
Symbolic Dynamic to Test Basic Hypothesis in Panel Data

Abstract

The purpose of this paper is to show the capacity of a new approach based on the symbolic

permutation entropy to deal with different types of data: time series, spatial series or panel

data. We focus the attention on the panel data case. For this type of variables, we present a

unified non-parametric framework in which we solve various inference problems related to the

stochastic structure of the data as, for example, the analysis of the assumption of independence

or the detection of structural breaks.

1 Introduction

The interest of combining cross-sectional with time series in panel data sets has been always present

in the econometric literature (Nerlove, 2002, for an historic perspective). The strong interest of the

topic explains the vast literature devoted to panel data models (Arellano, 2003, or Hsiao, 2003, for

two recent textbooks).

In this context, we propose a new, nonparametric approach that may of great help. Initially

we focus the discussion on the hypothesis of absence of any spatiotemporal structure in the panel

data set, that is, on the null of independence. However, this is only one part of the story because

our proposal is, indeed, much more ambitious. With small adjustments, we can also treat with

different problems of interest in order to decide how to model a spatial panel data set. For example,

the assumption of parameter stability or, more generally, the maintenance of the same stochastic

structure among the different cross-sections (or individuals) can be easily solved under our setting.

The method that we present is based on symbolic entropy (see Joe, 1989a and b, Hong and White,

2005, for an overview of entropy based tests), a very flexible and powerful non-parametric technique

that has been successfully applied in different scenarios (Maasoumi, 1993, Ullah, 1993). To the best

of our knowledge, this is the first time that this approach is used in a context of spatiotemporal

data with the purpose of testing.
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Without loss of generality, we begin the discussion by assuming a family of general null hy-

potheses that affect to the data generating process of the variable (DGP in what follows). After

appropriately symbolizing the data, we translate the problem of testing the hypothesis into the

observed distribution of the symbols for the case at hand. The likelihood ratio statistic that is

obtained from this distribution plays a crucial role in our procedure. As said, flexibility is one of

the main features of this procedure. Indeed, the likelihood ratio may be converted into a test of

serial independence for a time series (as in the case of the G test of Matilla and Ruiz, 2008), in a

test of cross-sectional independence for a spatial series (as in the case of the SG test of López et

al, 2009) or into a test of spatiotemporal independence in a panel data variable as done below in

the present paper and which we called STG test. As its predecessors, the STG is a nonparametric

test, not very demanding in terms of a priori assumptions. The symbolization that we propose

for testing the null hypothesis of spatiotemporal independence assures that it is consistent and

invariant to any monotonous transformation of the data and the asymptotic distribution function

of the test is standard. To these features we would like to mention that it is easy to obtain and

that appears to be well-behaved in term of size and power.

One of the most important features of our approach is that, modifying the symbolization proce-

dure, we can handle with different kind of hypothesis related to the DGP such as, for example, the

existence of a structural break in the mechanisms of cross-sectional dependence of the panel data.

In fact, the set of symbols used to analyze the cross-sectional structure constitute the starting point

for a new test of structural change (called SC). At it is shown in the paper, it is straightforward to

use the SC statistic as a test of uniformity between two or more observed spatial distribution (in

short, to compare maps of the same variable taken from different regions of the space).

In general, the approach that we present is not conditioned by noisy a priori assumptions. In

example, we do not need the restriction of linearity: the STG test is strictly a test of independence;

moreover, normality is not a relevant feature for our proposal. Finally and in relation to the spatial

dimension of the data, our approach does not require the specification of a weighting matrix which,

as indicated by Pinkse (2004), is a not desirable feature.

In the second section we introduce the notation and some basic ideas. The third section presents

the general framework in which the likelihood ratio statistic is obtained. Section fourth discusses

several symbolization procedures which are adequate for different null hypotheses. The fifth section

focuses on obtaining the two tests for independence and structural change in a panel data set. We

include also some Monte Carlo evidence. The last section contains some brief conclusions.
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2 Preliminaries

In this section we give some definitions and we introduce the basic notation.

Let {Xts}t∈I,s∈S be a real-valued space-time process, where S is a set of coordinates and I is

the time index.

Let I ′ ⊆ I and S′ ⊆ S. Let Γ = {η1, η2, . . . , ηn} be a set of n > 1 symbols. Now assume that

there exist a map

f : {Xts}t∈I′,s∈S′ → Γ.

