Non-parametric quantile estimation
Transformed kernel estimation - R programming
Ramon Alemany, Catalina Bolancé & Montserrat Guillén
- Alemany, R., Bolancé, C. and Guillén, M. (2013) A nonparametric approach to calculating value-at-risk, Insurance: Mathematics and Economics, 52(2), 255-262.
- Alemany, R., Bolancé, C. and Guillén, M. (2014) Accounting for severity of risk when pricing insurance products. UB Riskcenter Working Papers Series 2014-05
DATA DESCRIPTION
Name | Content of operational risk loss data |
Internal data set | 75 observed loss amounts |
External data set | 700 observed loss amounts |
Public data risk no. 1 | 1000 observed loss amounts for category no. 1 |
Public data risk no. 2 | 400 observed loss amounts for category no. 2 |
VALUE AT RISK WITH KERNEL AND TRANSFORMED KERNEL ESTIMATION
For a random sample of n independent and identically
distributed observations x1,
x2,..., xn
of a random variable X with pdf fX,
the value at risk can be calculated using classifcal
kernel density estimator and transformed kernel
estimation:
- Classical kernel cdf estimation
\begin{equation}
\begin{array}{c}
\ \ \ \ \widehat{F}_{X}(x)=\int_{-\infty }^{x}
\widehat{f}_{X}(u)du =\int_{-\infty
}^{x}\frac{1}{nb}\sum_{i=1}^{n}k\left(
\frac{u-X_{i}}{b}\right)du \\
=\frac{1}{n}\sum_{i=1}^{n}\int_{-\infty
}^{\frac{x-X_{i}}{b}}k\left(
t\right) dt=\frac{1}{n}\sum_{i=1}^{n}K\left(
\frac{x-X_{i}}{b}
\right). \label{kdist}
\end{array}
\end{equation}
K is the kernel function and b is the
bandwidth.
To estimate value at risk, the Newton-Raphson method
is applied
- Transformed kernel cdf estimation
\begin{equation}
\widehat{F}_{X}\left( x\right) =\widehat{F}_{T\left(
X\right) }(T\left(
x\right) )=\frac{1}{n}\sum_{i=1}^{n}K\left(
\frac{T\left( x\right) -T\left(
X_{i}\right) }{b}\right)
\label{tkdist}
\end{equation}
T(·) is the transformation, K is the
kernel function and b is the bandwidth.
To estimate value at risk, the Newton-Raphson method
is applied
REFERENCES
[1] Bolancé, C. (2010) Optimal Inverse Beta(3,3)
Transformation in kernel density estimation, SORT
Statistics and Operations Research Transaction, 34,
223-238.
[2] Bolancé, C., Guillén, M., Gustafsson J. and
Nielsen, J.P. (2012) Quantitative
Operational Risk Models Chapman &
Hall/CRC.
[3] Bolancé, C., Guillén, M. and Nielsen, J.P. (2009)
Transformation kernel estimation of insurance claim
cost distribution, in Corazza, M. and Pizzi, C. (Eds),
Mathematical and Statistical Methods for Actuarial
Sciences and Finance, Springer, Roma, 223-231.
[4] Bolancé, C., Guillén, M. and Nielsen, J.P. (2008)
Inverse Beta transformation in kernel density
estimation. Statistics & Probability Letters, 78,
1757-1764.
[5] Bolancé, C., Guillén, M. and Nielsen, J.P. (2003)
Kernel density estimation of actuarial loss functions,
Insurance: Mathematics and Economics, 32, 19-36.
[6] Bolancé, C., Guillén, M. and Pitt, D. (2014)
Non-parametric models for univariate claim severity
distributions - an approach using R, UB
Riskcenter Working Papers Series 2014-01.
[7] Buch-Larsen, T., Guillen, M., Nielsen, J.P. and
Bolancé, C. (2005) Kernel density estimation for
heavy-tailed distributions using the Champernowne
transformation. Statistics, 39, 503-518.
[8] Clements, A.E., Hurn, A.S. and Lindsay, K.A.
(2003) Möebius-like mappings and their use in kernel
density estimation, Journal of the American
Statistical Association, 98, 993-1000.