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Monoidality

A monoidal category is a category C with a distinguished
object | € C and a bifunctor
®:CxC—C.
° (a®b)®c§> a®(b®c).
o Iza>aandaw !> a
@ (Symmetric) Byp: @a®@ b — b® awith B, 50 By p = idagp-

@ R-Mod with tensor product and R.
@ Set with cartesian product and .




The category of bordisms

Let n > 1. The category Bord,, is:
@ Objects: (n — 1)-dimensional closed oriented manifolds
(maybe empty).
@ Morphisms: W : X; — X5 is a n-dimensional compact
manifold W such that 9W = X; U X5, up to boundary
preserving diffeomorphism (oriented bordism).

@ Composition: Gluing of bordisms.
It is @ symmetric monoidal category with disjoint union.



Topological Quantum Field Theories

Monoidal functor

A functor F : (C,®¢) — (D, ®p) is said monoidal if:
o Ip > F(lp).
® Aap: F(a) ®p F(b) = F(a®e b).
@ (Symmetric) Arp) F(a) © BF(a),F(b) = F(Bap) © Dap-

A TQFT is a monoidal symmetric functor

Z : Bord,, — k-Vect.




Classification of TQFTs for n = 1

1-TQFT < k-Vect, |

@ Objects: {0, +, —}.
@ Morphisms

Id, W € sl
+ _
+ +
— >0 0< ﬂ@@
- +

Canonical form

Z(+)=V  Z(-)=V*
Z(p)=ev: Vo V' -k Z(e)=coev:k — V'@V
Z(SH(1) =dim(V) < oo



Classification of TQFTs for n =2

2-TQFT < Frobenius algebras J

Definition: A Frobenius algebra A is a commutative finite type
k-algebra with an non-degenerate bilinear form B such that

B(ab, c) = B(a, bc).

Stust S'USt —» 0

3> g

ARA ——=» A AwA —B i

Higher dimensions: Lurie’s cobordism hypothesis (2009). J




Relaxing monoidality

Problem: Duality implies that TQFT must be finite dimensional.

Lax monoidal TQFT

A lax monoidal TQFT is a lax monoidal symmetric functor

Z : Bord, — R-Mod.

| \

Lax monoidality
The map

AX1,X2 : Z(X1) ®Z(X2) — Z(X1 l_|X2)

is no longer an isomorphism.




Physical inspiration of TQFT

Let C be a category with final object x and pullbacks (category
of fields).

Field theory

Z :Bord, Span(C) 22NN 2 Mod

The category of spans
@ Objects: Obj(Span(C)) = Obj(C).
@ Morphisms: A morphism S: ¢y — ¢ isaspaninC

C1/d\02




Physical inspiration of TQFT

Field theory Quantization
_—

Z :Bord, Span(C) R-Mod

Field Theory

Let G : Diff2” — C be a monoidal contravariant functor sending
pushforwards into pullbacks and define

Fg : Bord,, — Span(C).
@ Objects: F5(X) = G(X).
@ Morphisms: Given W : X; — X, its image is the span

G(x) £ g(w) ¥ g(xe).




C-Algebra

A C-algebra A is a pair of functors:

A:C% — Ring B:C — A(x)-Mod

@ They agree on objects: A(c) = B(c) forall c € C.
@ Beck-Chevaley condition: For a pullback diagram

/
di>c1

’”l l” A(g)oB(f) = B(f')oA(d)

A.=A(c)eRing f =A(f) f=B8(f) |




Quantization

Given a C-algebra A, we define

Q4 : Span(C) — A.-Mod.

@ Objects: O 4(c) = AcforceC.

. . f .
@ Morphisms: Givenaspan S: ¢y «+ d %, ¢, we define

OUS) =giof : A — Ay &5 A,

Construction of TQFT

Z : Bord,, 7% Span(C) 24 R-Mod




Representation varieties

Let G be a complex algebraic group and I' a finitely generated
group. The representation variety is

Xg(lN) = Hom (I, G).

If I = m1(M) we denote Xg(M) := Xg(m1(M)).

Algebraic structure: I = (v1,...,vs| Ba(71,---,7s) = 1).
We have an identification
¢: Hom(l,G) — G®
p = (p(m),-- -, p(7s))

with the algebraic variety

M= {(g.- ... 9s) € G°| Rulr- ... s) = 1}.



Mixed Hodge structure

Let X be a complex algebraic variety. There is a natural double
finite filtration

0C...C WsHX(X;Q) C We i HE(X; Q) C ... C HX(X; Q)

02D...2 FPHE(X;Q)c 2 FPHTHE(X;Q)c 2 ... D HX(X; Q)¢

called the mixed Hodge structure.

