
Galois representations associated to ordinary

Hilbert modular forms: Wiles’ theorem

Francesc Fité
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Abstract

These are the notes of a talk given by the author at the STNB in
January of 2015. It was the fourth talk in a series of five talks coordinated
by Victor Rotger devoted to Galois representations attached to modular
forms.
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1 Introduction

The goal of this talk is to present Wiles’ theorem on the existence of Galois
representations associated to ordinary Hilbert modular forms of parallel weight
k ≥ 1 attached to a totally real number field F (see §2 for a precise statement),
and to sketch the proof of the result.

The theorem follows from a result on the existence of Λ-adic representations
attached to Λ-adic modular forms (due to Hida for F = Q and to Wiles in
general; see Theorem 3.28), a lifting theorem of classical modular forms to Λ-
adic modular forms (due to Hida for k ≥ 2 and F = Q, and to Wiles for k ≥ 1
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and general F ; see Theorem 3.27), and the theorem of Carayol that we have
seen in the third talk (see Theorem 2.3).

Wiles’ proof of Theorem 3.28 relies on his theory of pseudo-representations,
which we will also introduce. A funny aspect (which we will treat) of Wiles’
method is that, in the case F = Q, it permits to immediately deduce the results
of Deligne/Deligne–Serre (seen in the first and the second talks) for weights
k ≥ 2 and k = 1 from the classical theory of Eichler-Shimura for weight k = 2.

In a subsequent paper, Taylor [Tay89] removed the ordinarity hypothesis es-
tablishing the existence of Galois representations associated to (non-necessarily
ordinary) Hilbert modular forms attached to a totally real number field F of
even degree d := [F : Q] and of (non-necessarily parallel) weight k = (k1, . . . , kd)
with kj ≥ 2 for j = 1, . . . , d.

We note that Lafferty’s [Laf] presentation of Wiles’ theorem has been useful
at several passages.

2 General notations and statement of the result

Let F be a totally real field and OF its ring of integers. Set d := [F : Q], and
write h for its strict class number and d for its different. Let {tγ}γ=1,...,h be a
set of ideal representatives of the strict ideal classes of F . For k ≥ 1, an integral
ideal n of OF , and a character ψ0 : (OF /n)∗ → Q∗, we denote by Sk(n, ψ0) the
space of cuspidal forms

f := (f1, . . . , fh) ∈
h∏
γ=1

Sk(Γ(tγd, n), ψ0) .

Here, fγ : Hd → C, for γ ∈ {1, . . . , h}, is a Hilbert cuspidal form of parallel
weight k ≥ 1, character ψ0, and level

Γ(tγd, n) :=

{(
a b
c d

)
∈ GL+

2 (F ) | a, d ∈ O∗F , b ∈ t−1
γ d−1, c ∈ tγdn, ad− bc ∈ O∗F

}
in the sense of the third talk. Here, H denotes Poincaré upper half plane.

We saw that, for each γ ∈ {1, . . . , h}, we can represent fγ by its Fourier
expansion

fγ(z1, . . . , zd) =
∑

0�µ∈tγ

aγ(µ)e2πi(
∑d
j=1 µjzj) , for (z1, . . . , zd) ∈ Hd.

In the sum, µ runs over totally positive elements of the lattice tγ , and µ1, . . . , µd
denote the images of µ by the d distinct embeddings of F into C.

Let a ⊆ OF be a nonzero integral ideal. Then (by definition) there exist
γ ∈ {1, . . . , h} and a totally positive µ ∈ tγ such that a = µt−1

γ . For a fractional
ideal a of F , the numbers

c(a, f) :=

{
aγ(µ)N(tγ)−k/2 if a = (µ)t−1

γ is integral,

0 otherwise,
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depend neither on the choice of the tγ ’s nor on the choice of µ. The Dirichlet
series associated to the cuspidal form f is then given by

D(f , s) :=
∑

0 6=a⊆OF

c(a, f)N(a)−s .

There is a theory of Hecke operators on Sk(n, ψ0) given by {Tn(a), Sn(a)},
where a ⊆ OF is an integral ideal (see [Shi78, §2]). Let ψ : In∞ → Q∗ be a ray
class character of modulus n∞, where ∞ is the product of the infinite places
of F , that restricts to ψ0 on (OF /n)∗. Then set1

Sk(n, ψ) := {f ∈ Sk(n, ψ0) |Sn(a)(f) = ψ(a)f for all a ⊆ OF } .