We will say that (t, s) ∈ I ′×S′ is of ηi-type if and only if f(Xts) = ηi, i = 1, 2, ..., n. We will call

the map f a symbolizing map. Moreover, if the symbolizing map f is such that under the null of

independence all the symbols have the same probability to occur, we will say that f is a standard

symbolizing map. Otherwise we will say that f is a non-standard symbolizing map.

Denote by

nη = �{(t, s) ∈ I ′ × S′| f(Xt,s) = η},

that is, the cardinality of the subset of I ′ × S′ formed by all the elements of η-type.

Let |I ′| = T , |S′| = R and |I ′ × S′| = RT . Then, under these definitions, let us denote by p(η)

the probability of a symbol. Note that one can easily compute the relative frequency of a symbol

η ∈ Γ by:

p(η) := pη =
nη

RT
. (1)

Now under this setting we can define the symbolic entropy of a space-time process {Xts}t∈I,s∈S .

This entropy is defined as the Shanon’s entropy of the n distinct symbols as follows:

h(Γ) = −
∑
η∈−

pη ln(pη). (2)

Fix a time period t. Define

nη(t) = �{s ∈ S′| (t, s) is of η − type} (3)

and

pη(t) =
nη(t)
RT

. (4)

therefore we can restate nη, the total frequency of a symbol η ∈ Γ, as:

nη = �{(t, s) ∈ I ′ × S′| (t, s) is of η − type} =
∑
t∈I′

nη(t) (5)
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and its probability by:

pη =
nη

RT
=

∑
t∈I′

pη(t) (6)

Then, for a fix t, we define the symbolic t-entropy as

ht(Γ) =
n∑

i=1

pηi(t) ln(pηi(t)). (7)

Similarly we define the total entropy of a symbol η as:

h(η) =
T∑

t=1

pη(t) ln(pη(t)). (8)

3 The likelihood ratio statistic

In this section we are going to stabilish a framework that enables to construct statistic tests for

a family of null hypotheses. To this end we interpret any potential test in terms of symbols’

distribution and then the well-known likelihood ratio statistic is used. In other words, any hypothisis

test is translated into test on thee symbols’.

Let f be a symbolization map. Now for a symbol η ∈ Γ we define the random variable Zηts as

follows:

Zηts =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if f(Xts) = η

0 otherwise,

(9)

that is, we have that Zηts = 1 if and only if (t, s) is of η-type, Zηts = 0 otherwise.

Then Zηts is a Bernoulli variable with probability of “success” pη, where “success” means that

(t, s) is of η-type. It is straightforward to see that
n∑

i=1

pηi = 1 (10)

Then we are interested in knowing how many (t, s)’s are of ηi-type for all symbol η ∈ Γ. In

order to answer the question we construct the following variable

Yη =
∑

(t,s)∈I′×S′
Zηts (11)

The variable Yη can take the values {0, 1, 2, . . . , RT}. Then under the assumption of indepen-

dence among the Zη’s we get that Yηi is the Binomial random variable

Yη ≈ B(RT, pη). (12)
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Then, again under the assumption that the Yη’s are independent, we have that the joint prob-

ability density function of the n variables (Yη1 , Yη2 , . . . , Yηn) is:

P (Yη1 = a1, Yη2 = a2, . . . , Yηn = an) =
(a1 + a2 + · · · + an)!

a1!a2! · · · · · an!
pa1

η1
pa2

η2
· · · pan

ηn
(13)

where a1+a2+· · ·+an = RT . Consequently the joint distribution of the n variables (Yη1 , Yη2 , . . . , Yηn)

is a multinomial distribution.

The likelihood function of the distribution (13) is:

L(pη1 , pη2 , . . . , pηn) =
RT !

nη1 !nη2 ! · · · · · nηn !
p

nη1
η1 p

nη2
η2 · · · pnηn

ηn (14)

and since
n∑

i=1
pηi = 1 it follows that

L(pη1 , pη2 , . . . , pηn) =
RT !

nη1!nη2 ! · · · · · nηn !
p

nη1
η1 p

nη2
η2 · · · (1 − pη1 − pη2 − · · · − pηn−1)

nηn (15)

Then the logarithm of this likelihood function remains as

Ln(L(pη1 , pη2 , . . . , pηn)) = Ln(
RT !

nη1!nη2 ! · · · · · nηn !
) +

n−1∑
i=i

nηiLn(pηi)