Deligne’s theorem

HE(-,
Varc ) Q-Vect

~ 7

MHS




Deligne-Hodge polynomial

HePI(X) = GrE Grf{ , HE(X; Q) hgPI(X) = dim HgP9(X)

Deligne-Hodge polynomial
=3 S (= 1)RHEPIX) uPvE € Z[u! v,

k b.q

v

Generalized Euler characteristic

e(X1 LJ Xg) = e(X1) aF e(Xg) e(X1 X X2) = e(X1)e(X2).

Defines a ring homomorphism e : KVarc — Z[u™', vt] .




Example: Smooth projective varieties

Hodge’s theorem
If X is a smooth projective variety

HYX,C)= @ HPI(X
p+g=k

0=Wi_1C W= Hk(X; @) FP — @ HS,ka(X)
s>p
HePI(X) = HPA(X)  e(X) = D (—1)PTImP9(X) uPve
p.q
e(CP") =1+uv+...+u""= e(C") = u"v".
e(Proj curve) =1 — gu — gv + uv. J




Arithmetic method

Problem
Compute e(Xg(Xg)) for X4 the genus g surface.

Based on Katz’ theorem of polynomial counting.

@ Hausel and Rodriguez-Villegas (2008). G = GL(n, C),
arbitrary g. Twisted.

@ Hausel, Letellier and Rodrigez-Villegas (2011).
G = GL(n,C), arbitrary g. Generic semi-simple marked
points.

@ Mereb (2015). G = SL(n, C), arbitrary g. Twisted.

In terms of generating functions. J




Geometric method

Based on Hodge monodromy representation.

@ Logares, Munoz and Newstead (2013). G = SL(2,C),
g =1,2. At most 1 marked point.

@ Logares and Muioz (2014). G = SL(2,C), g = 1. At most
2 marked points.

@ Martinez and Mufoz (2016). G = SL(2,C), arbitrary g.
@ Martinez (2017). G = PGL(2,C), arbitrary g.

@ Baraglia and Hekmati (2017). G = GL(2,C), GL(3,C),
SL(2,C), SL(3,C), arbitrary g.

Explicit expressions. ]




Field theory for representation varieties

Construct a TQFT that computes e(Xg(Xg)).

Remark: Instead of Bord,,, we will use Bordp,,, the category of
n-dimensional (pairs) bordisms with a marked finite subset.

Field th izati
Z : Bordp, ———2, ;_eory Span(Varc) —>Q“angnza“°n R-Mod
g A

We define G : Diffp2” — Varc by

G(M, A) = Hom (N(M, A), G),

Fund. groupoid

for M a compact manifold and A C M finite.




Quantization via mixed Hodge modules

Saito’s mixed Hodge modules

Complex algebraic . Abelian monoidal . Ring
variety X category My KMy

@ M contains variations of Hodge structures on X.
@ M, = MHS, category of mixed Hodge structures.

@ Hodge monodromy representation can be understood in
this context.



Quantization for representation varieties

@ Every KMy has a natural KMHS-module structure.
@ For f: X — Y regular we have KMHS-module morphisms
fo, i i KMy — KMy, f* f: KMy — KMy.
f* is also a ring homomorphism.
@ Beck-Chevalley condition for pairs (f*, f;) and (f,, f').

@ For the projection cx : X — %

(ex)i(1) = [He(X; Q)]

For representation varieties
KM = (f*, f) is a Varc-algebra with KM, = KMHS.




Main theorem

Z = Qgm o Fg : Bordp,, — KMHS-Mod

)

Let W be a closed manifold, seen as a bordism W : ) — (, and
A C W finite. We have Z(W,A) : KMHS — KMHS.

Z(W,A)(1) = [H(X(W); Q)] x [H(G: Q)]
e(Z(W,A)(1)) = e(G)~Te(x(W)).

Theorem (G-P, Logares, Munhoz)

There exists a lax monoidal TQFT computing Deligne-Hodge
polynomials of representation varieties.




TQFT in surfaces

Set n = 2 (surfaces). The genus g closed orientable surface ¥4
with g + 1 marked points can be writenas Y3 = Do T90 D.

D T T

o




Field Theory morphisms

fdm:ﬁ+—mbe] .%@p{@#q—%q
G G* -5, G
Fo(T) =
g( ) [g A (g’ g1ag2ah) = hg[g1ag2]h_1]

Morphisms of the TQFT

Z(D)=ii zD)=i  Z(T)=sp’




Concluding remarks

@ lItis enough to compute three linear maps.

@ Also valid for the parabolic case and non-orientable
manifolds.

@ Functor of 2-categories.
@ General method of construction of TQFTs.

@ Explicit computations.

@ Reformulation of geometric method in this framework.

@ Can we remove lax monoidality?

o Is Wg = (Z(T)9i(1))gy S KMg finite dimensional?

@ New perspectives for mirror symmetry for character
varieties.
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