GMM Estimation of Spatial Autoregressive Probit
Models: An Analysis of the Implementation of the
District Planning System in Japan

Tadao, HOSHINO*
Department of Social Engineering, Tokyo Institute of Technology

Abstract

This paper proposes a feasible generalized method of moments (GMM) es-
timator for spatial binary probit models containing both a spatial lag latent
dependent variable and spatial autoregressive disturbances. Under empiri-
cally reasonable conditions, the estimator is consistent and asymptotically
normal. We numerically assess the finite sample properties of our estimator
using Monte Carlo experiments, and confirm the validity of the estimator.
To demonstrate the availability of our proposed GMM estimator, we applied
the technique to actual data for urban planning policies in Japan. In par-
ticular, this study focuses on the implementation of the District Planning
System in Yokohama city, the capital city of Kanagawa prefecture. The
District Planning System is a detailed land use management system intro-
duced voluntarily by the local authorities according to the nature of each
district, which reflects the demands of the residents for the local environ-
ment. Our results indicated the existence of positive spatial autocorrelations
in the utilization of the system in terms of both the dependent variable and
the omitted variables. This implies that the inhabitants’ preferences for the
local environment are spatially autocorrelated.

Keywords:
Generalized method of moments; Spatial autocorrelation; Probit models;
District Planning System

JEL Classification: C31, C35, R52

*Correspondence: Tadao Hoshino; E-mail: hoshino.t.ai@m.titech.ac.jp; Address: 627,
W9-89, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, JAPAN.



1 Introduction

In statistical analyses of spatial data, the importance of spatial dependence
among the observations of the consistency and efficiency of estimates has
been emphasized. Since Anselin (1988), many theoretical and empirical
studies on the econometric models that deal with spatial dependence have
been undertaken. However, most of these studies consider linear models.
The number of studies on spatial dependence in non-linear models, includ-
ing discrete choice models, is significantly smaller than that of the linear
cases. As Fleming (2002) states, this may be due to the added complex-
ity that spatial dependence introduces into discrete choice models. With
the presence of spatial dependence, i.e., spatial autocorrelation, in discrete
choice models, the traditional maximum likelihood method is less practical
because the likelihood function requires us to evaluate n-dimensional inte-
gration and the determinant of the n x n matrix, where n is the number
of observations. To avoid the direct calculation of multi-dimensional inte-
gration, several techniques have been proposed (e.g., Beron and Vijverberg
2000; Bhat and Guo 2004; Bolduc et al. 1997; Klier and McMillen 2005;
LeSage 2000; McMillen 1992; Pinkse and Slade 1998). These techniques are
summarized justly in Fleming (2002). Among them, especially when the
number of samples is large, the use of the generalized method of moments
(GMM) is quite attractive in terms of its computational feasibility. Thus,
the objective of this study is to develop a feasible GMM estimator of spatial
autoregressive binary probit models.

To demonstrate the availability of our GMM estimator in empirical stud-
ies, we apply the technique to actual data from urban planning policies in
Japan. More specifically, this study focuses on the implementation of the
District Planning System by the districts of Yokohama city, the capital
of Kanagawa prefecture. The District Planning System - chiku keikaku in
Japanese - was introduced with the goal of micro-level land use management
according to each district’s nature by aggregating the demands of that area’s
residents regarding the local environment. Though the use of the system is
not obligatory, many city districts across the country are utilizing it with
the intention of improving the local environments. Our research hypothesis
is that there are spatial autocorrelations in the implementation of the Dis-
trict Planning System in terms of both the latent dependent variable and
the omitted variables. The former may be due to the presence of the inter-
actions of people between neighbourhoods and the latter may be due to the
presence of unobservable regional factors.

The importance of spatial dependence in the context of urban planning
policies has been discussed often by urban sociologists and planners. An
interesting and well-known example is “Broken Windows” by Wilson and
Kelling (1982). The broken window theory states that when a neighborhood
begins to decline visually, it can be an indication that no one cares about



the area; then, more crime occurs in the area, and the neighbourhood will
continue to deteriorate. Such multiplier effects, so-called neighbourhood
effects, can be expected to function in a positive way as well. Accordingly,
our research is considered as an examination of the positive side of the broken
window theory; that is, we want to examine whether there are significant
spatial endogenous effects in the inhabitants’ demands on the improvement
of local environments. The dependent variable used in this study is one
when the city district contains at least one area that is somewhat preserved
or restricted by the district planning and zero otherwise. The theoretical
considerations of the identification and estimation of discrete choice models
in the presence of neighbourhood effects are given by Brock and Durlauf
(2001) on binary choice models and the paper by the same authors (2002)
on multinomial choice models.

The remainder of this paper is organized as follows. In Section 2, we
describe our GMM estimator. Further, the consistency and asymptotic nor-
mality of the estimator are established under certain conditions. In Section
3, we examine the properties of our estimator by a set of Monte Carlo ex-
periments. Our empirical analysis is described in Section 4 containing an
overview of the study area, an explanation of the data used, and the esti-
mation results. Finally, in Section 5, we give our concluding remarks.

2 GMM Estimation of Spatial Autoregressive Pro-
bit Models

2.1 Consistency

In the binary probit models, we observe a dummy variable, y;, defined by

yi = 1 if y; >0,
= 0 otherwise, (t=1,...,n) (1)

where y is a latent variable for an ¢th observation. To define our sampling
space, we borrow the framework used in Conley (1999): Suppose that each
observation i is located at one of a collection of points {s;} inside a sample
region. Then assume

A.1 (a) The sample region A, C R? is one of a sequence of compact convex
regions {A;} which increases in area as 7 — oo; (b) A, grows uniformly
in area in at least two non-opposing directions to increase the sample
size as T — oo; and (c) the density of observation in a bounded area
is bounded.