Suppose from now on that f ∈ Sk(n, ψ) is a newform (that is, it is normalized
meaning that c(OF , f) = 1, it is new at level n, and Tn(a)f = c(a, f)f for every
integral ideal a ⊆ OF ). Let Kf denote the number field generated by the set
of eigenvalues {c(a, f)}a⊆OF and denote by Of its ring of integers. Let λ be a
prime of Of and denote by Of ,λ the completion of Of at λ.

Definition 2.1. We say that f is ordinary at λ if for each prime p ⊆ OF
dividing the norm N(λ) the equation

x2 − c(p, f)x+ ψ(p)N(p)k−1

has at least one root which is a unit mod λ.

Let us write GF for the absolute Galois group Gal(F/F ).

Theorem 2.2. [Wil88, Thm. 1] Let f ∈ Sk(n, ψ) be a newform with k ≥ 1. If
f is ordinary at λ, there exists a continuous irreducible representation

%f ,λ : GF → GL2(Of ,λ) (2.1)

unramified outside nN(λ) and such that, for all prime ideals q - nN(λ), one has

Tr(%f ,λ)(Frobq) = c(q, f) ,

det(%f ,λ)(Frobq) = ψ(q)N(q)k−1 .

In the third talk, we saw the following result of Carayol. It will be a funda-
mental tool in the proof of the above theorem.

Theorem 2.3. [Car86, Thm. (B)] For a newform f ∈ Sk(n, ψ) with k ≥ 2 (not
necessarily ordinary at λ), there exists a representation as in (2.1) if either

i) d := [F : Q] is odd; or

ii) d is even and there is a prime ideal p dividing exactly n which does not
divide the conductor of ψ.

1There is no distinction between Sk(n, ψ0) and Sk(n, ψ) for F = Q. Indeed, for N ≥ 1 the
ray class group of modulus (N)∞ is isomorphic to (Z/NZ)∗.
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In fact, the above is a weaker statement than the one in Carayol’s theorem,
but it will suffice for deducing Theorem 2.2. One could relax ii), by just requiring
that for some prime ideal p dividing n, we have that f is special or supercuspidal
locally at p. One can indeed show that if ii) holds, then f is unramified special
at p (see Lemma 4.6).

The easiest case covered by Theorem 2.2 and not by Theorem 2.3 corresponds
to taking f attached to a real quadratic field F and with trivial level n = OF .

3 Main notions for the proof

We introduce the three main notions required for the proof of Theorem 2.2:
pseudo-representations, p-stabilized modular forms, and Λ-adic modular forms.

3.1 Pseudo-representations

The first ingredient in the proof of Theorem 2.2 is the notion of pseudo-representation.

Definition 3.1. Let G be a profinite group and let R be a commutative topo-
logical integral domain (with unity). A pseudo-representation of G into R is a
triple π = (Aπ, Dπ, Cπ) of continuous maps

Aπ : G→ R , Dπ : G→ R , Cπ : G×G→ R

satisfying the following conditions for all elements g, gi ∈ G:

i) Aπ(g1g2) = Aπ(g1)Aπ(g2) + Cπ(g1, g2).

ii) Dπ(g1g2) = Dπ(g1)Dπ(g2) + Cπ(g1, g2).

iii) Cπ(g1g2, g3) = Aπ(g1)Cπ(g2, g3) +Dπ(g2)Cπ(g1, g3).

iv) Cπ(g1, g2g3) = Aπ(g3)Cπ(g1, g2) +Dπ(g2)Cπ(g1, g3).

v) Aπ(1) = Dπ(1) = 1.

vi) Cπ(g, 1) = Cπ(1, g) = 0.

vii) Cπ(g1, g2)Cπ(g3, g4) = Cπ(g1, g4)Cπ(g3, g2).

Remark 3.2. Note that Cπ is determined by both Aπ and Dπ (as follows from
i) and ii)). Its consideration responds to merely notational purposes.

Lemma 3.3. One has:

• If % : G→ GL2(R) is a representation with

%(g) =

(
a(g) b(g)
c(g) d(g)

)
,

then πρ := (A,D,C) with

A(g) := a(g), D(g) := d(g), C(g1, g2) := b(g1)c(g2)

defines a pseudo-representation.
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• Conversely, if π = (A,D,C) is a pseudo-representation of G into R such
that C = 0 (resp. such that there exist g1, g2 ∈ G with C(g1, g2) ∈ R∗),
then

%π(g) :=

(
A(g) 0

0 D(g)

) (
resp. %π(g) :=

(
A(g) C(g, g2)/C(g1, g2)

C(g1, g) D(g)

))
defines a representation %π : G→ GL2(R).