+nηnLn(1 − pη1 − pη2 − · · · − pηn−1). (16)

In order to obtain the maximum likelihood estimators of pηi (i.e., p̂ηi) for all i = 1, 2, . . . , n, we

solve the following equation
∂Ln(L(pη1 , pη2 , . . . , pηn))

∂pηi

= 0 (17)

to get that

p̂ηi =
nηi

RT
. (18)

Under this setting, if we want to test for a generic null hypothesis, H0, we will proceed as

follows:

1. Fix the null hypothesis H0 to be tested.

2. Define the set of symbols Γ and the symbolization map f .

3. Compute the distribution of the symbols under H0, namely p
(0)
η for all η ∈ Γ.

4. Finally compute the likelihood ratio statistic.
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λ(Y ) =
RT !

nη1 !nη2 !·····nηn !p
(0)nη1
η1 p

(0)nη2
η2 · · · p(0)nηn

ηn

RT !
nη1 !nη2 !·····nηn ! p̂

nη1
η1 p̂

nη2
η2 · · · p̂nηn

ηn

This general procedure for testing hypotheses based on symbolic analysis will be applied through

out the rest of the paper.

Notice that a convenient choice of symbols Γ and symbolization map f in the step 2 according

to the null hypothesis to be tested will give an increase in the power of the test. Moreover,

−2Ln(λ(Y )) asymptotically follows a Chi-squared distribution with d degrees of freedom (see for

instance Lehmann, 1986). Hence

−2Ln(λ(Y )) = −2[RTLn(RT ) +
n∑

i=1

nηiLn

(
pηi

nηi

)
] ∼ χ2

d (19)

Notice as well that according to Neyman-Pearson’s Lemma any test constructed is the most

powerful among all level-α tests for this problem.

Now, if the symbolizing map f is standard, that is, under the null H0 all the symbols have the

same probability to occur, pηi = 1
n for all i = 1, 2, . . . , n, then it follows that

−2Ln(λ(Y )) = −2RT [Ln(RT ) +
n∑

i=1

nηi

RT
Ln

(
pηi

nηi

)
]

= −2RT [Ln(RT ) +
n∑

i=1

nηi

RT
(Ln

(
1
n

)
− Ln(nηi))]

= −2RT [Ln(RT ) +
n∑

i=1

nηi

RT
(Ln

(
1
n

)
− Ln

( nηi

RT

)
− Ln(RT ))] (20)

Taking into account that h(Γ) = −
n∑

i=1
pηi ln(pηi) = −

n∑
i=1

nηi
RT Ln

(nηi
RT

)
, it follows that

−2Ln(λ(Y )) = 2RT [Ln(n) − h(Γ)]. (21)

4 Different symbolizations for different null hypotheses

According to the general framework above stated we focus now on steps (1) and (2) of the general

depicted procedure. Given that each hypothesis will require a particular symbolizing map (step 1),

in this section we present different symbolization procedures (step 2) to test some interesting nulls.

4.1 Symbolization Map for the null of serial independence

In the case of a time series process, Matilla and Ruiz (2008) used the following symbolizing map

to test for serial independence: Let {Xt}t∈I be a real-valued time series. For a positive integer
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m ≥ 2 we denote by Γ1 = Sm the symmetric group of order m!, that is the group formed by all the

permutations of length m. Let πi = (i1, i2, . . . , im) ∈ Sm. The positive integer m is usually known

as embedding dimension.

Now we define an ordinal pattern for a symbol πi = (i1, i2, . . . , im) ∈ Γ1 at a given time t ∈ I.

To this end we consider that the time series is embedded in an m-dimensional space as follows:

Xm(t) = (Xt+1,Xt+2, . . . ,Xt+m) for t ∈ I

Then we say that t is of πi−type if and only if πi = (i1, i2, . . . , im) is the unique symbol in the

group Sm satisfying the two following conditions:

(a) Xt+i1 ≤ Xt+i2 ≤ · · · ≤ Xt+im , and

(b) is−1 < is if Xt+is−1 = Xt+is

Condition (b) guaranties uniqueness of the symbol πi. This is justified if the values of Xt have a

continuous distribution so that equal values are very uncommon, with a theoretical probability of

occurrence of 0.

