Seminari de Geometria Algebraica 2008/2009 (UB-UPC) Divendres 5 de desembre a les 15h. a l'aula B5 http://atlas.mat.ub.es/sga

The height of toric subvarieties

Martin Sombra

Université de Bordeaux 1 (França)

This is a report on joint work with P. Philippon (Paris) and J.I. Burgos (Barcelona). A complete toric variety X of dimension n is determined by a lattice N and a complete lattice fan Σ on $N_{\mathbb{R}}$. This variety is naturally equipped with the action of a complex torus. An equivariant ample line bundle L on X determines a lattice polytope Δ in $M_{\mathbb{R}} := N_{\mathbb{R}}^{\vee}$. Most algebro-geometric properties of the pair (X, L) can be easily read off from this polytope Δ .

The exponential map determines a parametrization of the open orbit X_0 by $N_{\mathbb{C}}$. Assume that L is equipped with a positive Hermitian metric that is invariant under the action of the compact torus. The logarithm of the norm of a section of L gives then a strictly convex function f on $N_{\mathbb{R}}$. The stability set of this function is the polytope Δ and its Legendre dual f^{\vee} is a strictly convex function on Δ . This is the symplectic potential of the Kahler structure of X_{Σ} in the Guillemin-Abreu theory.

We prove that the height of X with respect to the metrized line bundle \overline{L} is given by (n+1)! times the integral of $-f^{\vee}$ with respect to the normalized Haar measure of $M_{\mathbb{R}}$. This is the arithmetic analog of the expression of the degree of X as n! times the volume of the polytope.