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ABSTRACT: Spatial interdependence, the interdependence of outcomes across units, is theoretically and 
substantively ubiquitous and central across the social sciences. The empirical association, correlation, or 
clustering of outcomes on some dimension(s), spatial association, is also obvious in most contexts. However, 
outcomes may exhibit spatial association for three distinct reasons. First, units may be responding similarly to 
similar exposure to similar exogenous internal/domestic or external/foreign stimuli (common exposure); second, 
units’ responses may depend on others’ responses (contagion). A third possibility arises when the putative 
outcome affects the variable along which clustering occurs (selection: e.g., homophily). Severe empirical difficulties 
confront the accurate estimation and distinction of these alternative sources of spatial association. After brief 
review of specification, estimation, testing, and interpretation of the spatial and spatiotemporal autoregressive 
(SAR and STAR) models, which reflect interdependence directly and so can address Galton’s Problem of 
distinguishing common exposure from contagion as alternative substantive sources of observed spatial association, 
this paper extends those analyses, proposing the multiparametric spatiotemporal autoregressive (m-STAR) model 
as a simple approach to estimating jointly the pattern of connectivity and the strength of contagion by that 
pattern, including the case where connectivity is endogenous to the dependent variable (i.e., selection).** We 
again stress substantively-theoretically guided (i.e., structural) specifications that can support analyses of 
estimated spatiotemporal responses to stochastic or covariate shocks and that can distinguish the possible sources 
of spatial association, now three: common exposure, contagion, and selection. In addition to discussing estimation 
of m-STAR models, this paper compares the approach to extant longitudinal-network strategies,** and suggests 
how to calculate, interpret, and present the dynamic, endogenous coevolution of network structure and of 
contagion and common-exposure effects that emerges from such a system of nonlinear endogenous equations. We 
illustrate this approach to dynamic, endogenous interdependence—which parallels models of network and 
behavior coevolution in the dynamic or longitudinal networks literature—with an empirical application 
attempting to disentangle the roles of economic interdependence, correlated external and internal stimuli, EU co-
membership, and geographic proximity in shaping labor-market policies in recent years. 
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I. INTRODUCTION: The Substantive and Theoretical Ubiquity and Centrality of Spatial 
Interdependence, Its Mechanisms, and a General Theoretical Model 

Social-scientific interest in and applications of spatial-econometric modeling have 

burgeoned lately, due partly to advances in theory that imply interdependence and in 

methodology to address it; partly to global substantive developments that have raised 

perceptions and attention to interconnectivity, at all levels, from micro/personal to 

macro/international; and partly to advances in technology for obtaining and working with 

spatial data. This is a welcome development because the dependence of outcomes in some 

units on outcomes in others, spatial interdependence, is substantively ubiquitous and 

theoretically central across the political and other social sciences. 

Perhaps the most-extensive classical and current political-science interest in spatial 

interdependence, dating from the 1950s and still booming, surrounds intergovernmental 

diffusion of policies among U.S. States.1 Similar policy-diffusion research has emerged more-

recently in comparative studies, but the closer parallel in classical and current comparative 

and international politics research regards institutional/regime diffusion, which dates at least 

to Dahl’s (1971) Polyarchy and is much invigorated since the fall of the Soviet Union and 

Starr’s (1991) “Democratic Dominoes” and Huntington’s (1991) Third Wave. 

The topical range of substantively important spatial-interdependence extends well beyond 

such inter-governmental diffusion, however, spanning all of political science. Inside democratic 

legislatures, representatives’ votes depend on others’ (expected) votes, and, in electoral 

studies, citizens’ votes, election outcomes, or candidate qualities, strategies, or contributions in 

some contests depend on those in others. In micro-behavioral work, too, much of the 

longstanding and recently surging interest in contextual/neighborhood effects surrounds effects 

on respondents’ behaviors or opinions of aggregates of others’ (e.g., those of his/her 

community or social network). Contagion or diffusion in ideology, or social-movements, or 

national identity have also been explored. In comparative and international political economy, 

too, interdependence is often substantively large and central. Many stress cross-national 

diffusion as a force behind recent economic liberalizations, for instance. More broadly, 

globalization, i.e., international economic integration, arguably today’s most-notable (and 

indisputably most-noted) political-economic phenomenon, implies strategic and nonstrategic 

interdependence of domestic politics, policymakers, and policies. Likewise, the probability and 

outcomes of coups, riots, civil wars, and revolutions in one unit depend on those in others. 

Terrorist origins and targets also manifest spatial patterns. Simply put, the interdependence of 

                                                 
1 The ensuing list of topics and disciplines corresponds to literature searches for applied work under contagion, 
spatial interdependence, or network dependence. An appendix provides, among other things, full citation to these 
(many) works, with some (little) annotation, topically organized in the order presented here in the text: 
www.umich.edu/~franzese/Publications.html. 
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states’ actions defines the subfield of international relations. 

In fact, interdependence of outcomes across units could serve as reasonable definition of 

social science more generally and broadly. Interdependence is indeed studied prominently in 

geographical and environmental sciences, in regional, urban, and real-estate economics, in 

medicine, public health, epidemiology, and criminology, and, in its related guise as network-

dependence, in medicine, health, and epidemiology again, in education, and, of course, in 

social-network analysis. Topics include, to name just a few, interdependence in technology, 

marketing, and firm strategies; in macroeconomic performance; in microeconomic utilities; in 

violence and crime; and network dependence in obesity, fertility, birthweight, child 

development and poverty; in marriage; in right-wing extremism; in (sub)national identity; in 

women’s ordainment; and in academic citations, placements, and co-authoring. 

In short, as Tobler’s Law (1970) aptly sums: “Everything is related to everything else, but 

near things are more related than distant things.” Furthermore, as Beck et al.’s (2006) pithy 

title reminds in corollary: “Space is more than Geography.” I.e., the substantive content of the 

proximity in Tobler’s Law, and so the pathways along which interdependence between units 

may operate, extend well beyond physical distance, contact, and contiguity (as the examples 

above attest). Long literatures in sociology, regional science, geography, have elaborated from 

those disciplinary perspectives the multifarious mechanisms by which contagion may arise. 

Simmons et al. (2005, 2006) offer a list for international relations–coercion, competition, 

learning, and emulation–that has been influential in political science.2 

In fact, strategic interdependence arises any time some unit(s)’s actions affect the marginal 

utility of other(s)’s actions.3 Given such externalities, i’s utility depends on both its 

choice/outcome and that of j. In environmental policy, for instance, domestic welfare (or net 

political-economic benefits to policymakers) in each country will depend on the policies of both 

countries due to environmental spillovers (e.g., of pollution) and economic spillovers (e.g., in 

regulatory costs). Optimizing behavior will yield best-response functions of i’s optimal policies 

as a function of j’s and vice versa. In this framework, moreover, positive externalities create 

free-rider incentives, which induce policies to move in opposite directions (i.e., as strategic 

substitutes), confer late-mover advantages, and make war-of-attrition (strategic delay or 

inaction) dynamics likely. Conversely, negative externalities create strategic complementarity, 

with policies moving in the same direction, yielding early-mover advantages and competitive 

races (to the bottom, top, or elsewhere). 

                                                 
2 For fuller, closer match to prior traditions, add cooperation and externality to competition, merge learning and 
emulation, and add relocation diffusion—direct movement of some parts of units i into other units j, such as by 
human migration or disease contagion (Haegerstrand 1970). 
3 Manski (2000) shows such externalities could arise in formal microeconomic models from interactions, 
expectations, or preferences. Akerlof (1997), Glaeser et al. (2000, 2003), Brock & Durlauf (2001), e.g., provide 
further examples and reviews. Non-strategic interdependence could arise even without such externalities.  
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Formally, following Brueckner (2003), consider two states (i,j), each with welfare (or 

indirect utility, V) that, due to externalities, depends on domestic and foreign policy (pi,pj): 

 ( , ) ; ( , )i i j j
i j j i

V V p p V V p p≡ ≡  (1). 

As i chooses pi to maximize its welfare, this affects j’s optimal policy-choice, and vice versa. 

We can express such strategic interdependence between i and j as best-response functions, 

giving i’s optimal policy, pi
*, as a function of j’s policy: 

 
i j

* *
p p

=Argmax ( , ) ( ) ; =Argmax ( , ) ( )i j
i i j j j j i i

p V p p R p p V p p R p≡ ≡  (2). 

The signs of the response-function slopes determine whether competitive-race or free-rider 

dynamics occur; they depend on these ratios of second cross-partials: 

 
**

/ ; /
i j i i j i j j

ji i j ji
p p p p p p p p

j i

pp
V V V V

p p

∂∂
= − = −

∂ ∂
 (3). 

If governments are maximizing, the denominators are negative, so, if , 0
i j

i j
p p

V > , policies are 

strategic complements: reaction-functions slope upward. If , 0
i j

i j
p p

V < , reaction functions slope 

downward: policies are strategic substitutes. If , 0
i j

i j
p p

V = , best-response functions are flat: 

strategic interdependence does not materialize. Interestingly, negative externalities induce 

strategic-complement policy-interdependence (i.e., positive feedback), and positive externalities 

induce strategic-substitute (i.e., negative) interdependence. 

In our empirical application: active-labor-market (ALM) policies, assuming effectiveness, 

have positive employment externalities and diminishing returns, so free-rider dynamics should 

arise. Such strategic contexts also create first-mover disadvantages—those spending earlier 

bear larger portions of the costs of reducing unemployment—and so potential for war-of-

attrition dynamics that would delay action and push equilibrium ALM spending of i and j 

lower still. Do cross-border positive employment externalities of ALM policies exist; and, if so, 

are they sufficiently strong to induce fiscal free-riding in ALM policy? Labor-market outcomes 

and policies exhibit obvious spatiotemporal patterns within and across the developed 

democracies, and among European Union member-states especially. We have shown elsewhere 

(Franzese & Hays 2006c) that EU member-states’ ALM policies exhibit significant 

interdependence along borders, a pattern possibly indicative of appreciable cross-border 

spillovers in labor-market outcomes inducing strategic interdependence among these political 

economies in labor-market policies.4 However, these countries also faced common or very 

similar exogenous-external conditions and internal trends, which would likewise tend to 

generate spatial patterns in the domestic policy-responses, even without interdependence. 

Moreover, EU membership itself likely entails both some common external stimuli and some 

                                                 
4 In Europe at least, these apparently strong labor-market externalities along borders seem empirically to owe 
much more to firm-location decisions than to any actual labor mobility (see, e.g., Overman & Puga 2002). 
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strategic interdependencies relevant to labor-market policy. Finally, labor-market policies 

themselves may shape the patterns of economic exchange by which some of the policy 

interdependencies arise. I.e., the policies of interest may also shape the patterns of 

connectivity by which foreign labor-market policies affect domestic ones, a complex sort of 

endogeneity known as selection in the dynamic-networks literature. 

In summary, spatial interdependence is theoretically and substantively ubiquitous and 

central across the social sciences, and ALM policy is likely no exception. The empirical 

clustering or correlation of outcomes on some dimension(s), spatial association, is also obvious 

in most contexts, including ALM policy. However, outcomes may exhibit spatial association 

for three distinct reasons. First, units may respond similarly to similar exposure to similar 

exogenous internal/domestic or external/foreign stimuli (common exposure); second, units’ 

responses may depend on others’ responses (contagion). We may find states’ adoptions of some 

ALM policy-stance, for example, to cluster geographically or along other dimensions of 

proximity, e.g., bilateral trade-volume, because states that are proximate on that dimension 

experience similar exogenous domestic or foreign political-economic stimuli or because each 

state’s ALM-policy decisions depend on what ALM policies other states proximate in this way 

implement. A third possibility arises when the putative outcome affects the variable along 

which clustering occurs (selection). States ALM policies might also cluster according to some 

variable on which we observe their proximity (bilateral trade volume) because their ALM 

policies affect that variable (here: spur trade between them).5 

We discussed elsewhere (Franzese & Hays 2003, 2004ab, 2006abc, 2007abcd, 2008abc) the 

severe empirical-methodological challenges in estimating interdependence and contagion 

distinctly and well (a.k.a, Galton’s Problem6). Section II of this paper briefly reviews that 

work on specification, estimation, testing, and interpretation of spatial and spatiotemporal 

autoregressive (SAR and STAR) models, which reflect interdependence directly and which are 

therefore capable of distinguishing common exposure from contagion as alternative substantive 

sources of observed spatial association. There we showed that the relative and absolute 

accuracy and power with which the empirical-model specification reflects the patterns of 

interdependence on the hand and the exogenous internal and external stimuli on the other are 

of first-order importance in drawing such distinctions. This leads naturally to the extension 

offered (along with an introduction and discussion of network-analytic models of coevolution) 

in Section III, where we propose applying the multiparametric spatiotemporal autoregressive 

(m-STAR) model as a simple means of estimating the pattern of connectivity jointly with the 

                                                 
5 To give another example (from Masket 2008): representatives who sit together may vote together because they 
sit by party and so have similar constituencies, or because they talk and influence each other, or they may sit 
together because they know and like each other which may be for the same reasons they vote similarly. 
6 The web appendix contains, inter alia, brief intellectual-historical background to the label. 
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strength of contagion by that pattern, including the case where connectivity is endogenous to 

the dependent variable (i.e., selection; e.g., homophily). We again emphasize substantively-

theoretically guided (i.e., structural) specifications that can support analyses of estimated 

spatiotemporal responses to stochastic or covariate shocks and that can distinguish the 

possible sources of spatial association, now three: common exposure, contagion, and selection. 