Then we define the symbolization map as f1 : {Xt}t∈I′ → Γ1 given by

f1(Xt) = (i1, i2, . . . , im) (22)

where (i1, i2, . . . , im) ∈ Γ1 is such that t is of (i1, i2, . . . , im)-type.

Moreover, under the null of independence the distribution of the symbols is uniform and there-

fore the map f1 is a standard symbolization map.

4.2 Symbolization Maps for the null of Spatial independence

In the case of spatial processes, López et al. (2009) give a symbolization procedure to test for

spatial independence as follows: Let {Xs}s∈S be a real-valued spatial process, where S is a set of

coordinates. Given a location s0, we will denote by (ρ0
i , θ

0
i ) the polar coordinates of location si

taking as origin s0.

Let m ∈ N with m ≥ 2. Next, we consider that the spatial process {Xs}s∈S is embedded in an

m-dimensional space as follows:

Xm(s0) = (Xs0 ,Xs1 , . . . ,Xsm−1) for s0 ∈ S
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where s1, s2, . . . , sm−1 are the m−1 nearest neighbors to s0, which are ordered from lesser to higher

Euclidean distance with respect to location s0. If two or more locations are equidistant to s0 we

choose them in an anticlockwise manner. In formal terms, s1, s2, . . . , sm−1 are the m − 1 nearest

neighbors to s0 satisfying the following two conditions:

(a) ρ0
1 ≤ ρ0

2 ≤ · · · ≤ ρ0
m−1,

(b) and if ρ0
i = ρ0

i+1 then θ0
i < θ0

i+1.

Notice that conditions (a) and (b) ensure the uniqueness of Xm(s) for all s ∈ S.

The proposed standard symbolization map f is defined as follows: denote by Me the median

of the spatial process {Xs}s∈S and let

δs =

⎧⎨⎩ 0 if Xs ≤ Me

1 otherwise
(23)

Now, define the indicator function

Is1s2 =

⎧⎨⎩ 0 if δs1 	= δs2

1 otherwise
(24)

Then, the standard symbolization map

f2 : {Xs}s∈S → Γ2 (25)

is defined as:

f2(Xs) = (Iss1,Iss2, . . . ,Issm−1) (26)

Notice that under the null of independence the distribution of the symbols is uniform and

therefore the map f2 is a standard symbolization map.

We now consider another possible symbolization procedure for the spatial process {Xs}s∈S to

test for spatial-independence. Let Γ3 = {1, 2, . . . , k} × {1, 2, . . . , k}. Let Ns be the set of locations

s formed by the neighbors of s and let ns its cardinality. Denote by XN
s = 1

ns

∑
s′∈Ns

Xs′ . Denote by

qi and qN
i the i-th quantile of the variables X and XN respectively for i ∈ {1, 2, . . . , k − 1}. We

will denote by q0 = min
s∈S

Xs (resp qN
0 = min

s∈S
XN

s ) and qk+1 max
s∈S

Xs (resp. qN
k+1 = max

s∈S
XN

s ). Then

we define the symbolization map

f3(Xs) = (i, j) (27)

if and only if Xs ∈ [qi−1, qi] and XN
s ∈ [qN

j−1, q
N
j ].
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Again, under the null of independence the distribution of the symbols is uniform and therefore

the map f3 : {Xs}s∈S′ → {1, 2, . . . , k} × {1, 2, . . . , k} is a standard symbolization map.

It is also possible to construct a non-standard symbolization map to test for independence in

the spatial context. The following symbolization is an example that underlines the potential use of

non-standard symbolization procedures to model specification analysis.

Consider the set Γ2 of symbols defined in (26) for a fixed embedding dimension m.

Let us define the following equivalence relation ∼:

(Iss1,Iss2, . . . ,Issm−1) ∼ (Is′s′1,Is′s′2 , . . . ,Is′s′m−1
)

if and only if there exists an integer k such that Is′s′i = Issi+k
for all i ∈ {1, 2, . . . ,m − 1}, where

we denote by a the remainder of the division of a over m − 1.

Consider as a set of symbols Γ4 = Γ2/ ∼, that is, the set of equivalence classes in Γ2 modulo

the equivalence relation ∼.

Notice that, in general, in this case not all the symbols in Γ4 have the same probability to occur

and therefore the symbolization map f4 : {Xs}s∈S′ → Γ4 is non-standard.