A.1 is similar in concept to the asymptotics in space that is referred to as
increasing domain asymptotics.!

LA different way of characterizing asymptotics in space is called infill asymptotics. Infill
asymptotics are appropriate when the spatial domain is bounded, and new observations are



Now, consider the spatial autoregressive model specified as

vt o= pWayt+ X3+ ¢,
e = AMye+u, (2)

where p and A\ are scalar autoregressive parameters indicating the degree
of spatial dependence, W,, and M,, are n X n spatial weight matrices, X =
(21, ...,xy)" is the n x k matrix of regressors, x; being a k x 1 vector, (3 is
the k x 1 vector of coefficients, e = (1, ...,&,)" is the n x 1 vector of omitted
random variables, and v = (uy,...,u,) is an n X 1 vector of innovations.
With regard to this model, consider the following conditions:

A.2 {u;} has an i.i.d. normal distribution with mean Ffu;] = 0, and vari-
ance E[u?] = 02 < oo.

A.3 (a) The diagonal elements of W,, and M,, are zero; and (b) each of the
off-diagonal elements of W,, and M, is uniformly bounded in absolute
value by one, and is defined by a non-random function of w;;(dw (i, 7))
and m;;(das (i, j)), respectively, such that w;;(x), mi;j(k) — Oas k T oo,
where d.(7, j) is the distance between i and j measured by some metric
that is positively correlated with the Euclidean distance between them.

A.4 (a) (I, — pW,) and (I, — A\M,,) are nonsingular; and (b) p € (—1,1),
Ae(—1,1).

A.5 (a) X has the full rank k; (b) the elements of X are uniformly bounded
in absolute value; (c) the values of X; are determined by a k x 1
underlying random field 2 at location s; that is spatially stationary
and mixing; and (d) the sampling process is determined by a random
process that is spatially stationary and mixing being independent of
Zs (see the Wy process in Conley 1999 3.1.2).

The specification in A.3 (b) means that the processes of spatial dependence

for y* and e are assumed to be spatially stationary and mixing. For the

definition of mixing condition in this context, please see Appendix 2, and

also refer to the definition in Bolthausen (1982) and Conley (1999).
Assuming A.3 and A.4, the following equations hold:

(I, — pWo) ™t = I, + pWy, + W, Wy + ...,
(I, — AM,) ™Y = I, + AM,, + N>M,, M, + ... . (3)

Since calculating the n X n inverse matrix is quite difficult when the number
of samples is large, utilizing Eq.(3) is really important in practice to speed
up the estimation. Note that in the following, one can always use Eq.(3) as
substitutes of (I, — pW,,)~! and (I, — AM,,) !, respectively.

added in between existing ones, generating a increasingly denser surface (Anselin 2003).



Now, ¥y is re-written as

y = (In — PWn)_lXﬁ + (In — /’Wn)_l([n - /\Mn)_lu' (4)
For simplicity of notation, let us define the following:

v= (I, — pWp) (I, — AM,,) L,

X° = (I, — pW,)"1X.

Then, the probability P(y; = 1) is also considered as the probability P(v; >
—X?f3). Note that since the row sums of (I,, — pW,,) " and (I, — AM,,) ! are
uniformly bounded (Lemma 1),2 and E[u;] = 0 (A.2), applying the product
rule, E[v;] = 0. The variance-covariance matrix is given by

Elov'] = (In = pWa) " (In = AMy) " (L = AM},) (I, — pWp) " lo. (5)

Let us denote the diagonal element of Eq.(5) as o2 (formally, o2(p,\) =
(02,(p, Ay ooy 02, (p, A))'). We now have the expected value of v; as follows:

X2B)ou:
Elvi(0)|Xi, yi = 1] = ovs % |
(X7 B/ ovi)
1—®(X2B/0vi)’

where 6 is the (k+2) x 1 vector of parameters < ', p, A >, ¢(-) is the normal
density function, and ®(-) is the normal cumulative distribution function.
In our model, v; is replaced by its prediction E[v;(0)|X;, yi] - the generalized
residuals (for details, please see, e.g., Cox and Snell 1968; Gourieroux et al.
1987). The GMM estimator for spatial probit models proposed by Pinkse
and Slade (1998) constructed moment conditions based on the use of the
generalized residuals.? Indeed, our estimator stated below is an extension
of theirs.

In a regular probit model, the standard error is assumed to be ho-
moskedastic or constant across observations. However, as Eq.(5) shows,
the variances are heteroskedastic, being a function of p and A. Although
ignoring the heterosedasticity can achieve consistency in the context of lin-
ear regression models, this is not the case in the context of discrete choice
models (Yatchew and Griliches 1985). Therefore, it is required to correct the
heteroskedasticity to obtain unbiased and consistent estimates. Of course,
o2 must be fixed in our model as well.

By using ¢; = 2y; — 1, we re-write Eq.(6) as

Qb(Xzoﬁ/o-m)
(I)(QiX;B/O-vi)
2All the lemmas are summarized in Appendix 1.
3Klier and McMillen (2005) also constructed the GMM estimator for spatial logit mod-

els based on the generalized residuals for logit models. Their estimator was a linearized
logit version of Pinkse and Slade (1998)’s estimator.