As before, these processes will typically look much alike empirically, so the relative omission or 

inadequacy in the empirical model and estimates of any one part will bias inferences in favor 

of others similar to it. Accordingly, valid inferences regarding any generally require empirical 

modeling that specifies and estimates all three processes well. Section IV offers some analytic 

results comparing the asymptotic properties, and simulation evidence comparing the small-

sample performance, of full-information spatial maximum-likelihood (S-ML) estimates of m-

STAR models in these contexts to those of a naïve estimator applying least-squares to a linear 

regression including multiple spatial-lags and to those of a blind estimator that applies least-

squares omitting spatial lags. Section V illustrates this approach to dynamic, endogenous 

interdependence with an empirical application attempting to disentangle the roles of economic 

interdependence, correlated external and internal stimuli, EU co-membership, and geographic 

proximity in shaping labor-market policies in recent years, emphasizing interpretation and 

presentation of the estimated coevolutionary spatiotemporal dynamics. 

II. SPATIAL & SPATIOTEMPORAL MODELS OF INTERDEPENDENCE: Specification, Estimation, 
Interpretation, Presentation 

To reflect interdependence across units of outcomes directly, empirical models should 

specify outcomes in units i and j as affecting each other. We suggested elsewhere (2004a, 

2006a, 2007bc, 2008ab) the following such generic model of modern, open-economy, context-

conditional political-economy, for example: 

 ( ), 1it ij jt i t d it s t sd it t it
j i

y w y yρ φ ε−
≠

′ ′ ′= + + + + +∑ d s d sβ β β  (4).7 

yjt is the outcome in another (j≠i) unit, which in some manner (given by ρwij) directly affects 

the outcome in unit i. The wij reflect the relative connectivity from j to i, and ρ reflects the 

overall strength of dependence of the outcome in i on the outcomes in the other (j≠i) units, as 

weighted by wij. Substantively for ALM-policy interdependence, e.g., the wij, could gauge the 

sizes, trade, geographic contiguity, or EU comembership of i’s and j’s political economies. The 

other right-hand-side factors reflect the non-interdependence components: unit-level/domestic 

factors, dit (e.g., election-year indicators, government partisanship), exogenous-external or 

-contextual factors, sit (e.g., technology, oil prices; merely for contrast, assume these common 

                                                 
7 The  here indicates element-by-element multiplication (i.e., Hadamard product). The model is merely 
heuristic, intended to encompass common classes of argument in C&IPE. 
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across units: st), and context-conditional factors, 
it t

d s  (i.e., the interactions of the former 

with the latter). The εit are i.i.d. stochastic terms.8 

Distinguishing spatial (or network) interdependence from non-dependence sources of spatial 

association is the essence of Galton’s Problem. A third potential source of spatial correlation, 

to be introduced later, is that the relative connectivity from j to i, that is, the wij, may depend 

on the outcome(s) in i (and/or j). As we summarize below (from Franzese & Hays 2003, 

2004ab, 2006b, 2007abcd, 2008abc), obtaining good (unbiased, consistent, and efficient) 

parameter and certainty estimates in such models is not straightforward.9 The first and prime 

consideration in weighing these alternatives and estimating the role of the corresponding 

aspects of (4) are the theoretical and empirical precision and explanatory power, relatively and 

absolutely, of the spatial and non-interdependence parts of the model. To elaborate: the 

relative and absolute accuracy and power with which the spatial weights, wij, reflect and offer 

leverage upon the interdependence mechanisms actually operating and with which the 

exogenous domestic, external, and/or context-conditional parts reflect and gain leverage upon 

the alternatives are crucial to the attempt to distinguish and evaluate their strength 

empirically. The two mechanisms produce similar effects, so, intuitively, inadequacies or 

omissions in specifying the one tend to induce underestimates of that one’s role and 

overestimates of the other’s role. 

Secondarily,10 even with the interdependence and the alternative common-shock 

mechanisms modeled perfectly, the spatial-lag regressor(s) will be endogenous (i.e., covary 

with ε), so estimates of ρ will suffer simultaneity biases. Furthermore, as with the primary 

concern of relative omitted-variable or misspecification bias, these simultaneity biases in 

estimated strength of interdependence (typically overestimation) generally induce biases in the 

opposite direction (typically underestimation) regarding the role of common shocks. Therefore, 

researchers who emphasize unit-level/domestic, exogenous-external, or context-conditional 

processes to the exclusion or relative neglect of interdependence will tend to get empirical 

results biased toward the former and against the latter sorts of explanations. Conversely, 

researchers stressing interdependence to the relative neglect of domestic/unit or exogenous-

contextual considerations or who fail to account sufficiently the endogeneity of spatial lags will 

tend to suffer the opposite biases: underestimating the role of exogenous domestic, external, or 

                                                 
8 One could also allow further spatial error-correlation and address it by FGLS or PCSE, or in the likelihood, but 
optimal will be to model interdependence and correlation in the first moment insofar as possible. 
9 Some might suggest starting with nonspatial models and adding spatial aspects as data demand, but tests that 
can distinguish interdependence from other potential sources of residual spatial-correlation in non-spatial models 
are weak (Anselin 2006; Franzese & Hays 2008b; Hendry 2006; but cf. Florax et al. 2003, 2006). 
10 Simulations (Franzese & Hays 2004a, 2006b, 2007cd) show the omitted-variable/misspecification biases of 
omission/relative-neglect of interdependence typically far exceed the simultaneity biases of failing to redress 
adequately the spatial-lag endogeneity, although the latter grow appreciable as interdependence strengthens. 
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context-conditional factors and overestimating that of interdependence. 

Most empirical studies in comparative and international political economy (C&IPE) where 

interdependence may arise, especially those in the policy diffusion, globalization, tax-

competition, and policy-autonomy literatures, analyze time-series cross-sections (TSCS). In 

such contexts, employing spatial and temporal lags to specify both temporal and spatial 

dependence directly in a spatiotemporal autoregressive (STAR) model is often desirable:11 

 β ερ φ= + + +y Wy My X  (5). 

The dependent variable, y, is an NT%1 vector of cross sections stacked by periods (i.e., the N 

first-period observations, the next N, up through N in period T).12 ρ is the previously described 

spatial-autoregressive coefficient, and WNT is an NT%NT block-diagonal spatial-weighting 

matrix.13 Each of the T N%N weights matrices, t
NW , on the block-diagonal have elements wij(t) 

reflecting the relative connectivity from unit j to i that period.14 Thus, for each observation, yit, 

the spatial lag, Wy, gives a weighted sum of the yjt, with weights wij(t) being direct and 

straightforward reflection of the dependence of each unit i’s outcome on others’. M is an 

NT%NT matrix with ones on the minor diagonal, i.e., at coordinates (N+1,1), (N+2,2), …, 

(NT,NT-1), and zeros elsewhere. My is thus a standard (first-order) temporal-lag;15  is its 

coefficient. X contains NT observations on k independent variables; β is its k%1 vector of 

coefficients, and  is an NT%1 vector of i.i.d. stochastic components.16 

Franzese & Hays (2004a, 2006b, 2007cd, 2008b) explored analytically and by simulation 

the properties of four estimators for such models: non-spatial least-squares (i.e., regression 

omitting the spatial component as is common in most extant research: OLS), spatial OLS (i.e., 

OLS estimation of models like (5), which is common in diffusion studies and becoming so in 

globalization/tax-competition ones: S-OLS), instrumental variables (e.g., spatial 2SLS or S-

2SLS), and spatial maximum-likelihood (S-ML). Both OLS and S-OLS produce biased and 

inconsistent estimates, OLS due to the omitted-variable bias and S-OLS because the spatial 

lag is endogenous and so induces simultaneity bias. We can view these biases as reflecting the 

terms of Galton’s Problem. On one hand, by omitting the spatial lag that would reflect the 

                                                 
11 Anselin (2002, 2006) distinguishes spatial statistics and spatial econometrics in methodological approach as the 
former being more data-driven and tending toward treating spatial correlation as nuisance and the latter wedded 
more to theoretically structured models of interdependence. The web appendix offers fuller discussion of this 
subtle but key distinction. In these terms, our approach is a decidedly spatial-econometric one. 
12 Nonrectangular or missing data are manageable, but rectangularity is assumed here for expository ease. 
13 WNT is block-diagonal assuming no cross-temporal spatial interdependence. Non-zero off-diagonal blocks are 
possible and manageable, but perhaps unlikely controlling for time lags and contemporaneous spatial-lags. 
14 If the pattern of connectivity is time-invariant, then WNT can be expressed as the Kronecker product of a T%T 
identity matrix and the constant N%N weights-matrix, IT1WN. 
15 Higher-order time-dynamics would simply add further properly configured weights matrices. 
16 Again, alternative distributions of  are possible but add complication without illumination. 
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interdependence, OLS coefficient-estimates will suffer omitted-variable biases—familiarly: Fβ, 

where F is the matrix of coefficients obtained by regressing the omitted on the included 

variables and β is the vector of (true) coefficients on the omitted variables.17 In this case, the 

omitted-variable bias (OVB) is: 

 ( ) 1

OLS OLS 1 1 1 1
ˆ ˆOVB ,  where φ ρ

−′ ′⎡ ⎤ ⎡ ⎤′ ′= × ≡⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Q Q Q Wy Q X Myβ  (6). 

OLS
ˆ 0ρ ≡ , of course, which is biased by –ρ. Thus, insofar as the spatial lag covaries with the 

non-spatial regressors—which is (i) highly likely if domestic conditions correlate spatially, (ii) 

certain for exactly common exogenous-external shocks, and (iii), given non-zero spatial 

correlation from any source, certain for the time lag also—OLS will overestimate domestic, 

exogenous-external, or context-conditional effects, including the temporal adjustment-rate, 

while ignoring interdependence. On the other hand, including spatial lags in models for OLS 

estimation raises inherent endogeneity biases. Spatial lag, Wy, covaries with the residual, , 

making S-OLS estimates inconsistent, because it is a weighted average of outcomes in other 

units and so places some observations’ left-hand sides on the right-hand sides of others: 

textbook simultaneity. In simplest terms by example: Germany causes France, but France also 

causes Germany. These asymptotic simultaneity biases (SB) are: 

 ( ) 1ˆ ˆˆSB , where ρ φ
−′⎡ ⎤ ⎡ ⎤′ ′= ≡⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Q Q Q Q Wy My Xβ ε  (7). 

In the case where X contains just one exogenous explanator, x, these biases are: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ε
ε
ε

Cov , Var Varˆ
1ˆSB Cov , Cov , Var , where plim

ˆ Cov , Cov , Var
n

ρ

φ

β

⎡ ⎤⎡ ⎤ × ×⎢ ⎥⎢ ⎥ ⎛ ⎞′⎢ ⎥⎢ ⎥ ⎟⎜ ⎟= − × × = ⎜⎢ ⎥⎢ ⎥ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎢ ⎥
− × ×⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Wy My x
Q Q

Wy Wy My x

Wy Wy x My

Ψ
Ψ

 (8). 

With positive interdependence and positive covariance of the spatial-lag with the exogenous 

regressors, a likely common case, one overestimates the interdependence-strength, ρ̂ , and 

correspondingly underestimates temporal dependence, φ̂ , and exogenous effects, β̂ . 