4.3 Symbolization Maps for the null of Spatiotemporal Independence

Finally we consider the case of spatiotemporal processes {Xts}t∈I′,s∈S′. In this case as in the

previous ones, it is possible to define several standard and non-standard symbolization maps. By

simplicity we can adapt the previous symbolizations to the spatiotemporal case as follows:

For a fixed location s0 ∈ S′ define {Xt(s0)} as the time series {X1s0 ,X2s0 , . . . ,Xp(s0), . . . }. Simi-

larly for a fixed period t0 ∈ I ′ we define {X(t0)s} as the spatial process {Xt0s1,Xt0s2, . . . ,Xt0sp , . . . }.
Let m1,m2 ∈ N with m1,m2 ≥ 2 be the time and space embedding dimensions respectively.

Then under this setting we define the following symbolization maps f1i : {Xts}t∈I′,s∈S′ → Sm × Γi

for i = 2, 3 and 4 defined by:

f1i(Xts) = (f1(Xts), fi(Xts)) (28)

where f1 : {Xt(s)} → Sm and fi : {X(t)s} → Γi.

Notice that, when testing for spatiotemporal independence, when i = 2, 3 the symbolization

map f1i is standard while for i = 4 is non-standard.

9



5 Independence tests and a general structural change test

We focus now on steps (3) and (4) of the general procedure presented to test hypothesis with

symbolic analysis. Finally, we introduce a test for testing any structural change in a wide sense.

5.1 Testing for Serial independence

Using the symbolization map f1 and (21) under the null of independence Matilla and Ruiz (2008)

constructed the following statistic.

Theorem 5.1 (Matilla and Ruiz (2008)). Let Let f1 : {Xt}t∈I′ → Γ1 be the symbolization map

defined in (22) with |I ′| = T . Denote by h(Γ1) the permutation entropy defined in (2). If the time

series {Xt}t∈I is independent, then the affine transformation of the permutation entropy

G(Sm) = 2T [Ln(m!) − h(Sm)] (29)

is asymptotically χ2
m!−1 distributed.

5.2 Spatial independence

Using the symbolization map f2 and (21) under the null of spatial independence López et al. (2009)

prove the following result.

Theorem 5.2 (López et al. (2009)). Let fi : {Xs}s∈S′ → Γi, i = 2, 3 be the symbolization maps

defined in (25) and (27) with |S′| = R. Denote by h(Γi) the symbolic entropy defined in (2). If the

spatial process {Xs}s∈S is independent, then the affine transformation of the symbolic entropy

SG(Γi) = 2R[Ln(ni) − h(Γi)] (30)

is asymptotically χ2
di

distributed where d2 = 2m−1, d3 = (k − 1)2 + 2, n2 = 2m−1 and n3 = k2.

In the table below we show the size and power simulation results for the SG(Γ3) for k = 4.

We have considered in this experiment various SAR and SMA spatial processes by simulating over

different lattices (R = 49, 144, 262 and 400) and three ρs (.1, .5 and .9). Rejection percentajes are

reported at 5% level. The Monte Carlo experiment and the results for the symbolization map f2

are available upon request, they are not reported for sake of space.
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The models under study are:

SAR : X = (In − ρW )−1ε,

SMA : X = (In + ρW )ε

being ε ∼ iid,N(0, 1)

Table 1. Empirical Power and Size for SAR and SMA models for a SG(Γ3)

SIZE POWER

U(0,1) N(0,1) Rho

R 0.1 0.5 0.9

49 0,046 0,043 0,042 0,446 0,988

SAR 144 0,044 0,042 0,068 0,929 1

262 0,049 0,054 0,095 0,992 1

400 0,051 0,052 0,136 1 1

R

49 0,046 0,043 0,046 0,386 0,884

SMA 144 0,044 0,042 0,072 0,895 1

262 0,049 0,054 0,083 0,945 1

400 0,051 0,052 0,123 1 1

In general, it can be observed that this symbolic based test performs really well in terms of

power and size.

5.3 Spatiotemporal Independence

Similarly, one can get a test for independence by using the standard symbolization map f1i for

i = 2, 3. More concretely we obtain the following result.