Elvi(0)| X,y = 0] = —ou; (6)

0;(0|1 X5, yi) = qiowi (7)




We henceforth write ;(0|X;,y;) simply as 0;(f). Now, suppose there is
a moment function vector g(Z,#) such that

n

an(Z,0) =071 g(Zi,0) =n"" Y Ziu(0), (8)
=1

i=1

where Z is a matrix of instruments. In the first step of the estimation,
we take Z to be a fixed subset of linearly independent columns of {X,
WoX, W2X ..., M, X, M2X,...}. As is well known, the matrix of opti-
mal instruments must be sufficiently correlated with the Jacobian of ©(fy).
Accordingly, in the second step, we update the matrix of instruments to
be optimal by utilizing the estimates from the first step of the estimation.
Newey (1993)* shows that the optimal instruments in the case of conditional
heteroskedasticity are given by

Z* = Q(60) " "R(6y)F, (9)

where Q(6p) = E[0(0)v(6p)'], R(0g) = E[00(0y)/0¢'], and F is any nonsin-
gular matrix representing the proportional transformaitons of the matrix of
instruments. R(6p) is calculated by using the equations (A.1)-(A.3) in Ap-
pendix 1. In the GMM estimation of panel probit models, Inkmann (2000)
shows that the efficiency gains from exploiting the optimal instruments and
weight matrix are remarkably high.

Since Elv;] is zero, E[v;(6p)] is also zero by the law of iterated expecta-
tions where 6 is a vector of true parameters. Hence, if the elements of Z are
uniformly bounded (Lemma 3), E[g(Z;,6p)] = 0. Thus, a GMM estimator
is one that solves the following:

0 = argmin Qn(Z,0), (10)
0O

where

Qn(Z,0) = §.(Z,0)Z§n(Z,6),

and where Z is a positive definite matrix. If §,(Z,0) = E[g(Z;,0)], and
2 L g, then, Qn(Z,0) 2 Qu(Z,0) = E[g(Z;,0)'EE[g(Z;,0)]. To establish
the consistency of this estimator, we consider the assumptions listed below:

A.6 O is compact.
A7TEL =, where Z is a positive definite matrix.
A.8 ZE[g(Z;,00)] = 0 uniquely at 6y € ©.

A.9 ¢(Z;,0) is measurable and differentiable on Z; for all € ©.

“Reference quoted from Inkmann (2000).



PROPOSITION 1 [Consistency]: If A.1-9 hold, then 6 2 6.

A key condition for the establishment of the consistency of the estimator
is suppee |Qn(Z,0) — Qo(Z, )| 2 0. The proof given in Appendix 1.1 shows
that the condition can be satisfied under the assumptions set out above.
These assumptions can be relaxed in some ways at the expense of additional
complexities.

2.2 Asymptotic normality

To establish the asymptotic normality for our estimator, we utilize Bolthausen
(1982)’s central limit theorem for stationary mixing random fields. To use
the theorem, we need several additional conditions.

N.1 G'ZG and S are nonsingular, where G = E[0g(Z;,00)/00'] and S =
Elg(Zi, 60)9(Zi, b0)']-

N.2 Zwak,l(w) < oo, for k+1<4.
w=1

N.3 aj00(w) = o(w™2).

The definition of the spatial mixing coeflicient used in N.2 and N.3, namely,
ay(w), is found in Appendix 2.

PROPOSITION 2 [Asymptotic normality]: If the assumptions of Proposition
1 and N.1-3 hold, then, vn(f — 6p) % N[0, (G’ZG) " G'ZS=G(G'=G) Y.

For proof, please see Appendix 1.2. Hansen (1982) shows that the optimal
choice of the weight matrix = converges to S™!'. Hence, in this case, the
asymptotic distribution of the estimator collapses to

Vn(d - 6) % N[0, (G'S™LG) Y. (11)

3 Monte Carlo Experiments

We conduct Monte Carlo experiments in order to assertain the properties
of our estimator. The basis of the experiments is a simple version of Eq.(2)
with two regressors including the intercept: y* = pW,y* + a + z8 + ¢,
€ = AMy,e + u. w is drawn from N[0, 1] and z is drawn from N[4,4]. We
set the true parameters as ap = —1.5 and By = 0.5. The spatial weight
matrix for the latent dependent variable, namely W, for the experiments is
created to be heterogenous as follows: We first draw two random numbers
from the uniform distribution UJ0, 1] for each observation. These numbers
are used to specify the coordinates of each observation in the [0, 1] x [0, 1]
plane. For i # j, we set w;; = 1/#C if the Euclidean distance between the



ith point and the jth point is less than 0.1, where #C' is the total number
of points that meet the condition stated. Of course, the diagonal elements
of the matrix is set to zero. The spatial weight matrix for the disturbances,
namely M, is created as follows: For i # 1, n, m;; =1/2if j=i+1,i -1,
and mj; = 0 otherwise; when ¢ = 1, m12 = 1/2, my, = 1/2, and m; ; =0
otherwise; and when ¢ = n, my,—1 = 1/2, my1 = 1/2, and my,; = 0
otherwise. Thus, this matrix is defined in a circular world.

Based on the set up explained above, given a particular value of pg and
Ao, two sizes of samples are generated, namely, n = 300 and n = 800. We
report the results of the cases when the magnitude of the autocorrelation
for each process is 0.2 or 0.6. Then, based on the variations of the spatial
autocorrelation parameters and the sample sizes, ten sets of experiments
including two benchmark sets with p = 0 and A = 0 for each sample size are
carried out. The models to be tested are the standard non-spatial probit
model (i.e., misspecified model with p = 0 and A = 0) and the spatial
probit model. We use the classical maximum likelihood method to estimate
the standard probit models. Table 1-(1) summarizes the mean, standard
deviation, and root mean square error (RMSE) statistics of each parameter
in these models in each Monte Carlo experiment when n = 300; and Table
1-(2) reports these statistics when n = 800. Each experiment is based on
1000 replications.