In sum, Galton’s Problem implies that empirical analyses that ignore substantively 

appreciable interdependence will also thereby tend to overestimate the importance of non-

spatial factors, with the effect of factors that correlate spatially the most, in pattern most 

similar to W, being most overestimated. On the other hand, simple controls for spatial-lag 

processes (or studying them qualitatively) will suffer simultaneity biases, usually in the 

opposite direction, exaggerating interdependence and understating unit-level/domestic, 

exogeneous-external, and context-conditional effects. Again, those factors that correlate most 

with the interdependence pattern will have the most severe induced deflation biases. These 

                                                 
17 Estimates of limited- or qualitative-dependent-variable models, like logit or probit, which exclude relevant 
spatial lags will suffer analogous omitted-variable biases. 
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conclusions hold as a matter of degree as well; insofar as the non-spatial components of the 

model are inadequately specified and measured relative to interdependence aspects, the latter 

will be privileged and the former disadvantaged, and vice versa. Accurate and powerful 

specification of W is therefore of crucial empirical, theoretical, and substantive importance, 

obviously for those interested in interdependence, but also for those primarily interested in 

domestic/unit-level, exogenous-external/contextual, or context-conditional factors. Conversely, 

optimal specification of the unit-level/domestic, contextual/exogenous-external, and context-

conditional non-spatial components is of equally crucial importance, not only to scholars 

working at those levels, but also to those interested in gauging the role of interdependence. 

Our simulations (Franzese & Hays 2004a, 2006b, 2007cd) showed the omitted-variable 

biases of OLS are usually worse and often far, far worse than S-OLS’ simultaneity biases. In 

fact, S-OLS may perform adequately for mild interdependence strengths ( .25
j ij
wρΣ ), 

although standard-error accuracy can be problematic, and in a manner for which PCSE (Beck 

& Katz 1995, 1996) will not compensate. However, S-OLS’ simultaneity biases do grow sizable 

as interdependence strengthens, rendering use of a consistent estimator, such as S-2SLS or S-

ML, highly advisable. Choosing which consistent estimator seems of secondary importance in 

bias, efficiency, and standard-error-accuracy terms. Since S-ML proved close to weakly 

dominant,18 we introduce only it here. 19,20 

The conditional likelihood function for the spatiotemporal-lag model,21 which assumes the 

first observations non-stochastic, is a straightforward extension of the standard spatial-lag 

likelihood function, which in turn adds only one mathematically and conceptually small 

complication to the likelihood function for the standard linear-normal model (OLS). To see 

this, start by rewriting the spatial-lag model with the stochastic component on the left: 

                                                 
18 See Franzese & Hays (2007b, 2008b) regarding S-ML estimation; they correct some misleading conclusions from 
our earlier work on S-ML, stemming from a coding error. (An error in LeSage’s original MatLab code called the 
wrong element of the estimated variance-covariance matrix as standard errors of the spatial-lag coefficient.) The 
instrumental-variables (IV), two-stage-least-squares (2SLS), generalized-method-of-moments (GMM) family of 
estimators relies on the spatial structure of the data to instrument for the endogenous spatial lag. Assuming no 
cross-spatial endogeneity (our term for y’s in some units causing x’s in others), WX are ideal instruments by 
construction. Cross-spatial endogeneity may seem unlikely, until one realizes that vertical ties yi to yj 
(interdependence) and horizontal ties from yj to xj (typical simultaneity) combine to give the offending diagonals 
from yi to xj. Nonetheless, S-GMM should improve upon S-2SLS primary weakness in efficiency, so it may 
compare more favorably to S-ML. Estimation by instrumentation may also prove more robust in some ways—
e.g., to non-normal distributional issues—than S-ML. We have not yet explored these possibilities. 
19 Initially, we used J.P. LeSage’s MatLabTM code to estimate our spatial models, having found early third-party 
contributed StataTM code for spatial analysis untrustworthy and/or extremely computer-time intensive. We have 
since written MatLabTM code to implement all, and StataTM code to implement many, of our suggestions. For 
code, plus ExcelTM spreadsheets useful as templates for interpretation and presentation: 
https://netfiles.uiuc.edu/jchays/www/page.html and http://www.umich.edu/~franzese/Publications.html. 
20 Franzese & Hays (2008d), Hays & Kachi (2008), and Hays (2009) introduce for political science empirical 
models of spatial interdependence in limited and qualitative dependent-variables. 
21 Derivation of likelihoods for the spatiotemporal-lag models is due to Elhorst (2001, 2003, 2005). 
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 ( )ρ ρ= + + ⇒ = − − ≡ −y Wy X I W y X Ay Xβ ε ε β β  (9), 

where X now includes My, the time-lag of y, as its first column, and β includes  as its first 

row.22 Assuming i.i.d. normality, the likelihood function for ε is the typical linear-normal: 

 
2

2 2

1
( ) exp

2 2

NT

L
σ π σ

⎛ ⎞ ⎛ ⎞′⎟ ⎟⎜ ⎜⎟ ⎟= −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

ε εε  (10), 

which will produce a likelihood in terms of y as follows: 

 ( ) ( )
2

2 2

1 1
( ) | | exp

2 2

NT

L
σ π σ

⎛ ⎞ ⎛ ⎞′⎟ ⎟⎜ ⎜⎟ ⎟= − − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
y A Ay X Ay Xβ β  (11). 

This resembles the typical linear-normal likelihood, except the transformation from ε to y is 

not by the usual factor, 1, but by |A|=|I-ρW|.23 Written in (N%1) vector notation, the 

spatiotemporal-model conditional-likelihood is mostly conveniently separable into parts: 

 
( ) ( ) ( )

( )
1 2 1

2

, ,..., 2
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1 1
Log 1 log 2 1 log
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f N T Tπσ
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φ ρ
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=

′= − − + − −

= − − −

∑y y y y
A

I I y W y X

ε ε

ε β
 (12). 

The unconditional (exact) likelihood function, which retains the first time-period observations 

as non-predetermined, is more complex (Elhorst 2005): 
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 (13). 

With large T, the contribution of the first observation the total likelihood—namely, the last 

three terms— is relatively little, so the simpler conditional likelihood can serve adequately. 

One easy way to ease or even erase S-OLS’s simultaneity problem is to lag temporally the 

spatial lag (as, e.g., Beck et al. 2006 suggest). Insofar as time-lagging the spatial lag renders it 

pre-determined—i.e., to the extent interdependence does not incur instantaneously, where 

instantaneous means within an observation period, as measured, given the model—S-OLS’ bias 

disappears asymptotically. Formally, the STAR model with time-lagged spatial-lag is: 

 
1 1t t t t t

η φ− −= + + +y Wy y X β ε  (14). 

Elhorst (2001:126-30) derives the unconditional log-likelihood for this model as: 

 ( )2
1

1

2

2 21 1 1
,..., 2 22 2 1

1 11
1 12

Log log(2 ) log 1 ( )

( ) ( ) ( )
t

T N

t t it i
f NT

σ

σ

πσ φ ηω
−

= =
− −

′= − × − Σ + Σ − +

′ ′′− − − −
y y

I B I BB I B

ε ε

ε ε
 (15), 

where 
1 1 1 1

( )
N

φ η= − + −y W y Xε β , 
1 1t t N t t t

η φ− −= − − −y W y y Xε β , and 
N N

φ η= +B I W . 

                                                 
22 N.b., although Wy complicates the conditional likelihood in terms of y (see note 23), My does not. 
23 This difference follows from the change-in-variables theorem of basic statistics. This complicates estimation 
somewhat in that |A| involves ρ, so that NT×NT determinant requires recalculation at each iteration of the 
likelihood-maximization routine.  
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Note that the last two terms in (15) bias OLS estimation of (14). Asymptotically (T→∞), the 

contribution of these terms to the likelihood and so this bias goes to zero. In summary, if T is 

large, if spatial-interdependence processes operate only with a time lag and not within an 

observational period, if observational periodization matches that of the actual spatiotemporal 

dynamics, and if spatiotemporal dynamics are modeled well enough for these conditions not to 

become violated through measurement error or misspecification leaving some time-lagged 

interdependence to bleed into the contemporaneous, OLS with a time-lagged spatial-lag on the 

RHS is an effective estimation strategy. However, even in this best case, OLS with time-lagged 

spatial-lags only yields consistent estimates if first observations is non-stochastic (i.e., with 

initial conditions fixed across repeated samples). 

Testing for remaining temporal and spatial correlation in OLS residuals is possible and, 

especially advisable if applying OLS to the time-lagged spatiotemporal-lag model. Standard 

Lagrange-multiplier (LM) tests for remaining temporal correlation remain valid. Following 

Anselin (1996), Franzese & Hays (2008b) describe several LM tests of spatial correlation that 

retain validity when applied to OLS estimated residuals from models containing spatial and 

temporal lags.24 E.g., a standard one-directional test against spatial-lag alternative is: 

 ( )2 1
2 2 2

1

ˆˆ ˆ ˆ/ , where 
ˆ ˆ( ) ( )( ) and tr[( ) ]

LM G R

G R
ρ ε ε εσ σ σ

−

−

⎡ ⎤′= +⎢ ⎥⎣ ⎦
′ ′ ′ ′= − = +

Wy

WX I X(X X) X WX W W W

ε
β β

 (16), 

and Anselin’s (1996) robust one-directional test against spatial-lag alternative is  

 ( )2* 1 2 2 2ˆ ˆ ˆˆ ˆ ˆ/ /LM Gρ ε ε εσ σ σ− ′ ′= −Wy Wε ε ε  (17). 

Lastly, regarding stationarity, the conditions and issues arising in spatiotemporally 

dynamic models are reminiscent of those in the more familiar solely time-dynamic models. Let 

ω be an eigenvalue of W; then the spatiotemporal process is covariance stationary if:  

 ( ) 1 max

min

1 ,  if 0
1,   or, equivalently, if   

1 ,  if 0

φ ρω ρ
φ ρ

φ ρω ρ
−

⎧⎪ < − ≥⎪⎪− < ⎨⎪ < − <⎪⎪⎩
I W  (18). 

For instance, with positive temporal and spatial dependence and W row-standardized, the 

ωmax=1, so stationarity familiarly requires φ+ρ<1. 

Interpretation of effects in empirical models with spatiotemporal interdependence, as in 

any model beyond the strictly linear additive-separable, involves more than simply eyeing 

coefficient estimates. With spatiotemporal, as with solely temporal, dynamics, coefficients on 

regressors give only the pre-dynamic impetuses to the outcome associated with changes of 

those regressors. I.e., coefficients represent only the (often inherently unobservable) pre-

interdependence impetus to outcomes from each regressor. Calculation of spatiotemporal 

multipliers allows expression of the estimated dependent-variable responses across all units to 

                                                 
24 Be sure to note the corrections posted here: http://www.umich.edu/~franzese/Publications.html. 
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shocks to covariates or to the error terms in any unit(s), accounting the spatiotemporal 

dynamics. These multipliers also afford estimation of the long-run, steady-state, or 

equilibrium25 effect of permanent shocks.26 We apply the delta method to derive analytically 

the approximate estimated asymptotic variance-covariance (standard errors) for these 

response-path or long-run-effect estimates; standard errors can also be simulated of course. 

One calculates the cumulative, steady-state spatiotemporal effects most conveniently 

working with the STAR model in (N%1) vector form: 

 
1t t t t t

ρ φ −= + + +y Wy y X β ε  (19). 

Set yt-1 equal to yt fix exogenous RHS terms, X and/or , to their hypothetical permanent 

post-shock levels, and solve for the long-run steady-state level of y (assuming stationarity):27 
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y Wy y X W I y X I W I X

X S X

β ε β ε β ε

β ε β ε
 (20). 

Decomposing t=δ+υt with δ fixed and υt stochastic is conceptually useful in considering 

the responses across units to counterfactual shocks to outcomes in others. To offer standard 

errors for these estimates by the delta method,28 first denote the ith column of S as si and its 

estimate as 
î

s . The steady-state spatiotemporal equilibrium responses to a one-unit increase in 

the ith element of δ are then si, with asymptotic approximate variance-covariance matrix:  

 ( ) ( )ˆ ˆˆˆ
ˆ ˆ
i i

i

′⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s
V s V θ

θ θ
 (21). 