Theorem 5.3. Let f1i : {Xts}t∈I′,s∈S′ → Sm × Γi be the standard symbolization maps defined

in (28) with i = 2, 3 and 4. Denote by h(Sm × Γi) the symbolic entropy defined in (2). If the

spatiotemporal process {Xts}t∈I,s∈S is independent, then the affine transformation of the symbolic

entropy

STG(Smt × Γi) = 2RT [Ln(ni) − h(Smt × Γi)] (31)

is asymptotically χ2
di

distributed where d2 = (mt−1)!2m−1, d3 = (m!−1)((k−1)2+2), n2 = mt!2ms−1

and n3 = m!k2.
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In the table below you can fin the size and power of the STG(Smt ,Γ2) (standard) for mt = 2, 4

and ms = 4. Under the alternative, we have considered the following data generating processes

yt = (I − γW )−1(αyt−1 + ηWyt−1 + Δt + εt) (32)

where εt ∼ iid, N(0, 1) and the parameters α, γ and η introduce temporal, spatial and spatiotem-

poral dependence respectively. The parameter Δt has been considered constant and equal to 5.

The entries marked with an asteristc denotes that simulations are over a non-regular lattice.

Table 4. Empirical Power and Size for SAR and SMA models for STG(Smt ,Γ2) Tests

SIZE POWER

α 0 0.1 0.3 0.5 0.1 0.2 0.3

γ 0 0.1 0.3 0.5 0.1 0.2 0.3

T/R mt η 0 0.1 0.3 0.5 0.1 0.2 0.3

T=20 2 0.036 0,149 0,121 0,171 0,466 1,000 1,000 0,069 0,131 0,327 0,609 1,000 1,000

R=100 4 0.056 0,185 0,939 1,000 0,206 0,995 1,000 0,072 0,125 0,379 0,428 1,000 1,000

T=30 2 0.034 0,132 0,120 0,174 0,949 1,000 1,000 0,116 0,163 0,697 0,988 1,000 1,000

R=225 4 0.036 0,511 1,000 1,000 0,625 1,000 1,000 0,062 0,249 0,885 0,971 1,000 1,000

T=20 2 0.100 0,103 0,136 0,164 0,609 1,000 1,000 0,107 0,111 0,380 0,474 1,000 1,000

R=259* 4 0.084 0,211 0,969 1,000 0,240 0,999 1,000 0,109 0,146 0,387 0,722 1,000 1,000

* Denotes non-regular lattice. α, γ and η introduce temporal, spatial and spatiotemporal dependence.

Notice that regarding the time independence, the size of the tests is correct with respect to

the number of symbols and in regular lattices the size is near the nominal size. Regarding the

power, when mt = 2 the results are poor because is not possible to gather any structure with this

embedding dimension and the results improve for mt = 4. As regards the spatial and spatiotemporal

dependence, the test behave well in terms of power.

5.4 Structural change

In this subsection the term ’structural change’ is understood in a broad sense. Particularly, we

think of any change that modifies the time and/or the spatial configuration of the data generating

process (DGP). Structural changes occur, but we do not know when nor where. For any particular

structural change, a symbolization map can be implemented to test for it.
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Let f : {Xts}s∈S → Γ be a symbolization map. The most general (in terms of structural change)

null hypothesis that we want to test is:

H0: The distribution of {X(t)s}s∈S and {X(t′)s}s∈S are identical for all t, t′ ∈ I

Therefore the null can be restated in terms of symbols as follows:

H0 : pη(t) = pη(t′) for all t, t′ ∈ I and all η ∈ Γ. (33)

Now, under the null, we have that pη(t) = 1
T pη for all symbol η ∈ Γ and hence we get that

λ(Y ) = (RT )RT

(
1
T

) n∑
i=1

T∑
t=1

nηi(t) n∏
i=1

p

T∑
t=1

nηi(t)

ηi

n∏
i=1

T∏
t=1

n
nηi(t)

ηi(t)

= (RT )RT

(
1
T

)RT
n∏

i=1
p

nηi
ηi

n∏
i=1

T∏
t=1

n
nηi(t)

ηi(t)

. (34)

On the other hand, SC(Γ) = −2Ln(λ(Y )) asymptotically follows a Chi-squared distribution

with (T − 1)n degrees of freedom. Hence the estimator ŜC(Γ) of SC(Γ) is:

ŜC(Γ) = −2

[
RT ln(RT ) − RT ln(T ) +

n∑
i=1

nηi ln(
nηi

RT
) −

T∑
t=1

n∑
i=1

nηi(t) ln(nηi(t))

]

= −2RT

[
ln(RT ) − ln(T ) +

n∑
i=1

nηi

RT
ln

( nηi

RT

)
−

T∑
t=1

n∑
i=1

nηi(t)

RT
ln(nηi(t))

]

= 2RT

[
ln(T ) −

n∑
i=1

nηi

RT
ln

( nηi

RT

)
+

T∑
t=1

n∑
i=1

nηi(t)

RT
ln

(
nηi(t)
RT

)]

= 2RT

[
ln(T ) +

T∑
t=1

ĥt(Γ) − ĥ(Γ)

]
(35)

And hence we have proved the following result.