Remark 3.4. The notion of pseudo-representation makes precise the näıve idea
that a representation should consist of a tuple of functions G → R satisfying
a series of compatibility relations. To illustrate that the set of compatibility
conditions in Definition 3.1 is the right one, let us prove that the map

%π : G→ GL2(R)

defined in Lemma 3.3 from a pseudo-representation π = (A,D,C) is indeed a
homomorphism. We will just consider the interesting case in which there exist
g1, g2 ∈ G with C(g1, g2) ∈ R∗, the other being obvious. Indeed,

%π(h1h2) =

(
A(h1h2) C(h1h2, g2)/C(g1, g2)

C(g1, h1h2) D(h1h2)

)
i),...,iv)

=

(
A(h1)A(h2) + C(h1, h2) A(h1)C(h2,g2)+D(h2)C(h1,g2)

C(g1,g2)

A(h2)C(g1, h1) + D(h1)C(g1, h2) D(h1)D(h2) + C(h2, h1)

)
vii)
=

(
A(h1)A(h2) + C(h1,g2)C(g1,h2)

C(g1,g2)
A(h1)C(h2,g2)+D(h2)C(h1,g2)

C(g1,g2)

A(h2)C(g1, h1) + D(h1)C(g1, h2) D(h1)D(h2) + C(h2,g2)C(g1,h1)
C(g1,g2)

)

=

(
A(h1) C(h1, g2)/C(g1, g2)

C(g1, h1) D(h1)

)(
A(h2) C(h2, g2)/C(g1, g2)

C(g1, h2) D(h2)

)
= %π(h1)%π(h2)

In particular, as a consequence of the previous lemma, one has that if R is
field, then every pseudo-representation in R comes from a representation with
values in GL2(R). In view of the previous lemma, the following definition is
natural.

Definition 3.5. The trace and determinant of a pseudo-representation π =
(Aπ, Dπ, Cπ) of G into R are defined by

Tr(π)(g) := Aπ(g) +Dπ(g) , det(π)(g) := Aπ(g)Dπ(g)− Cπ(g, g) .

Remark 3.6. Let π% be the pseudo-representation attached to a representa-
tion %. Then

Tr(π%) = Tr(%), det(π%) = det(%) .

Recall that a representation % : G → GL2(R) is called odd if there exists
c ∈ G of order 2, such that

%(c) =

(
−1 0
0 1

)
.
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Definition 3.7. We say that π = (Aπ, Dπ, Cπ) is an odd pseudo-representation
if there exists c ∈ G of order 2 such that, for every g ∈ G, we have that

Aπ(c) = −1, Dπ(c) = 1, Cπ(g, c) = 0, Cπ(c, g) = 0 .

Lemma 3.8. If 2 is invertible in R, then an odd pseudo-representation π is
determined by Tr(π).

Proof. Indeed:

Aπ(g) = 1
2 (Aπ(g) +Dπ(g)− (Dπ(g)−Aπ(g))) =

= 1
2 (Aπ(g) +Dπ(g)− (Dπ(gc) +Aπ(gc))) = 1

2 (Tr(π)(g)− Tr(π)(gc)) ,

Dπ(g) = 1
2 (Aπ(g) +Dπ(g) + (Dπ(g)−Aπ(g))) =

= 1
2 (Aπ(g) +Dπ(g) + (Dπ(gc) +Aπ(gc))) = 1

2 (Tr(π)(g) + Tr(π)(gc)) ,

Cπ(g1, g2) = Aπ(g1g2)−Aπ(g1)Aπ(g2) .

Observe that by the previous lemma, if R is a field of characteristic 0,
then there is a 1-1 correspondence between odd semisimple representations into
GL2(R) and odd pseudo-representations in R.

Remark 3.9. We fix from now on an algebraic closure of the fraction field
Qp((X)) of Zp[[X]], where p is a prime. Any algebraic extension of Qp((X)) is
assumed to be contained in this fixed algebraic closure. Let K denote a finite
algebraic extension of Qp((X)) and let Λ denote the integral closure of Zp[[X]]
in K. We will be concerned with Galois pseudo-representations of GF into
R = Λ.

Remark 3.10. There are two types of prime ideals P of height 1 in Λ. On
the one hand, we have those P lying over p. There are only a finite number of
them, and in this case Λ/P is a finite extension of Fp[[X]]. On the other hand,
we have those P not dividing p. In this case, Λ/P is a finite extension of Zp.