Here, ˆ ˆρ̂ φ ′⎡ ⎤≡ ⎢ ⎥⎣ ⎦θ , ˆ ˆ ˆ
ˆ ˆˆ
i i i

ρ φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎢ ⎥ ⎢ ⎥≡⎢ ⎥ ⎢ ⎥∂∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s s

θ
, and the vectors ˆ

ˆ
i

ρ

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

s  and ˆ
ˆ
i

φ

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

s  are the ith columns of ˆ ˆSWS  

and of ˆˆSS . Similarly, the steady-state spatiotemporal responses to a one-unit increase in 

explanatory variable k in unit i are siβk, with delta-method standard-errors of 

 ( ) ( )
ˆ ˆˆ ˆˆ ˆˆ
ˆ ˆ
i k i k

i k

β β
β

′⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s
V s V θ

θ θ
 (22), 

                                                 
25 We use the terms long-run, steady-state, and equilibrium effects loosely, and interchangeably, to refer to the 
estimated asymptotic level of outcomes y following a hypothetical permanent shock. 
26 Anselin (2003) and Franzese & Hays (2006b,2007cd, 2008bcd) discuss these multipliers more fully. 
27 In the case of time-variant WN, one must also fix the {wij(t)} to some desired set or sequence of sets of values. 
28 We have used only first-order approximations. Higher orders would presumably yield greater accuracy; 
simulation (e.g., parametric bootstrapping) may also be advantageous. 
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with ˆ ˆ ˆˆ
k

ρ φ β ′⎡ ⎤≡ ⎢ ⎥⎣ ⎦θ  and 
ˆ ˆ ˆˆ ˆ ˆ

ˆ
ˆ ˆˆ
i k i k i k

i

β β β
ρ φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎢ ⎥ ⎢ ⎥≡⎢ ⎥ ⎢ ⎥∂∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

s s s
s

θ
, and with 

ˆˆ

ˆ
i k
β
ρ

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

s  and 
ˆˆ
ˆ

i k
β

φ

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

s  the ith columns 

of ˆ ˆ ˆ
k

β SWS  and ˆ ˆˆ
k

β SS , respectively. 

One can find the spatiotemporal response path of the N%1 vector of unit outcomes, yt, to 

exogenous right-hand-side terms, X and , by rearranging (19) to isolate yt on the left: 

 { } { }1

1 1t N N t t t t t t
ρ φ φ

−

− −
⎡ ⎤= − + + = + +⎢ ⎥⎣ ⎦y I W y X S y Xβ ε β ε  (23). 

This formula gives response-paths of all units to hypothetical shocks to X or  in any unit(s) 

{j}, including shocks in {i} itself/themselves, by setting (Xtβ+ t) to the value(s) reflecting that 

hypothetical in row(s) {j}. For the marginal spatiotemporal effects (non-cumulative) or to plot 

the over-time path of responses to a permanent change in some x (cumulative), and their 

standard errors, working with the NT%NT matrix is easier. Redefine S in (20) as 

Sh[INT-ρW-φM]-1 and follow the steps just given. We calculate estimated responses like these in 

presenting our empirical application below. 

III. The Multiparametric Spatiotemporal (m-STAR) Model 

As noted above, model specifications that omit spatial lags assume zero interdependence by 

construction; as we have shown analytically and by simulation, these omitted-variable biases 

tend to inflate the estimated effects of non-interdependence model-components. For instance, 

most extant globalization studies, having neglected spatial lags, likely overestimated the 

effects of domestic and exogenous-external factors while effectively preventing globalization-

induced interdependence from manifesting empirically. Conversely, standard regression 

estimates of models with spatial lags suffer simultaneity biases. Such models have grown more 

common recently among researchers interested in interdependence and have long been the 

norm in studies of policy-diffusion and of microbehavioral contextual effects. Although our 

previous analyses have shown that inclusion of spatial lags in simple regression models is a 

vast improvement over non-spatial estimation strategies, these simultaneity biases will tend to 

have inflated estimated interdependence strength at the expense of exogenous domestic or 

unit-level, external, and context-conditional factors. The spatial-ML estimation just described 

effectively redresses these simultaneity issues. 

Above all, most crucial to proper estimation, distinction, and weighing of the strengths of 

interdependence and other possible sources of spatial or network association are the relative 

and absolute accuracy and power with which the patterns of interconnectivity and the non-

interdependence aspects of the model are specified. Accordingly, strategies to estimate W 

within models in which unobserved patterns of interconnections among units affect their 

choices/outcomes have long interested spatial econometricians greatly, although progress has 
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been modest. For network analysts, contrarily, estimation of the processes generating ties in 

the observed network, as opposed to the effects on this unit’s choices or outcomes of others’ 

actions as weighted by the network, is typically the dependent variable of the study. Network 

models usually take the characteristics of units, including their actions or behaviors, as given, 

exogenous explanators of what ties, typically exclusively binary ties, will form between actors. 

From the network-analytic perspective, spatial-econometric attempts to parameterize and, 

ultimately, to endogenize wij within models of interdependent unit outcomes mirror network-

analytic attempts to model the coevolution of behavior and network. 

Interdependence in typical C&IPE contexts may raise additional challenges, however, in 

that relative connectivity is often of degree rather than binary and, more dauntingly, that the 

effective connectivity may not be directly observed. Rather, quite commonly, one might 

observe only some covariates theorized to relate to the effective connection. In the context of 

interdependent ALM-policymaking, for instance, many of the theorized connections arise 

through inherently unobservable economic competition in labor, capital, or goods markets. We 

observe only trade or capital flows or other symptoms of or contributors to competition.29 In 

the network-analysis tradition, Leenders (1995, 1997) and Snijders and colleagues (1997, 2001, 

2005, 2007ab) have advanced furthest on this crucial next task in empirical modeling of 

networks-cum-interdependence. We briefly review their approaches next, but then suggest 

another possible inroad, a much simpler, yet perhaps productive, approach: adapting the m-

STAR model to the purpose. 

In Leenders’ model (1995, 1997), “actors…shape their networks and, simultaneously, are 

influenced by the structure of the network.” He terms contagion the effects of networks on 

actors’ attributes, understood broadly to mean characteristics, actions, beliefs, policies, etc. 

More exactly, these are the effects of others’ (alters’) attributes on one’s own (ego’s), where 

network structure determines which alters matter and how much. Leenders terms the reverse 

process, in which actors’ attributes shape the network, selection. In his selection model, the 

equivalent of wij arise by a continuous-time Markov process—to be observed at discrete-time 

intervals in a dataset—where an arc or edge (i.e., a binary tie) from j to i forms, wij=1, or 

dissolves, wij=0, at rates, λ0ij and λ1ij, given by some observable attribute(s) of i and/or j: 

 0 0 0 1 1 1   ;   ij ij ij ijd dλ λ ν λ λ ν= + = +  (24), 

with dij a measure of similarity of actors i and j. Leenders’ contagion is a spatial-lag model: 

 β ερ= + +y Wy X  (25), 

which could extend to the standard spatiotemporal model, (5), straightforwardly. Leenders 

                                                 
29 Both these distinctions may reflect simplifying assumptions typical of applied network analysis more than any 
underlying substance of social networks. Ties in friendship networks, e.g., are in truth more of degree than 
binary, and we often may not observe that even as directly as by survey response gauging said closeness. 
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(1997) integrates these contagion and selection models thus. First, let At be the N%N matrix of 

current realizations of (24), yt be the N%1 vector of attributes for the actors, and Xt the N%k 

matrix of exogenous explanators thereof. Leenders (1997:172) expresses Wt as the function 

Wt=W(At), which could be a very useful extension toward the parameterized modeling of 

unobserved and potentially continuous degrees of connection as a function of observed binary 

arcs (modeled by (24)), but as implemented the function is just the identity: Wt=At. The 

model is then identified for estimation of λ, ν, , and β from Wt and yt observed at discrete 

intervals t={1…T} by time lags and the assumptions that temporal implies causal precedence 

and that the first observation is fixed and given (raising all the issues noted above in those 

regards). The combined model is then:30 

 
1 , , , , 1 2 1

( , )   ;   | |    ;   
t t t ij t ij t i t j t t t t t t t

f w d y y y ρ ρ− −= ≡ = − = + + +W W y W y y X β ε  (26). 

He then generates W0, y0, {εt}, and {Xt} randomly, and assesses by simulation the biases 

entailed in estimating (26) from data collected at intervals of increasing length (measured in 

numbers of simulation periods) and in erroneously estimating only the selection process, (24), 

or only the contagion process that is the last expression of (26). The text leaves unclear the 

exact experiments and estimation procedures, so we can interpret his results only uncertainly. 

He seems to find, first, that increasing granularity in the periodicity of observation generally 

causes attenuation bias in estimates of the selection-model parameters and inflation bias in 

estimates of the contagion-model parameters; second, that estimated contagion is greatly 

inflated when selection is unmodeled but present; and third, that estimated selection is mildly 

inflated when contagion is present but unmodeled. 

Snijders’ and colleagues’31 approach is more elaborate. In Steglich et al. (2007), they 

emphasize as do we that the challenge for disentangling the sources of network association 

(a.k.a., spatial correlation) is threefold. One must distinguish influence or contagion (a.k.a., 

interdependence), from selection (e.g., homophily), from social contexts (i.e., exogenous 

internal and/or external conditions) because any omissions or inadequacies in modeling those 

distinct sources of network or spatial correlation will bias conclusions in favor of the included 

or better-modeled mechanisms. Then, they also stress three fundamental issues confronting 

such attempts: observations in discrete time-intervals of continuous-time processes, the need 

to control for alternative mechanisms and pathways by which observed networks and 

outcomes may have arisen, and the network dependence of the actors which precludes 

estimation by common statistical techniques, most of which assume independence. 

                                                 
30 Leenders (1997:173-4) actually converts (25) to a temporally dynamic model like (5) by what amounts to an 
error-correction model, with equilibrium y being another, constant parameter to be estimated, μ, interpreted as a 
societal norm for y. We have simplified to a first-order time-lag to enhance comparability in exposition. 
31 We follow Snijders et al. (1997) and Steglich et al. (2006, 2007) most specifically. 
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To surmount these issues in distinguishing these alternative mechanisms, they model the 

coevolution of networks and behavior thus. N actors are connected as given by an observed, 

binary, endogenous, and time-variant connectivity matrix, x, with elements xij(t)—in our 

notation, WN, with elements wij(t). The vector of N observed, binary behaviors, z, at time t 

has elements zi(t)—in our notation, y(t), with elements yi(t). Further exogenous explanators 

may exist at unit or dyadic level, vi(t) or wij(t)—in our notation, the components of X. Actors 

have opportunities to make changes in their network connections, switching on or off one tie 

or none, at fixed rate in continuous time, net
iλ , according to an exponential hazard-rate model. 

The model may further parameterize λ, but the illustrative implementation assumed the rate 

constant across all ij and t. Likewise, opportunities to switch the behavior on or off or do 

nothing occur at continuous-time rate beh
iλ .32 

When the opportunity to change network ties arrives for some i, s/he chooses to change 

the status of any one of his/her N-1 ties, turning it on or off, or leaving all ties unchanged. 

