}) = \left[G \xleftarrow{i} 1 \longrightarrow 1
ight]
onumber \ \mathcal{F}_{\mathcal{G}}(T) = \left[egin{matrix} G & \xleftarrow{p} & G^4 & \stackrel{s}{\longrightarrow} & G \ g & \leftrightarrow & (g,g_1,g_2,h) & \mapsto & hg[g_1,g_2]h^{-1} \end{array}
ight]$$

Morphisms of the TQFT

$$Z(D) = i_!$$
 $Z(\overline{D}) = i^*$ $Z(T) = s_! p^*$

Concluding remarks

- It is enough to compute three linear maps.
- Also valid for the parabolic case and non-orientable manifolds.
- Functor of 2-categories.
- General method of construction of TQFTs.

Future work

- Explicit computations.
- Reformulation of geometric method in this framework.
- Can we remove lax monoidality?
- Is $W_G = \langle Z(T)^g i_!(1) \rangle_{g=0}^{\infty} \subseteq K\mathcal{M}_G$ finite dimensional?
- New perspectives for mirror symmetry for character varieties.

Thank you for your attention

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで