Loss severity distributions
Kernel density estimation in R
Catalina Bolancé & Montserrat Guillén
- Bolancé, C., Guillén, M. and Nielsen, J.P. (2003) Kernel density estimation of actuarial loss functions, Insurance: Mathematics and Economics, 32, 19-36.
- Bolancé C., Guillén, M. and Pitt, D. (2014) Non-parametric models for univatiate claim severity distributions - an approach using R. UBriskcenter Working Paper Series 2014-01.
DATA DESCRIPTION
Name | Content of operational risk loss data |
Internal data set | 75 observed loss amounts |
External data set | 700 observed loss amounts |
Public data risk no. 1 | 1000 observed loss amounts for category no. 1 |
Public data risk no. 2 | 400 observed loss amounts for category no. 2 |
DESCRIPTIVE STATISTICS
Internal data | External data | Public data risk no. 1 | Public data risk no. 2 | ||
N | 75 | 700 | 1000 | 400 | |
Mean |
0.1756 | 0.6788 | 42.0594 | 20.8933 | |
Std Deviation |
0.2777 | 4.0937 | 291.9634 | 95.9138 | |
Min |
0.0030 | 0.0010 | 0.0020 | 0.0030 | |
Max |
1.7730 | 52.1300 | 5122.1360 | 1027.5270 |
|
KERNEL DENSITY ESTIMATION
- Classical kernel density estimation
For a random sample of n independent and identically
distributed observations x1,
x2,..., xn
of a random variable X with pdf fX,
the kernel density estimator is
\begin{equation} \hat{f}_X\left( x\right)
=\frac{1}{n}\sum_{i=1}^{n}K_{b}\left(x-x_{i}\right),
\label{Kerdens1} \end{equation}
where
\begin{equation}K_b(\cdot )=\frac{1}{b}K(\cdot
/b)\end{equation}
K is the kernel function and b is the
bandwidth.
- Transformations and kernel density estimation
- Selecting the transformation parameters and the bandwidth
As in Bolancé et al. (2003), we restrict the set of transformation parameters, λ=(λ1,λ2), to those values that give approximately zero skewness for the transformed data (y1,..,yn) (which have also been scaled to have the same variance as the original sample, see Wand et al. (1991)).
We define our sample measure of skewness as: \begin{equation} \widehat{\gamma }_{y}=\frac{n^{-1}\sum\limits_{i=1}^{n}(y_{i}-\overline{y})^{3}}{\left\{ n^{-1}\sum\limits_{i=1}^{n}(y_{i}-\overline{y} )^{2}\right\} ^{\frac{3}{2}}} \end{equation}
where y̅ is the sample mean of the transformed observations.
MEASURING THE GOODNESS OF FIT
REFERENCES
[1] Bolancé, C. (2010) Optimal Inverse Beta(3,3)
Transformation in kernel density estimation, SORT
Statistics and Operations Research Transaction, 34,
223-238.
[2] Bolancé, C., Guillén, M., Gustafsson J. and
Nielsen, J.P. (2012) Quantitative
Operational Risk Models Chapman &
Hall/CRC.
[3] Bolancé, C., Guillén, M. and Nielsen, J.P. (2009)
Transformation kernel estimation of insurance claim
cost distribution, in Corazza, M. and Pizzi, C. (Eds),
Mathematical and Statistical Methods for Actuarial
Sciences and Finance, Springer, Roma, 223-231.
[4] Bolancé, C., Guillén, M. and Nielsen, J.P. (2008)
Inverse Beta transformation in kernel density
estimation. Statistics & Probability Letters, 78,
1757-1764.
[5] Bolancé, C., Guillén, M. and Nielsen, J.P. (2003)
Kernel density estimation of actuarial loss functions,
Insurance: Mathematics and Economics, 32, 19-36.
[6] Bolancé, C., Guillén, M. and Pitt, D. (2014)
Non-parametric models for univariate claim severity
distributions - an approach using R, UB
Riskcenter Working Papers Series 2014-01.
[7] Buch-Larsen, T., Guillen, M., Nielsen, J.P. and
Bolancé, C. (2005) Kernel density estimation for
heavy-tailed distributions using the Champernowne
transformation. Statistics, 39, 503-518.
[8] Clements, A.E., Hurn, A.S. and Lindsay, K.A.
(2003) Möebius-like mappings and their use in kernel
density estimation, Journal of the American
Statistical Association, 98, 993-1000.