S/he makes this choice by comparing the values of some objective function of this form: 

 { }( , , ) ( , , ) ( , , , ) ( , , )net net net net net net
i i i h h ih

U f sε β ε′ ′ ′ ′= + = × +∑x x z x x z i x x z x x z  (27), 

where x' is an alternative network under consideration, which can differ from the existing 

network, x, only by changing at most one element of (only) row i.33 ( )net
hs ⋅  is some statistic, i.e., 

some function of the data, x, x', z, that reflects the substantively/theoretically derived 

objectives of the actors with regard to the network, x, and behaviors, z. The net
h

β  to be 

estimated are the relative weights of these objectives. Assuming the ( , , )net
i
ε ′x x z  extreme-value 

distributed, independently across options and actors (see note 33) and over time, produces the 

multinomial-logit model of categorical choice. Similarly, when an opportunity to change 

behavior arrives, actor i compares the value of her/his objective function under each of the 

three possible actions: increment or decrement by one or leave unchanged. Formally, i 

compares z to ′z  given x, and under analogous assumptions of i.i.d. extreme-value stochastic 

components, the multinomial logit again emerges.34 

As in Leenders’ approach, identification derives from debarring any literal simultaneity in 

outcomes or networks and assuming that temporal precedence implies causal precedence, and 

                                                 
32 Since observation occurs at discrete intervals, the degrees of freedom to vary these continuous-time rates render 
the assumption of exclusively single actors making single, unit-valued changes in their network connections or 
behavior essentially inconsequential. As greater frequency and/or magnitude of changes are observed, estimates of 
these occurrence rates at this unobserved instantaneous level simply rise to compensate. This does not, however, 
relax the strong assumption of conditional independence of these actors’ choices. 
33 The Steglich et al. (2007:21) exposition actually omits the stochastic component from the right-hand side of 
(27), and seems to carry this omission into the simulation-model implementation and the associated “method of 
moments” estimation. We suspect this is highly consequential because it suppresses the dependence across units 
or dyads of their multinomial choices (see note 35) regarding which if any xij to switch on or off. 
34 Given the binary behavior and the model set-up, we see only two possible choices: change the behavior’s on or 
off status or leave it unchanged. In this case, the multinomial logit seems to reduce to the simple logit. 
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in particular conditioning on the first observation.35 Given all this, estimation occurs by 

simulating the sequences of policies z and of networks x and searching over possible values of 

the model parameters, λ  and β , to minimize some distance function from the observed 

sequences of x and z to the simulated sequences.36 Snijders et al. (1997, 2007) label this as an 

application of ‘the method of moments” and an example of a ‘third-generation problem’ in 

applied statistics (citing Gouriéroux & Monfort 1996 on the latter); one could also think of it 

as a calibration exercise. Standard errors could derive from jackknife or bootstrapped 

resampling (Snijders & Borgatti 1999) if explicit likelihoods or sufficient-statistic moment-

equations are unavailable for standard analytic formulae.37 

For C&IPE, some features of extant network-coevolution approaches, for all the valuable 

advances they offer, are not ideal as currently implemented. First, relative connectivity 

between units and many behaviors or attributes of interest as dependent variables in C&IPE 

are less likely to be binary or ordinal as current coevolution models require.38 In the canonical 

globalization-and-tax-competition context, for instance, the outcomes of interest are tax rates, 

and many sources of interdependence will derive from the strength of economic competition. 

Second, in C&IPE contexts, strengths of relative connectivity are often unobserved, or even 

                                                 
35 Some identification problems persist with the current implementations, notwithstanding these strong 
assumptions. For one, assuming independent multinomial decisions for the endogenous behaviors and network 
ties and of opportunities for action effectively undoes some of the allowance for dependence in those choices, 
although it yields the great advantage of seeming to allow estimating standard multinomial logit (and 
exponential hazard-rate) models for those components of the system. Another issue is that included among the 
unit or dyadic explanators are various measures of network structure or units’ places therein. These are functions 
of the ties between actors (and possibly also their behaviors), i.e., of the outcomes of the multinomial choices of 
the actors regarding the connections. In latent-variable models like the multinomial logit, however, one cannot 
generally include the actual outcomes on the right-hand side, however lagged or transformed by some network-
structure measurement-function. Only the latent variable or the estimated probabilities can enter those functions. 
(The problem is that the actual outcomes indirectly enter the right-hand side to predict their own probabilities: 
see Heckman 1978.) Inclusion of network summary statistics on the right-hand side of these models rests on the 
p* and, more generally, ERGM approach to network models. These approaches exploit a property of the 
exponential-family distributions, which include logit and the exponential, that controlling sufficient statistics for 
the outcomes yields unbiased estimates of the remaining partial coefficients. Whether the array of possible 
arguments to the multinomial logits and exponentials in the Snijders et al. model are valid sufficient statistics in 
this sense seems not assured to us. The presence of a stochastic component exhibiting dependence across units, 
moreover and most importantly, would render the multinomial logits N-dimensional optimization exercises rather 
than the standard unidimensional. We, however, have no further progress on those problems to offer here yet, 
beyond some conjectures we make in the conclusion, nor do we know of any other scholarship that has made 
greater progress on these issues in this behavior and network coevolution context. (Spatial econometricians have 
made considerable progress on this multidimensional optimization issue of interdependent latent-variable models, 
but entirely outside the co-evolution context to our knowledge.) 
36 How exactly the observed frequency is mapped to the simulation “microsteps” is unclear from the exposition. 
37 The earlier of the works reviewed here indicated that explicit likelihoods or proofs of the moment-equations 
sufficiency were not known, but, at least as of SIENA 3.17a (8 April 2008), estimated variance-covariance of the 
estimated parameters derive from the appropriate analytic calculations for moments or likelihood estimation. 
38 This limitation seems not inherent. First, Snijders et al.’s SIENA seems to require only discrete, not necessarily 
ordinal, behaviors. The limit seems the sensibility of conceiving an option to increment, leave unchanged, or 
decrement behavior by one. If so, rounding or rescaling continuous behaviors to discrete should suffice, and 
unbounded behaviors would actually simplify by removing need to alter actors’ choice problem at the bounds. 
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unobservable, directly. Continuing the example, we can observe only some covariates, like 

geographic contiguity and proximity or trade and capital flows, theorized to relate to the 

unobserved strength of economic competition. Thus, we would have no data for the left-hand 

side of the selection models in extant network-coevolution approaches. We could estimate the 

network and its determinants only by estimating their impact on actors’ behavior given some 

spatial-econometric model of how the network matters for that behavior and how some 

observed covariates relate to network ties. Third, temporal precedence often will not suffice to 

assure causal precedence, as these models assume, for the many possible reasons reviewed 

above in the context of the time-lagged spatial-lag model. For one, interdependence often 

operates literally simultaneously in C&IPE. Most political-economy relations are strategic and, 

in strategic interactions, the effect of alters on ego is instantaneous or based in expectations. 

The interdependence of tax policies across units, for instance, arises from policymakers’ 

simultaneous strategic play of a game in which the optimal policies of each actor depend on 

the current or expected-future policies of others. For another, simultaneous means within an 

observational period, and many C&IPE contexts have high frequency behavior and/or 

network changes relative to much lower observation periodicity. Furthermore, time lagging 

will suffice to eliminate simultaneity only if and insofar as these and other conditions discussed 

above apply. Finally, conditioning on the first observation loses least information and suffers 

least small-sample bias with long T, which does not frequently obtain in C&IPE.39 

As Leenders (1997:165) underscores, most research on network/spatial dependence either 

studies the formation of networks (selection), taking actors’ attributes and behaviors as fixed 

and given, or the effects on behaviors of networks/interdependence (contagion), taking the 

pattern of connectivity as fixed and given. Spatial econometricians have worked primarily in 

the latter mode, whereas network analysts have worked mostly in the former, although both 

are eager to combine the two. Other differences in tendency appear to us. Spatial 

econometricians tend primarily to conceive network effects as the effects of alters’ actions on 

ego’s via their connections, whereas network analysts tend to stress the effects of network 

structure and ego’s position in it on actions,40 but this difference in core question—what 

explains networks vs. how interdependence affects outcomes—seems to us the most crucial. 

Among network analysts, Snijders and colleagues’ coevolution model represents the greatest 

advances, to our knowledge, toward this combining of contagion and selection. 

We approach coevolution from a spatial-econometric vantage. Starting with the spatio-

temporal-lag model, (5), we expand its specification to allow estimation of W, the matrix of 

relative connectivity, modeling the wij as a parameterized function of covariates observable at 

                                                 
39 These obviously are general concerns, not necessarily restricted to C&IPE. 
40 The distinction may be seen as implying regressors of the forms Wy in the former case and f(i,W) in the latter. 
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unit, dyadic, or exogenous-external level. This model of the wij corresponds to the model of 

selection from the network-analytic view. For example, the sociologists’ homophily (like seeks 

or mimics like), if it stems from fixed or exogenous characteristics of ego and alter, parallels 

from the spatial-econometric perspective a model of wij as a function of xi and xj. If we instead 

consider some function of the vector of behaviors of interest, y, among these explanators of W, 

this parallels a stronger form of selection, raising higher statistical hurdles, in which network 

ties and actors’ behaviors are jointly endogenous. Endogenous homophily would have wij some 

inverse-distance function of yi and yj, for example. Thus, the spatiotemporal-lag model with 

estimated, endogenous spatial-weights integrates contagion and selection in the spatial-

econometric analogue to the network co-evolution model. 

Consider m-STAR, a spatiotemporal-lag model with multiple spatial-weights matrices: 
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 ( )

1 2
1 2 , 1

1 2
1 2 , 1

, 1

...

...

R i
i ij j ij j R ij j i t k k i

j j j k
R i

ij ij R ij j i t k k i
j k

R i
R ij j i t k k i

j r k

y w y w y w y y x

w w w y y x

w y y x

ρ ρ ρ φ β ε

ρ ρ ρ φ β ε

ρ φ β ε

−

−

−

= + + + + + +

= + + + + + +

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜= + + +⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑
∑ ∑

∑ ∑ ∑

 (29). 

As the middle line of (29) perhaps best clarifies, the term in parentheses is a parameterized 

(linear-additive) model of weights on yj≠i in affecting yi. The r
ij

w  are the covariates offered to 

explain the pattern of interdependence, and r their coefficients to estimate. Thus, we can 

conceive the m-STAR model as a STAR model with the estimated W, i.e., the estimated 

network, being a weighted sum of observed explanators of connectivity, ˆ
r̂ rr

W Wρ= ∑ . If, 

furthermore, any Wr has functions of y as elements, then W and y are jointly endogenous, and 

(29) is a network-behavior coevolution model. 

Without considerable further complication, the sorts of models of W, i.e., of networks, 

expressible in this form are limited to those with continuous wij strengths of ties. If we 

expected truly binary connectivity, one would need to transform the term in parentheses to 

binary outcomes, say, by applying a log-odds transformation and a decision rule to convert 

those log-odds to (1,0). (This is not so great a limitation if one believes, as we tend to do, that 

connectivity is a degree, measured at best with error.) Other non linear-additive models of wij 

would also entail complications but seem manageable. Also, the costs in estimation complexity 

of enriching the model of connectivity by adding covariates is high, at least compared to 

adding unit, dyad, or exogenous-external covariate x in Xβ (but perhaps not compared to 
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extant network-coevolution models). The approach has some major advantages too though, 

notably among them that fully developed likelihoods for the m-STAR model exist, at least in 

the exogenous-Wr case, both for the simpler likelihood conditional on the first observation and 

for the unconditional one better-suited for instantaneous interdependence or small T. Thus, we 

can apply all the apparatus for estimation, all the analytically or simulation-derived intuitions 

about biases, efficiency, and sensitivity, and all the procedures for calculating, interpreting, 

and presenting spatiotemporally dynamic effects for the spatial-econometric models discussed 

above. On the converse side, we can interpret and present the estimated network, Ŵ , with all 

the standard network-analytic tools and representations. The next section illustrates both. 

The conditional likelihood for m-STAR extends that of (11) for STAR intuitively: 
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Written for (N%1) vectors y, the likelihood is conveniently separable as follows, highlighting 

the conditionality on the first observation (which is not apparent in (30)): 
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 (31). 

The unconditional (exact) likelihood extends the more complex (13) analogously. Luckily, T is 

large enough in our application, and in most C&IPE and many other contexts, that the more 

compact conditional likelihood is adequate. In either case, the estimated variance of ˆ
ij

W  is: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
ˆ1 2 1 2

ˆ ˆ ˆˆ Var( )  ...  ...i j i j i j i j i j i j i j
r r R R

r

ρ ′⎡ ⎤ ⎡ ⎤= ⇒ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑W W W W W W W W WρΩ  (32), 

where ˆ
ˆ

ρΩ  is from minus the inverse of the Hessian of the likelihood in the usual fashion. 

Coevolution models, i.e., models where (network) connectivity, W, is some function of 

(behavior) y, present larger challenges. Our simple stratagem for a first cut is to apply the 

poor man’s exogeneity: we lag temporally the y in this function explaining W and assume the 

conditions required for that identification-strategy to suffice hold adequately. As noted above, 

this does not address the problem of true or effective simultaneity, which seems likely at least 

in C&IPE contexts. Accordingly, we are also currently exploring a two-step estimation 

procedure. First, apply spatial-GMM to obtain consistent estimates of the endogenous wij and 

their estimated variance-covariance by instrumentation. Then, draw the Ŵ  to insert in the 

likelihood, the conditional (30) or the unconditional extension of (13), from this estimated 

multivariate distribution. Maximize these q likelihoods, each time with new draws from that 

first-stage S-GMM instrumentedŴ . The average of the q second-stage S-ML estimates provide 

point estimates of parameters, and the estimated variance-covariance of those parameter-
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estimates is the average of the estimated variance-covariance matrices from each iteration plus 

(1+q) times the sample variance-covariance in the point estimates across iterations (as, e.g., in 

King et al. 2001 multiple imputation). This estimator should inherent nice properties from S-

GMM and S-ML as far as we can intuit, although we have neither analytic nor simulation 

demonstration of properties yet.41 Assessment of the estimator and direct comparison to 

network-coevolution approaches would then be essential next steps. 