When spatial autocorrelation does not exist, the both models show a
good performance with almost no differences between their performances.
On the other hand when spatial autocorrelation exists, regarding the non-
spatial standard (i.e., misspecified) probit, we observe a trend that the ac-
curacy of the predictions rapidly decreases especially for the intercept term
as the true spatial autoregressive parameters pg and \g increase; while in
the case of the spatial probit, the increases of the true spatial autoregressive
parameters do not influence much on the accuracy of the estimates of the
spatial autoregressive parameters, the intercept, and the coefficient. In addi-
tion, although the estimates of spatial autocorrelation in the disturbances,
A, have smaller deviations and errors than that in the latent dependent
variable, p, they are always underestimates (about 10%) of the true value
Ao, while the estimates of p are always very close to the true value pg on
average. However, at present, we do not have a clear explanation for this
phenomenon, this might be due to the property of finite samples because
the underestimations are somewhat corrected by enlarging the sample size.
For the both models, increasing the sample size decreases the RMSE statis-
tics of parameters only except for p (rather very slightly worse performance
than the small sample cases, but nevertheless very accurate on average). On
the whole, the increase of the sample size would make the estimations more
reliable because of the fact that the average value of the RMSE for the large
population is measurably smaller than that for the small population.

Thus, from these reported results, we can conclude that ignoring the



spatial effects is quite problematic especially when the magnitude of the
spatial autocorrelations is not small; and, we may conclude that the validity
of our GMM estimator is confirmed.

Table 1: (1) Results of the Monte Carlo Experiments
True parameters: ag = —1.5, g = 0.5

: Sample size: n = 300,

Para- Standard Probit Spatial probit
0 Ao meter Mean Std. dev. RMSE Mean Std. dev. RMSE
0 0 o -1.5367  0.2238  0.2268 -1.5372  0.2276  0.2306
I6; 0.5117 0.0602  0.0592 0.5132 0.0572  0.0587
p -0.0051  0.1069  0.1070
A -0.0001  0.0004  0.0005
0.2 0.2 ! -1.3369  0.2089  0.2650 -1.5295  0.2100  0.2121
16} 0.4878 0.0579  0.0592 0.5126 0.0572  0.0585
p 0.1971 0.1021 0.1022
A 0.1801 0.0574  0.0608
0.6 0.2 ! -0.8888  0.1688  0.6341 -1.5340  0.2226  0.2252
8 0.4028 0.0413  0.1056 0.5135 0.0619  0.0634
P 0.6001 0.1326  0.1326
A 0.1761 0.0661  0.0703
0.2 0.6 «Q -1.1691 0.2022 0.3878 -1.5121 0.1546 0.1551
I} 0.4258 0.0488  0.0888 0.5077 0.0407  0.0414
p 0.1986 0.1101 0.1101
A 0.5665 0.1094  0.1144
0.6 0.6 ! -0.8172  0.1825  0.7068 -1.5142  0.1724  0.1729
16} 0.3655 0.0385  0.1399 0.5058 0.0471  0.0475
P 0.6003 0.1426  0.1426
A 0.5526 0.1125 0.1221
RMSE Col. Average 0.2673 0.1114




Table 1: (2) Results of the Monte Carlo Experiments: Sample size: n = 800,
True parameters: ag = —1.5, Gy = 0.5

Para- Standard Probit Spatial probit
0 Ao meter Mean Std. dev. RMSE Mean Std. dev. RMSE

0 0 o -1.5113  0.1321  0.1325  -1.5093 0.1411  0.1414
8 0.5041 0.0346  0.0349  0.5050 0.0348  0.0352
P -0.0079 0.1109  0.1112
A -2.92E-05 9.70E-05 0.0001
0.2 0.2 Q -1.3959 0.1311 0.1674 -1.5114 0.1329 0.1334
8 0.4975 0.0339  0.0340  0.5057 0.0331  0.0336
P 0.2016 0.1207  0.1208
A 0.1858 0.0448  0.0470
0.6 0.2 o -1.1483  0.1240  0.3729  -1.5151 0.1256  0.1265
8 0.4759 0.0321  0.0402  0.5065 0.0336  0.0343
P 0.5993 0.1355  0.1355
A 0.1856 0.0422  0.0446
0.2 0.6 Q -1.2093 0.1244 0.3163 -1.4841 0.1023 0.1035
I} 0.4310 0.0293  0.0750  0.4985 0.0261  0.0262
p 0.1932 0.1325  0.1326
A 0.5679 0.0865  0.0923
0.6 0.6 o -1.0029  0.1327  0.5145  -1.4894 0.0956  0.0962
16} 0.4167 0.0285  0.0881 0.4990 0.0240  0.0240
P 0.6001 0.1481  0.1481
A 0.5657 0.0852  0.0919
RMSE Col. Average 0.1776 0.0839

4 Empirical Study

4.1 The District Planning System

In Japan, the District Planning System - chiku keikaku in Japanese - has
been stipulated in the Urban Planning Law from 1980, aiming for micro-
level land use management according to each district’s nature. The basic
idea of this system was based on the detailed district planning scheme in
Germany, Bebauungsplan (widely known as B-plan). The District Planning
System regulates, for example, the development of green areas; the purpose
and design of buildings; and the building-to-land ratio. Such district plans
are introduced in relatively small areas. In drawing up a plan, the local
authority must obtain the consent of the local residents living in that area.
District plans can be proposed not only by local authorities but also by
the inhabitants. Thus, the system is designed to reflect the aggregated
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demands of the inhabitants. Thus, if there are some spatial autocorrelations
in characterizing the inhabitants’ preferences for local environment, we can
also observe the spatial dependence in the implementation of the District
Planning System.

In order to preserve and create better regional environments and ameni-
ties, the system has been introduced mainly in residential districts, shopping
and business districts near train stations, and bureaucratic districts. Since
1980, the total number of plans created has reached 4570 across the country
(Chiku keikaku kenkyukai 2005).