Theorem 5.4. Let {Xts}t∈I,s∈S be a spatiotemporal process. Let Γ = {η1, η2, . . . , ηn} be a set of n

symbols used for the symbolization of the series {X(t)s}s∈S′ and f : {Xts}s∈S → Γ be a symbolization

map. If {X(t)s}s∈S′ and {X(t′)s}s∈S′ are identical for all t, t′ ∈ I then

SC(Γ) = 2RT [ln(T ) +
T∑

t=1

ht(Γ) − h(Γ)]

is asymptotically χ2
n(T−1).

This theorem holds for any particular symbolization map. In the interesting case of temporal

break in a spatial process, the general test can be implemented to test the null of no parameter
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break. To show the convenience of this test we simulate below two processes for T = 2 and T = 4.

Also the spatial structure is for ms = 4 (each location is related with three neighbors). Sample

sizes are R = 49, 100, 400 and 900. We also consider different sets of breaks by varying ρt.

We have utilized the map f1i : {Xts}t∈I′,s∈S′ → Sm × Γ2 as the standard symbolization map

defined in terms of (28).

The DGP’s used in the simulations are:

DGP1 : Xt = (I − ρtW )−1εt

DGP2 : Xt = (I + ρtW )−1εt

with εt = N(0, 1).

Table 5. Size and Power for the Structural Change Test for SAR

ρ1 ρ2 ρ3 ρ4 49 100 900

0.0 0.0 - - 0.048 0.040 0.040

0.5 0.5 - - 0.057 0.054 0.061

0.8 0.8 - - 0.085 0.092 0.085

0 0.3 - - 0.087 0.098 0.754

0 0.5 - - 0.178 0.331 0.999

0 0.8 - - 0.480 0.819 1.000

0.2 -0.3 - - 0.161 0.297 0.996

0.0 0.0 0.0 0.0 0.043 0.028

0.5 0.5 0.5 0.5 0.058 0.045

0.8 0.8 0.8 0.8 0.157 0.137

0.0 0.1 0.2 0.3 0.075 0.592

0.0 0.3 0.6 0.9 0.951 1.000

0.1 0.5 0.1 0.5 0.261 0.998

-0.3 0.1 0.4 0.0 0.299 1.000
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Table 6. Size and Power of the Structural Change for SMA process

ρ1 ρ2 ρ3 ρ4 49 100 900

0.0 0.0 - - 0.058 0.040 0.041

0.5 0.5 - - 0.051 0.042 0.041

0.8 0.8 - - 0.051 0.049 0.060

0 0.3 - - 0.084 0.104 0.718

0 0.5 - - 0.129 0.213 0.991

0 0.8 - - 0.280 0.500 1.000

0.2 -0.3 - - 0.156 0.276 0.993

0.0 0.0 0.0 0.0 0.033 0.030

0.5 0.5 0.5 0.5 0.045 0.029

0.8 0.8 0.8 0.8 0.054 0.048

0.0 0.1 0.2 0.3 0.088 0.547

0.0 0.3 0.6 0.9 0.405 1.000

0.1 0.5 0.1 0.5 0.179 0.978

-0.3 0.1 0.4 0.0 0.289 0.999

From both tables it can be observed that the power of the test increases as more spatial and/or

time data are available, while the size of the test remains controled.

6 Conclusions

In this paper we have shown the flexibility and the power of the symbolic permutation entropy

approach in order to deal with several types of variables: time series, spatial series or panel data.

We offered a unified non-parametric framework in which it is possible to solve different inference

problems related to the stochastic structure of the data. The method is, statistically and com-

putationally, simple but powerful and very competitive against other well-established procedures

proposed in the literature.

The key aspect of our procedure is to define correctly the set of symbols more appropriate to

tackle with the null hypothesis under analysis. In each case, there will exist various alternatives,

standard or non-standard, and the problem is to make a good choice among them.
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