IV. Monte Carlo Simulation of S-ML vs. S-OLS vs. OLS Estimation of m-STAR Models 

Before illustrating the estimation, testing, and interpretation of our m-STAR model of 

network-behavior coevolution, we will demonstrate that, in fact, the S-ML estimators just 

described are needed and outperform simpler least-squares estimators. Analytically, the 

omitted-variable biases of the blind OLS estimator remain as before: Fβ. The simultaneity 

asymptotic biases (inconsistencies) of the naïve S-OLS estimator, which simply inserts the 

multiple spatial lags into least-squares regression, are also analogous to (8) as follows: 
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 (33). 

The intuitions remain as before: simultaneity biases generally increase in ρ, concentrating in 

the spatial lags that covary most with the residual, and inducing biases in generally opposite 

directions for other spatial-lag and covariates’ coefficient-estimates. 

To demonstrate that an estimator is inconsistent, however, does not demonstrate that 

these asymptotic biases are practically large or that they outweigh other potential deficiencies 

of consistent estimators. Accordingly, we conduct some simple Monte Carlo simulations to 

explore the small-sample performance of these estimators, specifically the magnitudes of their 

biases, inefficiency, and standard-error inaccuracy. With the analytical results in (33), Table 

1’s simulation results are easily interpreted. The covariance of the queen spatial-lag (all eight 

adjacent squares on a grid) and ε is about half that of the rook lag (only the four horizontally 

and vertically adjacent) and ε. With row-standardization, eight ties, and fixed ρ, the strength 

                                                 
41 Neither do we as-yet have adequately functioning proof of concept, in fact. 
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of the interdependence/endogeneity is more diluted in queen-lag W2y. Consequently, 
1̂
ρ  on 

rook-lag W1y is overestimated, and 
2̂
ρ  on queen-lag W2y and 

0
β̂  on x0 (which is especially 

correlated with W1y)42 are (badly) underestimated. The S-ML estimator also dominates 

impressively in efficiency and standard-error accuracy, especially for those three coefficients. 

Table 1. Estimator Comparison for m-STAR Model: S-OLS vs. S-ML 
ESTIMATOR RESULT β0=1 β1=1 ρ1=.3 ρ2=.3 

Average Estimate .38 / .24 .96 / .97 .47 / .47 .27 / .29 
Standard Deviation .33 / .24 .07 / .05 .19 / .15 .21 / .16 

Root Mean-Squared-Error .71 / .80 .08 / .06 .25 / .22 .21 / .16 
Average Std-Err Estimate .37 / .28 .06 / .05 .15 / .11 .17 / .13 

S-OLS 

Overconfidence .92 / .87 1.06 / 1.02 1.29 / 1.35 1.21 / 1.27 
Average Estimate 1.09 / 1.05 1.00 / 1.00 .31 / .31 .27 / .28 

Standard Deviation .33 / .24 .07 / .05 .12 / .09 .14 / .11 
Root Mean-Squared-Error .34 / .24 .07 / .05 .12 / .09 .14 / .11 
Average Std-Err Estimate .31 / .23 .06 / .05 .12 / .09 .14 / .11 

S-ML 

Overconfidence 1.05 / 1.05 1.03 / 1.00 .98 / 1.01 .98 / 1.01 
Monte Carlo (1000 Trials) Results for y=ρ1W1y+ ρ2W2y+Xβ+ε, with 

W1=rook adjacency, W2=queen adjacency (row normalized); β0=β1=1, ρ0=ρ1=.3; and N=225/450. 

 

Table 2. Estimator Comparison for m-STAR Coevolution Model: OLS v. S-OLS v. S-ML 
ESTIMATOR RESULT φ=.3 β=1 ρ=.3 γ=.3 

Average Estimate .36 1.04 — — 
Standard Deviation .07 .05 — — 

Root Mean-Squared-Error .09 .06 — — 
Average Std-Err Estimate .03 .05 — — 

OLS 

Overconfidence 2.07 .97 — — 
Average Estimate .28 .99 .41 .25 

Standard Deviation .03 .05 .06 .08 
Root Mean-Squared-Error .04 .05 .129 .10 
Average Std-Err Estimate .03 .04 .05 .08 

S-OLS 

Overconfidence 1.02 1.05 1.19 1.01 
Average Estimate .29 1.00 .31 .27 

Standard Deviation .03 .05 .05 .08 
Root Mean-Squared-Error .03 .05 .05 .09 
Average Std-Err Estimate .03 .04 .04 .07 

S-ML 

Overconfidence 1.02 1.04 1.11 1.10 
Monte Carlo (1000 Trials) Results for yt=ρWyt+γLyt-1+φyt-1+βxt+εt, with 

W=48 contiguous US-state adjacency pattern (row-stdzd); ρ=.3, γ=.3, φ=.3, β=1; and N=48, T=10. 

Table 2 similarly evaluates the blind OLS, naïve S-OLS, and S-ML estimators for our m-

STAR coevolution model. S-ML again outperforms the inconsistent OLS alternatives. Notice 

that, with x drawn independently, appreciable correlation of the regressors with the spatial 

lags concentrates in the time-lag; thus, omitted-variable biases of blind OLS are not severe for 

β and concentrate at a noticeable 20% in φ. Notice also that with endogenous Ly being time-

lagged as estimated and in truth, and L being |yi-yj| and so not terribly linearly related to yi, 

the simultaneity biases of S-OLS concentrate in ρ at a sizable +33%, whereas x being drawn 

                                                 
42 The simulations drew ε from N(1,1), making the nonzero aspect of Z'Wy concentrate in the constant, x0. 
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independently, little induced bias appears in β̂ . The efficiency (RMSE) and standard-error 

accuracy gains are more uniform and obvious. 

In sum, even in simulations rather favorably designed for the blind or naïve estimators, the 

S-ML estimator is clearly dominant for all estimates and estimate-properties. 

V. Empirical Illustration 

To illustrate application of the S-ML estimated m-STAR model of endogenous network-

behavior coevolution (with identification from temporal lagging assumed), we extend our 

previous ALM-policy analysis (Franzese & Hays 2006c). One extension is of the sample to 

include observations on both EU and non-EU countries.43 This allows distinction of co-

membership interdependence among EU member states from global interdependence.  

The OECD ALM-program dataset gives expenditures by five categories: labor-market 

training, public employment-services and administration, subsidized employment, youth 

measures, and disability measures. Figure 1 plots the temporal variation in OECD average 

spending by type. Subsidized employment and labor-market training are the two largest 

components over the entire sample period, accounting for 26.9% and 26.7% the total. 

Figure 1: Disaggregated Active Labor Market Expenditures in the OECD, 1980-2003 
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43 Annual 1980-2003 data for 21 OECD countries, 14 being EU members: Australia, Austria, Belgium, Canada, 
Denmark, Germany, Greece, Finland, France, Ireland, Italy, Japan, New Zealand, Netherlands, Norway, 
Portugal, Spain, Sweden, Switzerland, the U.K., and the U.S. 
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Table 3 gives the programmatic breakdown in ALM expenditures by country, revealing 

great variation across the sample. The big spenders per capita were Sweden and Denmark 

($360.88 and $287.20 (2000, PPP$)); the U.S. and Greece spent least ($43.72 and $34.97). The 

table also evidences some spatial clustering on geographic, cultural, or institutional-structure 

dimensions: e.g., all four Scandinavian countries spent much more than the OECD average; 

Portugal and Spain averaged within $1 per capita of each other over these 23 years; and 

Australia and New Zealand, Canada and the U.S. spent well below the OECD average. What 

explains these apparently spatially clustered patterns: strategic policy interdependence, similar 

exogenous-external conditions, correlated domestic factors, or some selection process among 

countries grouped on these dimensions? Which dimensions? 

Table 3. Disaggregated Active Labor Market Expenditures per Capita (2000 PPP$) 
 AUS AUT BEL CAN DEN FIN FRA DEU GRE IRE ITA 

28.85 33.06 41.35 38.44 20.48 22.47 25.98 46.59 10.77 32.36 0 Employment 
services&admin (37.54) (29.68) (15.69) (39.1) (7.13) (10.46) (14.39) (19.12) (30.8) (15.19) (0) 

10.05 41.58 43.99 46.18 117.32 67 49.74 71.61 7.84 43.26 7.14 Labor-market 
training (13.08) (37.32) (16.69) (46.98) (40.85) (31.19) (27.56) (29.38) (22.41) (20.3) (8.02) 

8.36 4.63 3.41 3.92 24.57 17.65 42.47 12.83 6.8 37.11 31.47 Youth 
measures (10.88) (4.16) (1.29) (3.99) (8.55) (8.22) (23.53) (5.26) (19.45) (17.42) (35.38) 

21.51 18.62 146.9 7.07 69.26 87.79 49.75 65.7 8.28 87.35 24.68 Subsidized 
employment (27.98) (16.71) (55.73) (7.19) (24.12) (40.87) (27.56) (26.96) (23.67) (41) (27.74) 

8.08 13.51 27.94 2.7 55.58 19.12 12.56 46.95 1.28 13 0 Measures for 
disabled (10.52) (12.13) (10.6) (2.75) (19.35) (8.9) (6.96) (19.27) (3.67) (6.1) (0) 

Total ALMP 76.87 111.41 263.61 98.3 287.2 214.81 180.51 243.72 34.97 213.08 88.97 
 JPN NTH NWZ NOR PRT ESP SWE CHE GBR USA OECD 

47.65 24.48 17.46 33.36 14.93 12.97 44.98 20.81 36.4 12.1 26.76 Employment 
services&admin (68.44) (11.58) (15.85) (15.91) (17.04) (14.69) (12.46) (22.57) (37.71) (27.67) (17.34) 

7.48 48.72 39.62 36.28 26.47 19.23 101.86 17.01 15.5 13.48 41.12 Labor-market 
training (10.75) (23.04) (35.96) (17.31) (30.22) (21.78) (28.22) (18.45) (16.06) (30.82) (26.65) 

0.24 11.01 10.44 11.53 26.48 7.73 14.32 0.55 28.34 6.68 14.84 Youth 
measures (0.34) (5.21) (9.48) (5.5) (30.23) (8.76) (3.97) (0.59) (29.36) (15.29) (9.61) 

12.73 16.69 34.73 23.87 14.77 45.7 91.75 20.05 11.68 2.24 41.44 Subsidized 
employment (18.28) (7.89) (31.53) (11.39) (16.86) (51.77) (25.42) (21.74) (12.1) (5.13) (26.86) 

1.53 110.57 7.91 104.59 4.95 2.64 107.98 33.79 4.61 9.22 29.29 Measures for 
disabled (2.19) (52.28) (7.18) (49.89) (5.65) (2.99) (29.92) (36.65) (4.77) (21.09) (18.98) 

Total ALMP 69.62 211.47 110.15 209.63 87.59 88.28 360.88 92.22 96.52 43.72 154.3 
NOTE: Parentheses contain spending as a percentage of total spending on active labor market programs. 

To answer these questions, we estimate an m-STAR model with coevolutionary dynamics.44 

The model, in matrix notation, is 

 
1

R

r r
r

ρ φ γ
=

⎡ ⎤
⎢ ⎥= + + + +⎢ ⎥
⎣ ⎦
∑y W y My Ly Xβ ε  (34), 

where y , ALM expenditures, is an NT%1 vector of cross sections stacked by periods as 

described previously. ρr is the rth spatial autoregressive coefficient, and Wr is an NT%NT block-

diagonal spatial-weighting matrix. Each Wr contains a unique set of elements r
ijw  that reflect a 

                                                 
44 Case et al. (1993), Brueckner & Saavedra (2001), Fredriksson & Millimet (2002), Redoano (2003), Allers & 
Elhorst (2005) among others have used spatial-lag models to test similar strategic policy-interdependence 
hypotheses, but none use multiple spatial lags or consider coevolution as alternative connectivity dimensions. 
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particular type of interdependence (e.g., geographic proximity, EU co-membership, and 

economic interdependence). In the other new term, γ, is the coevolutionary-dependence 

parameter, and L is an NT%NT “policy-distance” matrix with |yi,t-1-yj,t-1| in cells (it,jt). The 

addition of γLy, therefore, reflects a substantive proposition that states with more-similar 

ALM policies (spending-levels, to be precise) affect each other’s ALM policies more (γ>0), as 

in the network analyst’s homophily, or less (γ<0) than do states with less-similar policies. In 

spatial-econometric terms, it is the endogenous determinant of the strength of 

interdependence. The rest is as before: Wy reflects the exogenous interdependence of units’ 

policies; My is the first-order temporal lag, with  its coefficient; Xβ are the exogenous non-

spatial components; and  are assumed-i.i.d. disturbances. 