4.2 Data

Situated 30 km south of the central Tokyo, Yokohama city is the capital of
Kanagawa prefecture. The city’s population is about 3.6 million (Population
Census 2006), as it is a commercial hub of the Greater Tokyo area and one of
the most populous bedroom suburbs where commuters to Tokyo reside. As
of 2008, a total number of 90 district plans covering an area of 1573.7 ha had
been proposed for the city.® For a single city, these figures are remarkaby
high compared with other cities like Kyoto, one of the most historical and
cultural cities in Japan.®

Yokohama, city has 18 wards. In the Japanese addressing system, wards
are divided into towns and towns may be subdivided into city districts,
called chome in Japanese. In our empirical study, the binary dependent
variable is defined as follows: one if a city district contains at least one area
that utilizes the District Planning System and zero otherwise. It is often the
case that a district plan intersects the boundaries of more than two distinct
city districts. This presents minor complications throughout our study. Our
definition of the dependent variable means that if a district plan crosses over
city districts, we allot one to each of them despite the crossover. Based on
this definition, Figure 1 shows the distribution of the dependent variable.
The presence of a strong spatial correlation in the implementation of the
District Planning System can be confirmed from the figure. Note that if we
estimate the model without controlling the crossovers in the specification
of the spatial weight matrices, we will obtain unreasonably high spatial
autoregressive parameters. Our approach to deal with this issue is stated in
the next subsection.

The variables used and their definitions are listed in Table A.1 in Ap-
pendix 3. Among 18 the wards, ward dummies that do not have a significant
effect on the dependent variable are dropped. The total number of districts
is 1758. We exclude non-residential areas including seas, non-residential is-
lands, urban parks, and districts that have data with missing values from

*Yokohama city web page: http://www.city.yokohama.jp/me/toshi/
5The number of district plans in Kyoto city is 50 as of 2008 (Kyoto city web page:
http://www.city.kyoto.lg.jp/tokei/).
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Figure 1: District plans in Yokohama city

the total. Consequently, the number of city districts used in this study is
1573. Table A.2 in Appendix 3 presents the descriptive statistics for the
variables used. The variables are the most current data, which was made
available in November 2008 from the Census and the website of Yokohama
city’s urban planning. It is important to note that we only use cross-sectional
information. Although it takes some time for a district to be affected by
the neighbouring districts’ planning policies, and make a decision on the
planning of the district itself, we ignore such time series properties on the
variables. This is simply due to the limited availability of detailed data.
Thus, the results presented in the subsection 4.4 should be interpreted as
long term trends.
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4.3 Spatial weight matrices

There are many possibilities in choosing the metrics to define the spatial
weight matrices. As stated above, we need a special method to treat the
crossovers of district plans lying on distinct city districts. In this study,
we consider four types of spatial weight matrices. For notational simplicity,
each specification is explained in terms of W),.

1. First order contiguity: The first metric is the one that is most com-
monly used in studies on spatial analysis. With this metric, w;; =
1/#C if the jth district is contiguous to the ith district, where #C'
is the total number of contiguous districts to i. It is easy to create
this matrix by using packages for spatial data analysis such as Geoda
(Anselin et al. 2006).

2. First order contiguity x Euclidean distance: This metric combines
the Euclidean distance with the first specification; w;; is the reciprocal
of the Euclidean distance between the mid-point of the ith district and
that of the jth district if j is contiguous to ¢ and normalized such that

> wij = 1.

3 4. Modified version of 1 and 2: There are district plans that are shared
by several city districts, and necessarily, these districts are contiguous.
Hence, if we do not control this, we will overestimate the degree of spa-
tial dependence. This is particularly important for the estimation of
p rather than A. Our approach is simple: If the jth district shares
the same district plan with the ith district, we set w;; to zero. The
third and fourth weight matrices are modified versions of the first and
second weight matrices, respectively in this manner. We describe this
weighting scheme by using the type of diagram presented below.

1 3 4
2

5

Areas with district plans

Figure 2: Example region
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Figure 2 shows an example of the sample region. For this region, the
modified version of the first order contiguity weight matrix is given by

0 1/2 1/2 0 0

1/3 0 1/3 0 1/3
W,=|1/3 1/3 0 0 1/3
0o 0 0 o0 1
0 1/3 1/3 1/3 0

Let us simply call these four matrices as type 1, type 2, type 3, and type
4, respectively. When using the modified spatial weight matrix, namely type
3 or 4, the estimated magnitude of the spatial autoregressive parameters
should be regarded as a lower bound.

4.4 Results

Table 2 reports the estimation results of the standard non-spatial probit
model (i.e., misspecified model with p = 0 and A = 0). The overall fitness
of the model is very high despite the fact that the presence of spatial au-
tocorrelations is not considered. LRI is 0.490, and more than 85 percent of
the sample’s behaviour is correctly predicted.

The results appear to show two different trends in the effects of the
variables. Namely, the negative sign for Density and the positive sign for
distance to Yokohama, and Residential Zone imply that the District Plan-
ning System tends to be utilized in the suburban residential areas. On
the contrary, the positive sign for High-rise buildings, the number of large
businesses, number of retailers, and Industrial Zone are evidences that the
system is often introduced in the highly developed urban areas. This dis-
crepancy may be the result of the heterogeneity in the aims of the district
plans implemented by the heterogenous city districts.

All coefficient and parameter estimation results from the spatial probit
models are reported in Table 3. In the estimation, we consider two versions of
the models: model 1 with W,, = type 3, and M,, = type 1, and model 2 with
W, = type 4, and M,, = type 2. Regarding the overall estimation results,
those concerning the relative importance of the variables do not differ much.
The ratios of success predictions of the spatial models are very slightly higher
than that of the standard probit case. In addition, using the combined metric
of the first order contiguity and the Euclidean distance slightly improves
the prediction. The values of the objective function to be minimized for the
both models are almost zero, suggesting that the estimation was successfully
conducted.