The presence in (34) of L, which contains lagged y’s, renders the system of N equations 

nonlinear in the endogenous variable. This complicates calculation of spatiotemporal dynamics 

and prevents linear multipliers or analytical solution for steady states. The spatiotemporal 

coevolutionary responses to changes in X or δ must be calculated recursively. To start, rewrite 

(34) as t cross-sections: 

 ( )1 1t t t t t N t t t
absφ γ− −
⎡ ⎤⎡ ⎤= + + ⊗ + +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

y W y y y I y XΠ β ε  (35). 

yt, Wt , and Xt are N%1, N%N, and N%k matrices, and Π is an N%N2 matrix produced by 

horizontally concatenating N separate N%N matrices. The ith N%N matrix in Π has -1’s on its 

diagonal and 1’s for each element of the ith column except for (i,i) which is 0, as are all 

remaining elements. If N=3, for example, Π looks like this:  

 

0 0 0 1 1 0 1 0 1

1 1 0 0 0 0 0 1 1

1 0 1 0 1 1 0 0 0

⎡ ⎤− −⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

Π  (36). 

The function abs is element-by-element absolute value; its argument gives the vector of 

differences yi,t-1-yj,t-1, reflecting homophily. In reduced form, (35) is 

 ( ) ( )
1

1 1t n t t N t t t
absγ φ

−

− −
⎡ ⎤⎡ ⎤⎡ ⎤= − − ⊗ + +⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

y I W y I y X  β ε  (37). 

Our empirical analysis applying (37) focuses on aggregate ALM-program expenditures and 

the two largest components thereof, subsidized employment (SEMP) and labor-market 

training (LMT) spending. Our dependent variables are measured per capita (2000, PPP$), and 

the key right-hand-side variables, which allow us to evaluate the nature of the spatial 

interdependence among the countries in our sample, are the spatial lags of ALM spending. 

Our spatial lags, Wry, involve four different weights matrices (R=4). W1 is a standardized 

binary contiguity-weights matrix which begins by coding wij=1 for countries i and j that share 

a border and wij=0 for countries that do not border, with exceptions France, Belgium, and 
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Netherlands treated as contiguous with U.K., Denmark with Sweden, and New Zealand with 

Australia. W2 is an EU co-membership weights-matrix; i.e., wij=1 if both i and j are EU 

members and wij=0 otherwise. W3 has weights that reflect the trade (imports+exports) shares 

between sample countries.45 W4 is the policy-distance coevolution matrix with |yi,t-1-yj,t-1| in cells 

(it,jt) as described above. For estimation, we row-standardize (as is common in spatial 

econometrics) all W matrices, dividing each cell by its row’s sum.46  

We also control several domestic variables. We include macroeconomic performance in the 

form of real GDP-growth and unemployment rates. Wealthier political-economies may demand 

more public goods and services from their governments, suggesting a positive coefficient for 

GDP per capita: Wagner’s Law. Alternatively, Baumol’s Disease, which refers to an argued 

decreasing relative productivity in service sectors rendering finance of public services more 

difficult as economies develop and shift toward service-sector employment, may suggest a 

negative relation of wealth to ALM spending. Most likely, though, our GDP-growth measure 

will capture pseudo-automatic programmatic responses to macroeconomic cycles, suggesting a 

negative coefficient. Unemployment should receive a positive coefficient for the same reason. 

Next, we control several structural features of a country’s economy related to its labor 

markets and exposure to external shocks. The labor-market factors are union density and 

Iversen & Cusak’s (2000) deindustrialization measure. Higher union density should increase 

the influence of organized labor, so we expect it to associate with greater ALM spending. 

Iversen & Cusak (2000) argued that workers cross significant skill barriers when they shift 

from manufacturing and agriculture to services. Thus, we expect deindustrialization to spur 

LMT spending in particular. Many scholars argue that international economic exposure favors 

increased government spending, especially on programs that help workers adjust to external 

shocks (e.g., Ruggie 1982; Cameron 1978; Katzenstein 1985; Rodrik 1997; Hays et al. 2005). 

Others argue that increased international exposure produces competitive pressures that lead to 

smaller governments, but this mechanism is properly reflected in our model by the third 

spatial-lag (see Basinger & Hallerberg 2004, Franzese & Hays 2003, 2004b, 2005ab, 2006c, 

2007ab, 2008c). We use trade openness as our measure of exposure.  

We also include the working-age percentage of the population, the percents of cabinet seats 

held by left-wing and by Christian Democratic parties, and the percent of general-election 

votes won by left-libertarian parties. Working-age voters are natural constituencies for ALM 

programs, whereas the benefits for retired voters are indirect at best, so political pressure for 

                                                 
45 More specifically, wij(t) equals the sum of exports i to j and j to i and of imports i from j and j from i, divided 
by four times i’s GDP. We use all four values because the data exhibit slight discrepancies between, e.g., i to j 
exports and j from i imports. 
46 Row normalization is standard practice in spatial econometrics and mathematically/analytically convenient, 
even though it is not necessarily substantively neutral (see, e.g., Plümper & Neumayer 2008). 
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ALM policies should increase with working-age population-shares. Scholars have variously 

identified Social Democratic, Christian Democratic, and Left-Libertarian parties as key 

supporters of active social-policies, albeit of/to/for different precise natures, extents, or 

reasons (see, e.g., Garrett 1998; Swank 2002; and Kitschelt 1994). The simpler left-right 

ideological dimension may also relate to ALM programs. 

Table 4: ALM-Spending Models — Estimation Results 
DEP. VAR. → Total ALM LMT SEMP 

INDEP. VAR. ↓ (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Constant -195.89* -150.369 51.487 -162.53*** -160.30** -100.950 -122.27** -129.70** -65.945 
 (103.645) (114.470) (125.395) (59.486) (64.481) (69.774) (57.794) (61.645) (71.708) 

Temporal Lag 0.875*** 0.836*** 0.801*** 0.872*** 0.865*** 0.758*** 0.830*** 0.848*** 0.704*** 
 (0.026) (0.032) (0.0407) (0.028) (0.031) (0.040) (0.034) (0.044) (0.062) 

Real GDP Growth Rate 1.365*** 0.449 -1.100 0.269 0.237 -0.861 0.036 -0.056 -1.044* 
 (0.411) (0.607) (1.144) (0.201) (0.258) (0.630) (0.188) (0.231) (0.629) 

Stdzd Unemployment Rate -0.070 0.552 0.125 0.361 0.844* 0.541 -0.169 -0.351 -0.544 
 (0.791) (0.835) (0.876) (0.445) (0.456) (0.509) (0.438) (0.448) (0.490) 

Union Density 0.888*** 0.711** 0.527* 0.205 0.138 0.259 0.567*** 0.645*** 0.629*** 
 (0.302) (0.318) (0.321) (0.167) (0.176) (0.176) (0.169) (0.175) (0.184) 

Deindustrialization 1.259 1.209 0.499 0.106 0.105 -0.183 1.426*** 1.440*** 1.0514** 
 (0.785) (0.776) (0.773) (0.449) (0.447) (0.435) (0.438) (0.438) (0.440) 

Trade Openness -0.522*** -0.183 -0.192 -0.187* -0.083 -0.009 0.018 0.039 0.104 
 (0.169) (0.196) (0.213) (0.097) (0.114) (0.118) (0.104) (0.113) (0.133) 

Working-Age Population 0.946 0.216 0.108 2.239*** 2.113** 2.623*** -0.139 -0.075 0.189 
 (1.498) (1.603) (1.629) (0.863) (0.909) (0.940) (0.829) (0.860) (0.934) 

Left Cabinet-Seats -0.024 0.001 0.001 0.035 0.044** 0.057*** -0.049** -0.047** -0.037* 
 (0.039) (0.039) (0.038) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) 

Christian Dem. Cab-Seats -0.160* -0.102 -0.085 -0.070 -0.074 -0.042 -0.032 -0.031 -0.037 
 (0.095) (0.096) (0.093) (0.054) (0.053) (0.052) (0.053) (0.053) (0.052) 

Left-Libertarian Vote -0.285 -0.549 -0.728 -0.316 -0.535 -0.714** -0.248 -0.208 -0.147 
 (0.622) (0.611) (0.598) (0.355) (0.361) (0.352) (0.346) (0.344) (0.340) 

SPATIAL WEIGHTS:          

Borders  -0.112*** -0.098***  -0.185*** -0.188***  0.058 0.054 
  (0.040) (0.040)  (0.057) (0.060)  (0.054) (0.056) 

EU Membership  -0.071*** -0.060*  -0.079 -0.183**  -0.058 -0.097 
  (0.034) (0.036)  (0.061) (0.073)  (0.062) (0.065) 

Trade Shares  0.386*** 0.239**  0.316*** 0.180  -0.017 -0.097 
  (0.101) (0.111)  (0.119) (0.159)  (0.148) (0.169) 

Policy Distance  -0.053 -0.189***  -0.004 -0.298***  0.049 -0.205** 
  (0.039) (0.067)  (0.046) (0.085)  (0.049) (0.087) 

TIME DUMMIES? No No Yes No No Yes No No Yes 

σ̂  21.221*** 20.741*** 19.564*** 12.061*** 11.828*** 11.161*** 11.794*** 11.702*** 11.154*** 
 (0.787) (0.775) (0.722) (0.454) (0.451) (0.426) (0.437) (0.434) (0.414) 

Log-Likelihood -1646.41 -1638.99 -1616.95 -1438.49 -1432.5 -1413.61 -1430.23 -1427.63 -1410.92 

Note: All regressions include fixed country effects; models (3), (6) and (9) also included fixed year effects. All the spatial weights 
matrices are row-standardized. The parentheses contain standard errors. 
*** Significant at the .01 level; ** Significant at the .05 level; * Significant at the .10 level. 

 Table 4 presents our results. We estimate three models for each dependent variable: the 

first includes country indicators but omits spatial lags, ignoring interdependence; the second 

includes the spatial lags and the country indicators; the third includes spatial lags and country 

and time-period indicators. The period dummies are a flexible way to model common OECD-

wide trends and/or common (random) shocks in ALM expenditures. Recall that the most 
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important issue in obtaining good estimates of the strength of interdependence, i.e., of ρ, is to 

model well any alternative mechanisms by which the outcomes might correlate spatially, such 

as common exogenous shocks (e.g., global economic conditions) or correlated domestic factors. 

From that perspective, country and year dummies serve as a powerfully conservative means of 

accounting common outside shocks or spatially correlated domestic factors. Failure to account 

for such alternatives will bias spatial-lag coefficient-estimates, usually positively.47 

The non-spatial and spatial model estimates suggest subtly differing explanations for the 

spatiotemporal patterns in total ALM expenditures. The non-spatial model points to domestic 

real GDP-per-capita growth, oddly indicating strong procyclicality to total ALM (though not 

LMT or SEMP components), and to labor-market structure, deindustrialization and especially 

union density. The spatial models suggest that the effects attributed by the non-spatial models 

to domestic growth and trade exposure seem instead to reflect spatial diffusion of responses to 

global conditions. Interestingly, all three estimation techniques find sizable differences in 

sources of LMT or SEMP spending. LMT seems closely related to workforce age-demographics 

and not very closely related to our labor-market structural or institutional measures. SEMP, 

to the contrary, counts strong labor and deindustrialization among its sources, and not age 

demography. The spatial models controlling for common shocks also show ALM policy, 

especially SEMP, more sensibly counter-cyclical to the domestic economy. Perhaps most 

interestingly, the spatial models suggest that, while total ALM spending is not particularly 

partisan, the composition is decidedly so: LMT associates positively and SEMP negatively 

with left cabinets. Wald tests of the spatial-lag coefficients reveal strong evidence of inter-

dependence in ALM policy, the t-tests on 13 of the 24 ρr estimates being significant at 

conventional levels and the six joint tests of the four ρr estimates per spatial model all 

overwhelmingly rejecting null hypotheses of zero coefficients, i.e., of the nonspatial model.48 In 

particular, total ALM spending seems strongly spatially interdependent on all four dimensions 

of proximity, SEMP much less so, and LMT intermediately. Consequently, coefficient 

estimates in non-spatial models will almost certainly suffer omitted-variable biases (of 

magnitudes in the same relative ordering). 

We focus, therefore, on the spatial models of total ALM spending and, in particular, on the 

most-conservative time-dummies version. This model (column 3) finds few strong and 

significant effects of domestic conditions net of interdependence, common shocks, and fixed 

country-specific factors. Point estimates suggest positive ALM-spending response to 

unemployment, union density, deindustrialization, and working-age population, but only the 

                                                 
47 The claim of conservatism in this strategy arises from a kind of spatial-Nickell/Hurwicz bias that we have 
found to operate with time fixed-effects and spatial lags (see Franzese & Hays 2004, 2006, 2007, 2008). 
48 Likelihood-ratio tests of the models and information criteria also strongly favor the spatial models. 
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response to union density is significant and sizable. They show negative responses to real-GDP 

growth, trade exposure, Christian-Democratic cabinet-seats, and Left-Libertarian vote-shares, 

but only the last and the countercyclical response to domestic growth are close to significant 

and sizable. No response at all to left cabinet-seats emerges, though we have already noted 

that this seems to mask a strongly left-partisan shifting from SEMP to LMT in ALM-spending 

composition. The estimated pattern of interdependence, i.e., the implicit net network, uncovers 

strongly negative interdependence among bordering countries and moderately negative 

interdependence among EU countries. The sign and relative strengths of interdependence by 

these patterns are consistent with our positive-externalities argument (Franzese & Hays 

2006c). The negative ρ̂  for the EU-membership spatial-lag also bolsters the case for those 

concerned that the EU is not adequately spurring employment-policy coordination. The 

positive coefficient for the trade-weights spatial-lag, meanwhile, supports arguments of 

globalization-induced competition. The coefficient(s) on the policy-distance lag(s) are negative 

and quite significant for total ALM (and for LMT and SEMP also). This indicates lesser 

dependency of domestic ALM policies on countries with more dissimilar ALM policies. I.e., 

policymakers follow more closely those more similar to them, as revealed by the similarity in 

the policies they choose: in other (network-analytic) terms, homophily. 

We are satisfied that ALM policy exhibits statistically significant interdependence, and 

that the patterns of interdependence relate to geographic contiguity and EU co-membership in 

ways that indicate policy free-riding, to trade relations in a way that implicates globalization 

and policy-competition, and to policy distance in a way that suggests homophily, but what do 

these results tell us of the net sign and substantive magnitude of this implicit network or of 

the effects of some countries’ ALM policies on policymakers in other countries via this 

estimated implicit (net) network? What do they say about the ALM-policy responses across 

these interdependent political-economies over time to counterfactual shocks in domestic 

and/or foreign conditions or policies? Answers and fuller interpretation of the coevolutionary 

spatiotemporal effects and dynamics that these m-STAR model-estimates imply requires 

calculation of the spatial multiplier in (37). 

Spatial multipliers, here: ( )
1

1n t t N
absγ

−

−
⎡ ⎤⎡ ⎤⎡ ⎤− − ⊗⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
I W y IΠ , capture the feedback from, say, 

Belgium onto France and other countries, and back from France and those others onto 

Belgium, and so on. The immediate time-t effect on the vector of policies in the 21 countries, 

yt, from a given set of time t-1 policies, yt-1, including the spatial feedback, can be calculated 

with this spatial multiplier for any desired counterfactual shocks to the rest of the right-hand 

side of (37). To find the long-run, steady-state, equilibrium (cumulative) level of y, we must 

solve (37) recursively. With exogenously time-varying W, like our trade weights, W3, we need 
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to specify values or sequence of values of W that we will assume to maintain in the long-run 

or obtain over the period in question. With endogenously time-varying W, like our policy-

distance matrix W4, the system is much more complex. (For instance, stationarity must not 

only obtain initially but also hold continually as dynamics unfold.) To get variance estimates, 

we could use the delta method again, or simulate them by a parametric bootstrap as described 

above. Given the considerable nonlinearity of (37), the simulated standard-error estimates may 

have better properties. 

Table 5: Effects of a Common Counterfactual ($1) Shock to ALM Spending 
 Pre-Shock Steady-State 

ALM-Spending ($) 
Post-Shock Steady-State 

ALM-Spending ($) 
Difference in Steady-State 

ALM-Spending ($) 
Australia 528.08 525.95 -2.13 
Austria 150.52 150.29 -0.23 
Belgium 450.67 446.25 -4.42 
Canada 156.81 173.08 16.27 

Denmark 545.71 544.77 -0.94 
Finland 104.48 113.76 9.28 
France 478.34 474.95 -3.39 

Germany 466.87 465.8 -1.07 
Greece 70.11 79.13 9.02 
Ireland 85.04 92.6 7.56 
Italy 109.87 115.55 5.68 
Japan 472.63 476.32 3.69 

Netherlands 456.02 452.09 -3.93 
New Zealand 120.55 132.16 11.61 

Norway 525.74 523.6 -2.14 
Portugal 432.16 416.63 -15.53 
Spain 100.25 110.89 10.64 

Sweden 577.26 575.66 -1.6 
Switzerland 332.48 357.31 24.83 

United Kingdom 118.28 128.2 9.92 
United States 204.54 211.22 6.68 

 Table 5 illustrates the calculation of estimated coevolutionary spatiotemporal responses to 

hypothetical shocks. In this example, we start with the 2001 values for all the exogenous 

variables (the last year all countries have data) and, using the parameter estimates from 

model 3 of Table 4, determine the steady-state levels of ALM expenditures by recursive 

calculation of (35). Then, with the system at this steady-state, we shock each country’s ALM 

spending by $1 (i.e., a $1 shock to δ) and calculate the new steady-state that emerges from 

there by the same recursive calculations. The results in Table 5 show the estimated system 

reasonably stable and the effects sizable. The pattern suggests convergence, with previously 

low (high) spenders spending more (less) in the new steady state. 
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Figure 2: Coevolutionary Spatiotemporally Dynamic Response of German, Austrian, and French ALM-
Spending to +$10 Permanent Shock to German ALM-Spending 
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Germany: +$54.03 in S-S 
Expenditures (11.6%).

Austria: +$37.98 in S-S 
Expenditures (23.2%).

France: +$5.81 in S-S 
Expenditures (1.2%).

 

We can also use (35) to plot estimated coevolutionary spatiotemporal responses to shocks. 

Using the 2001 values of the exogenous variables, and starting from the steady states that 

would emerge from those values and the parameter estimates, Figure 2 plots, as an example, 

the 10-period responses in German, Austrian, and French ALM spending to a $10 permanent 

positive shock to Germany’s ALM spending (δ). Note the differences in how France and 

Austria respond to the German shock, Austria converging toward Germany’s permanently 

higher ALM-spending and France returning to its status quo ante. These reflect the latent 

structure of interdependence between these three countries, as seen in the estimated network 

arranged in Table 6 and depicted in Figure 3 next. 

Using (32), we can show the estimated weights matrix, i.e., estimated pattern of network 

interdependencies in ALM policy among these countries, as in Table 6 for the estimated 

network using the 1981 covariate values.49 

We can also illustrate our estimated patterns of interdependence, i.e., the ALM-policy 

network, using graphical techniques familiar to network analysts. Figure 4 graphs the 

estimated patterns and strengths of interdependence in 1991 thus.50 EU member-countries are 

circles; other countries are squares. Red arrows represent negative interdependence, or implicit 

                                                 
49 Tables for the 1991 and 2001 values are too large to show effectively but are available on request. 
50 The web appendix shows the analogous graphs using the 1981 and 2001 covariate values. 
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(net) network ties. Blue arrows indicate positive implicit (net) network-ties. Arrow thickness 

and arrow-head sizes gauge the estimated strength of the relationship. We would plot nodes 

with all estimated dependencies insignificant, say at .10, or of negligible strength, say less than 

.01, as singletons, but there are no such in this example. 

Table 6: Estimated ALM-Policy Interdependencies, i.e., the Net ALM-Policy Network, in 1981 

Note: Dependent variable: Total ALM Spending; Model: 3. Actual weights multiplied by 10 (and standard errors 
adjusted accordingly) to improve table formatting. 

Figure 4: The Estimated Network of ALM-policy Interdependence, 1991 

 

 AUS CAN FIN FRA NTH NWZ ESP SWE GBR USA 

AUS 0.000 0.022 -0.371*** 0.160** -0.182* -0.905*** -0.025 -0.481** 0.179 1.123** 

 (0.000) (0.095) (0.140) (0.075) (0.096) (0.326) (0.023) (0.195) (0.200) (0.566) 

CAN -0.177** 0.000 -0.351*** -0.164** -0.129** -0.097*** -0.120*** -0.553*** 0.020 1.092 

 (0.073) (0.000) (0.126) (0.075) (0.055) (0.036) (0.046) (0.200) (0.064) (0.787) 

FIN -0.283** -0.159** 0.000 -0.072 0.080 -0.140*** -0.227** -0.246 0.493 0.075 

 (0.114) (0.075) (0.000) (0.165) (0.102) (0.051) (0.101) (0.317) (0.308) (0.180) 

FRA 0.047** -0.071 -0.347** 0.000 -0.033 -0.207*** -0.275* -0.418** -0.345 0.565* 

 (0.022) (0.062) (0.142) (0.000) (0.250) (0.076) (0.145) (0.204) (0.222) (0.306) 

NTH -0.293** -0.082 -0.134* 0.051 0.000 -0.039** -0.175* -0.238 -0.531* 0.357 

 (0.114) (0.056) (0.070) (0.313) (0.000) (0.016) (0.099) (0.149) (0.290) (0.280) 

NWZ -0.463 0.001 -0.244*** -0.220* -0.005 0.000 -0.214*** -0.439*** 0.575** 0.529 

 (0.328) (0.062) (0.089) (0.116) (0.028) (0.000) (0.082) (0.163) (0.272) (0.343) 

ESP -0.038 -0.055 -0.381*** -0.220 -0.053 -0.190*** 0.000 -0.502** 0.240 0.720** 

 (0.025) (0.047) (0.146) (0.308) (0.124) (0.069) (0.000) (0.214) (0.215) (0.355) 

SWE -0.243** -0.148* -0.638** 0.033 0.113 -0.169*** -0.190* 0.000 0.560 0.203 

 (0.106) (0.083) (0.299) (0.188) (0.141) (0.062) (0.101) (0.000) (0.354) (0.231) 

GBR -0.215* 0.057 -0.175* -0.619*** -0.405** 0.034* -0.124 -0.270 0.000 0.633 

 (0.114) (0.080) (0.104) (0.218) (0.186) (0.021) (0.094) (0.198) (0.000) (0.387) 

USA 0.008 0.284 -0.382*** 0.108 -0.069 -0.146** 0.040 -0.54**0 0.217 0.000 

 (0.070) (0.455) (0.143) (0.111) (0.106) (0.062) (0.042) (0.214) (0.190) (0.000) 
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VI. Conclusion and Discussion 

In Franzese & Hays (2006c), we estimated single-lag STAR models of ALM policy using 

binary contiguity (borders) weights matrices and a sample of European countries over the 

period 1987-1998. Our estimated coefficients on the spatial lags in those regressions were 

negative and statistically significant, and we argued that these results suggested appreciable 

ALM-policy free-riding in the EU. The results here, using an m-STAR model to consider 

multiple possible patterns and pathways of ALM-policy interdependence among the developed 

democracies more broadly, are strongly consistent with the conclusion that free-riding 

dynamics dominate among EU members and that these dynamics emerge specifically in great 

extent due to cross-border spillovers as we had suggested. We also find now some evidence of 

positive dependence deriving from trade-related competition, supporting globalization-induced 

competitive-races (not necessarily to bottom) arguments, and that policymakers follow most 

closely foreign policymakers from similar countries, at least where similarity is gauged by the 

magnitude of the policy in question. Methodologically, we have offered a simple way to model 

and estimate networks/interdependence-patterns simultaneously with estimation of the effect 

of those networks/interdependencies on units’ actions. Within this framework, we have 

suggested and started on the more ambitious agenda of endogenizing those two components of 

the coevolution of unit behavior/actions and networks/interdependence-patterns. 
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