With regard to the spatial autoregressive parameters, both p and A in
the two models are significantly positively related to the dependent variable.
The degree of the spatial lag effects, namely W, y*, is lying around 0.26 when
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Table 2: Standard probit model

Standard probit

Variable Coef. t-value
Intercept -1.572  *FF 4,393
Density -0.004 *** 4919
# Owner 0.026 *** 2,643
High-rise buil. 0.405 ** 2.157
# Large bus. 0.016 ***  3.991
# Retailers 0.077 FF* 4467
# Wholesalers 0.024 0.627
Area of residence -0.019 -0.558
Dist. to Yokohama 0.021 1.093
Ratio of Workers 0.221 1.062
Ratio of Managers -4.470 % -1.766
Ratio of Blue Collar -3.189  *FF - _4.930
Ratio of Farmers 3.095 1.141
Residential Zone 0.019 *** 2924
Industrial Zone 0.024 ***  3.547
Dummy Sakae 0.931 *** 4888
Dummy Kohoku -1.436  *FF -3.407
Dummy Izumi 0.525 ** 2.375
Dummy Naka 0.935 *F*  6.349
Log-likelihood -556.153

LRI 0.490
Correct preds. 1344 (85.4 %)
Number of observations 1573

* Rk and *** indicate significance at the 0.10, 0.05, and 0.01 levels.

the spatial weight matrix is the type 3, and 0.2 when it is the type 4; and
the degree of spatial autocorrelations in the disturbances, namely M, is a
littel under 0.8 for both the type 1 and 2 spatial weight matrices.

From these results, we may conclude that the results support our re-
search hypothesis: the implementation of the District Planning System is
spatially dependent; and therefore, the residents’ preferences for the local
environment should be inferred as spatially autocorrelated. This is likely be-
cause of the interactions between the people in contiguous neighbourhoods
and unobservable regional common factors.
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Table 3: Spatial probit models

Spatial probit
W, =type 3, M,, =type 1 W,, =type 4, M,, =type 2

Variable Coef. t-value Coef. t-value
Intercept -1.356  *H* -4.893 -1.463  *FF* -5.309
Density -0.004 *** -6.729 -0.004 *** -7.322
# Owner 0.033 HF** 4.117 0.033 *** 3.935
High-rise buil. 0.415 *** 2.638 0.440 *** 2.799
# Large bus. 0.017 *** 5.040 0.018  *** 5.231
# Retailers 0.089  *** 6.476 0.086  *** 6.657
# Wholesalers 0.015 0.558 0.021 0.488
Area of residence -0.028 -1.046 -0.031 -1.210
Dist. to Yokohama st. 0.016 1.464 0.018 1.524
Ratio of Workers 0.149 0.775 0.184 0.916
Ratio of Managers -4.482 * -1.894 -4.485 * -1.901
Ratio of Blue Collar -2.989 Kk -5.906 -2.993  Fk* -6.048
Ratio of Farmers 3.104 1.176 3.106 1.190
Residential Zone 0.019 *** 4.515 0.020 *** 4.627
Industrial Zone 0.023 *F** 5.349 0.024 *** 5.540
Dummy Sakae 0.908  F** 7.787 0.978 Fk* 8.511
Dummy Kohoku -1.430 k* -3.865 -1.421  FF* -3.864
Dummy Izumi 0.417 *** 3.738 0.477 *** 4.092
Dummy Naka 0.846  *** 7.410 0.897 Fk* 8.108
Why* 0.259  *** 3.351 0.200 *** 2.984
Mye 0.769 *** 5.516 0.786  *** 8.789
Qn(Z,0) 2.683E-05 5.531E-05
Correct preds. 1345 (85.5 %) 1346 (85.6 %)
Number of observations 1573 1573

* A% and *** indicate significance at the 0.10, 0.05, and 0.01 levels.
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5 Conclusions

The objective of this paper was to develop a feasible GMM estimator for
spatial autoregressive probit models that involve both a saptial lag latent
dependent variable and spatial autoregressive disturbances. The proposed
estimator is computationally attractive because it allows us not to evaluate
the complicated likelihood funcition containing n-dimensional integration
and the determinant of the m X n matrix. Under empirically reasonable
conditions, the estimator is consistent and asymptotically normal. In the
Monte Carlo analysis, the validity of our estimator was confirmed.

We applied our proposed GMM estimator to examine the presence of
spatial autocorrelations in the introduction of the District Planning System
in Yokohama city. In the estimation, we formulated four types of spatial
weight matrices in order to control the crossovers of particular district plans
lying on distinct city districts. Our finding was that significant spatial effects
exist in the implementation of the system, which implied that the inhabi-
tants’ preferences for the local environment are spatially autocorrelated.
Although even the standard probit model achieved a good prediction per-
formance, confirming the presence of such spatial endogenous effects is quite
important in their implications in urban planning policies, as suggested in
the broken window theory. Our results suggest that if the policy makers’ ob-
jective is to create a better environment for a particular region, they do not
have to construct a wide and detailed planning scenario that applies to the
entire region in terms of the efficiency. Instead, for example, by designating
one of the areas in that region as a “model case” and intensively improving
its environment, the improvements would spread to the neighbourhoods to
the area; further, the effects would spread to the neighbourhoods that are
adjacent to those as well. At the end, the ultimate effects of the policy can
be unexpectedly huge, even if the policy itself is small and limited.

As stated in the introduction, the number of theoretical and empirical
studies on spatial discrete choice models is very small. Therefore, it is still
too early to give a definitive appraisal of our estimator. Hence, comparing
our approach with the other proposed estimators is a future task. Moreover,
it may be necessary to create estimation techniques not only for spatial
binary probit models but for a more general class of discrete choice models,
such as semiparametric models.
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Appendix 1. Proofs of Propositions

Lemma 1 The row and column sums of the matrices (I — pW,)~! and
(I — AM,,)~! are uniformly bounded in absolute value uniformly in p
and A, respectively.

Immediate from A.3, A4, and Eq.(3). Q.E.D.

Lemma 2 Let A be a spatially stationary and mixing scalar sequence of <
Ay, ..., A, >’ such that the elements of A are uniformly bounded in ab-
solute value, and U; be the ith row of (I,, — pW,,) ™t (or (I, — AM,,)~1).
Then, (1) U;A is uniformly bounded in absolute value uniformly in p

n

(or A); and (2) n™' ) "U;A 5 E[U;A].

=1

(1) By Lemmal, there exists a constant C' independent of n such that
[ULA] < |UH]|A] < {sup,<,, [Uil}A] < C < oo,

(2) Given stationarity, the mixing condition implies the ergodicity (see
Rosenblatt 1978).7 Therefore, U; is spatially ergodic by the definition of p,
A and Wy, M,, and so is A. Hence, {U;A} is a spatially stationary and
ergodic scalar sequence with E[|U;A|] < oo. Then, the result follows by the
ergodic theorem. Q.E.D.

By applying these results and the assumptions A.2, A.5 and A.6, we
obtain the following basic result: sup;, 02;(p,\) < oo for all p, A € (—1,1).

- a 89(Zi’ 9)
1
" ; BRI

Given A.9, since 0g¢(Z;,0)/0" = Z.00;(0)/00¢', clearly Z; used in the first
step is uniformly bounded by definition, and Z} involves E[0v(6y)/06'],
we then just consider the boundedness of 9v;(0)/96’. Now, for notational
simplicity, let us define the followings: (I,, — pW,) ' Xo, ! = X*, and (I,, —
W) " W, (I, — pW,) "t X = X**; then we have the following results:

= 0,(1).

Lemma 3 sup
0cO

0 [61(9) ] _ | n®s {(X*ﬂ)ﬁﬁl—w)} _ : (A.1)

__ Oyl
OBk

o [me)]: DO an - a0 - ap o) o+ 22|

_ Oul Ovl
dp

"Reference quoted from Proposition 3.44 in White (2001).
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(A.2)

Ax191(0) {Ui + (X*zﬁ)l

vl 0,1

(X8 + wn} s

where A, is the derivative of the Eq.(5) with respect to p, and A is similarly
the derivative of the equation with respect to A. Then, repeated applica-
tion of Lemma 2 to the equations (A.1)-(A.3) yields supycg ||07;(0)/00'|| =
O,p(1). Hence, the result is verified. Q.E.D.

From this result, we obtain supyeg [|9(Zi, 0)|| = Op(1). Also, since =2 is
positive definite, supgcg ||0Qn(Z,8)/0¢'|| = O,(1) holds as well.

Lemma 4 §,(Z,0) 2 E[g(Z;,0)] for all 6 € ©.

Given Lemma 2 and 3, the result holds. For detailed proof, please see the
proposition 1 in Conley (1999). Further, by A.9, E[g(Z;,0)] is continuous
foralld € ©. Q.E.D.

Lemma 5 Q,(Z,0) 2 Qo(Z,0) for all § € ©.

Immediate from A.7 and Lemma 4. Hence, Qo(Z,0) is uniquely minimized
at §p € © and coninuous for all § € ©. Q.E.D.

Lemma 6 Qn(Z ,0) — Qo(Z,0) is stochastic equicontinuous.

To establish the stochastic equicontinuity for Qn(Z, ), we consider the Lip-
schitz condition. The Lipschitz condition is that |Q,(Z, 6*) — Qn(Z,6**)| <
B(Z;)h(e(0*,0™)), VO*,0** € © where B: Z; — RT and h: RT — R™ such
that h(k) | 0 as k | 0, where e is a metric on ©. By applying the mean
value theorem and the Cauchy-Schwartz inequality,

0Qn(Z,0)

LA (A.4)

1Qn(2,6%) = Qu(Z,6°)| < sup
[4<C)

where 6 is the mean value between 6* and 6**.

Setting supgcg H(?Qn(Z, é)/(‘)@’H = B(Z;) < oo by Lemma 3, and h(e(6*,0)) =
16* — 0|, Qn(Z,0) is Lipschitz in § € ©. The stochastic equicontinuity is
immediate from the Lipschitz condition (see Lemma 1 in Andrews 1992).
Since Qo(Z,0) is continuous by Lemma 5, Qn(Z, 0) — Qo(Z,0) is stochasti-
cally equicontinuous. Q.E.D.
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1 — d

Lemma 7 NG ;g(ZZ, 6o) — NJ0,S].

According to Bolthausen (1982), if (1) 3% | w? tay (w) < oo, for k+1 < 4;
(2) @1.00(w) = o(w™%); (3) for some § > 0, E[||g(Zi,0)]]*T° < oo and
S w1 (w) 29 < ooy and (4) S is nonsingular, then the distri-
bution of n~2 > 9(Z;,00) converges to N[0,S]. Although the mixing
coefficient in Bolthausen (1982), namely, & ;(w), is defined in terms of a
metric of maximum coordinate wise distance, the same arguments can be
applied to the Euclidean metric (Conley 1999). In our case, since the di-
mension d is 2, the assumptions N.2 and N.3 correspond to the Euclidean
version of (1) and (2), respectively. Since E[g(Z;,0p)] is uniformly bounded,
(3) holds (see Bolthausen 1982 Lemma 1). (4) is assumed. Q.E.D.

1.1 PROOF OF PROPOSITION 1

As, for example, Newey and McFadden (1994) proves in Theorem 2.1, if there
is a function Qo(Z,0) such that (1) © is compact; (2) Qo(Z, ) is uniquely
minimized at 6y € ©; (3) Qo(Z,0) is continuous; and (4) supyeg |Qn(Z,0) —
Qo(Z,0)| 2 0, then, § 2 6. Conditions (1) is assumed. Conditions (2) and
(3) are satisfied by Lemma 5. Condition (4) holds if (a) © is compact; (b)
Qn(Z,0) 2 Qo(Z,0) for all 6 € ©; and (¢) Qn(Z,0) — Qo(Z,0) is stochastic
equicontinuous for all # € © (Andrews 1992, Newey 1991). Condition (b) is
satisfied by Lemma 5; and (c¢) is by Lemma 6. Q.E.D.

1.2 PROOF OF PROPOSITION 2

The first order condition from minimizing Eq.(10) is
GCn(Z,0)Z9,(Z,0) = 0, (A.5)

where G,(Z,0) = 0Gn(Z,0)/00'. For Eq.(A.5), applying the mean value
theorem to g,(Z,0) yields

9n(Z,0) = §2(Z,00) + G(Z,0)(0 — 0p), (A.6)

where 6 is the mean value between 6 and 6. By solving Eq.(A.6) for (0—6),
noting that §,(Z,0) =n=t>"" | g(Z;,0), we obtain the familiar expression,

V(- 00) = ~[Gu(Z,0)EC0(2,0)] " Gul( 2, e>’é% S o(Zinb0). (A7)
=1

Since @ is between 0 and 6, and 6 2 6, both G,(Z, 0) and Gy(Z, 0) converge
to G = E[0g(Z;,6p)/06'] in probability. Hence, by the assumption A.7 and
Lemma 4, we obtain

V(b - 6o) 5 —(G'EG) ' G'EvVnE(g(Zi, b0)] = 0. (A-8)
Thus, the conclusion follows by Lemma 7. Q.E.D.
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Appendix 2. Spatial Mixing Condition

Suppose (2, .#, P) is a probability space. Let J)_ C % be the o-algebra
generated by a random field Z5,;, s; € A;, and let |A;| be the number of
si € Ar. Let T'(A1, A2) denote the minimum Euclidean distance from an
element of A to an element As. The mixing coefficient is defined as follows,

oi(n) = sup  [P(ANB) - P(A)P(B)|,
A€<7A1,BE<7A2

and
A1 <k, |A2] <L T(A1,A2) > .

The strong mixing condition requires ay (1) to converge to zero as n — oo.
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Appendix 3. Tables

Table A.1: Variables and their definitions

Variable

Definition

District-level variables (n = 1573)

Density
# Owner
High-rise buil.

# Large bus.

# Retailers

# Wholesalers
Area of residence
Dist. to Yokohama

Ratio of Workers
Ratio of Managers
Ratio of Blue Collar
Ratio of Farmers

Ward-level variables*

Residential Zone
Industrial Zone
Dummy Sakae
Dummy Kohoku
Dummy Izumi

Dummy Naka

Population density (Pop/km?)
Number of house owners (100 persons)
Ratio of residential buildings that have more than
six stories to those with five or less
Number of businesses that have more than 100 employees
Number of retailers per hectare
Number of wholesalers per hectare
Square root of the average area of residence (v'm?2)
Distance to the Yokohama railway station from the
city district’s mid-point (km)
Ratio of workers to the district’s population
Ratio of managers to the total number of workers
Ratio of blue collar workers to the total number of workers
Ratio of farmers to the total number of workers

(# wards = 18)

Ratio of land used as Exclusively Residential
Zone for Low-rise Buildings Class 1 or 2** (%)

Ratio of land used as Industrial Zone or
Exclusively Industrial Zone** (%)

Dummy variable: 1 when the city district is in Sakae
ward; 0 otherwise

Dummy variable: 1 when the city district is in Kohoku
ward; 0 otherwise

Dummy variable: 1 when the city district is in Izumi
ward; 0 otherwise

Dummy variable: 1 when the city district is in Naka
ward; 0 otherwise

* “Ward-level” refers to that the number of variations for such variables that only pertain
to the number of wards. ** Exclusively Residential Zone for Low-rise Buildings Class 1,
Class 2, Industrial Zone, and Exclusively Industrial Zone are 4 of the 12 zones defined in
the zoning system, Zones for Certain Uses (yoto chiiki in Japanese) that is stipulated in

the Town Planning Law.
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Table A.2: Descriptive statistics

Variable Mean  Std. deviation Min Max

Dependent variable 0.179 0.383 0 1

District-level variables

Density 132.796 100.164 1.092 1660.054
# Owner 5.199 4.860 0 42.360
High-rise buil. 0.210 0.266 0 1

# Large bus. 5.360 11.817 0 188
# Retailers 1.600 3.044 0 6.000
# Wholesalers 0.596 1.354 0 12.710
Area of residence 8.350 1.633 0 12.211
Dist. to Yokohama 7.066 4.235 0.109  18.603
Ratio of Workers 0.480 0.209 0 0.995
Ratio of Managers 0.029 0.021 0 0.333
Ratio of Blue Collar  0.201 0.082 0 0.824
Ratio of Farmers 0.005 0.016 0 0.333

Ward-level variables

Residential Zone 37.862 16.718 2.778  70.000
Industrial Zone 10.426 10.746 0 15.000
Dummy Sakae 0.036 0.185 0 1
Dummy Kohoku 0.062 0.241 0 1
Dummy Izumi 0.032 0.175 0 1
Dummy Naka 0.140 0.348 0 1
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