Theorem 3.11. [Wil88, Lem. 2.2.3] Let {Pn}∞n=1 be a sequence of distinct
height 1 prime ideals of Λ. Let Kn denote the field of fractions of Λ/Pn, and
let On be the integral closure of Λ/Pn in Kn. Suppose that for each n ≥ 1, there
exists a continuous odd representation

%n : GF → GL2(On)

that is unramified outside np, for some integral ideal n ⊆ OF . Furthermore,
suppose that for every prime q - np, there exist cq(X), εq(X) ∈ Λ such that

Tr(%n)(Frobq) ≡ cq(X) (mod Pn) ,

det(%n)(Frobq) ≡ εq(X) (mod Pn) .
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Then there exists a continuous odd representation % : GF → GL2(K) unramified
outside np and such that

Tr(%)(Frobq) = cq(X) ,

det(%)(Frobq) = εq(X) ,

for every prime q - np. Furthermore, % is absolutely irreducible if and only if %n
is for some n.

Remark 3.12. The notion of continuity for a Galois representation % : GF →
GL2(K) on a 2-dimensional K-vector space is not relative to the topology of
GL2(K) as a subspace of K × K × K × K. Before proceeding to the proof
of Theorem 3.11, let us describe the notion of continuity that is used in its
statement. Recall that the ring Λ is complete, local, Noetherian, and of Krull
dimension 2. Let m denote its maximal ideal. A lattice of K2 is a sub-Λ-
module L of K2 of finite type over Λ such that L⊗Λ K = K2. We say that % is
continuous if there exists a lattice L of K2 that is stable under % and such that

% : GF → AutΛ(L)

is continuous with respect to the projective limit topology (=Krull topology)
on

AutΛ(L) ' lim
←

Aut(L/mjL) .

Proof of Theorem 3.11. First observe that by hypothesis and the Cebotarev
density Theorem, Tr(%n) takes values in Λ/Pn. Let πn be the pseudo-representation
with values (in principle) in On attached by Lemma 3.3 to the representation
%n. Note that Tr(πn) coincides with Tr(%n) by Remark 3.6, and thus it takes
values in Λ/Pn. But since πn is odd (as %n is), it is determined by Tr(πn) as
in the proof of Lemma 3.8 and it takes values in the same ring as Tr(πn), that
is, πn takes values in Λ/Pn (this is one of the key points of considering pseudo-
representations!). Let us write Qr = P1 ∩ · · · ∩ Pr. Suppose that we have
constructed a pseudo-representation αr in Λ/Qr such that αr ≡ πn (mod Pn)
for 1 ≤ n ≤ r (to start the induction process, just take α1 := π1). By the
hypothesis (together with the Cebotarev density theorem), we have that for
1 ≤ n ≤ r

Tr(αr) ≡ Tr(πn) = Tr(%n) ≡ Tr(%r+1) = Tr(πr+1) (mod (Pn, Pr+1)).

This implies
Tr(αr) ≡ Tr(πr+1) (mod (Qr, Pr+1)).

But by Lemma 3.8, an odd pseudo-representation is determined by its trace,
and thus

αr ≡ πr+1 (mod (Qr, Pr+1)) .

Thanks to this congruence and using the exact sequence

0→ Λ/Qr+1 → Λ/Qr ⊕ Λ/Pr+1 → Λ/(Qr, Pr+1)→ 0 , (3.1)
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we may lift the pseudo-representation αr⊕πr+1 of GF into Λ/Qr⊕Λ/Pr+1 to a
pseudo-representation αr+1 of GF into Λ/Qr+1, with the property that αr+1 ≡
πn (mod Pn) for 1 ≤ n ≤ r+1. Then lim← αn is a pseudo-representation of GF
into lim← Λ/Pn. This projective limit is canonically isomorphic to Λ, since by
hypothesis {Pn}∞n=1 is an infinite set of distinct height 1 prime ideals and thus
whose intersection is 0. By Lemma 3.3, taking coefficients over K, the pseudo-
representation lim← αn defines a representation of GF , which has the desired
properties.

Remark 3.13. As already mentioned, a key point of the proof is the following:
even when the representation %n of the theorem is has coefficients in the integral
closureOn of Λ/Pn, the attached pseudo-representation πn takes values in Λ/Pn.
In the process of “patching together” the πn, we make use of the exact sequence
(3.1), which we have for the rings Λ/Pn (without having to worry about their
integral closures).

3.2 The space of p-stabilized modular forms

For a subring A of C, define

Sk(n, ψ |A) := {g ∈ Sk(n, ψ) | c(a,g) ∈ A for all a ⊆ OF } . (3.2)

Fix an algebraic closure Q (resp. Qp) of Q (resp. Qp) and let Cp denote

the completion of Qp with respect to the normalized absolute value. Fix an

embedding ip : Q → Qp. Without any further word, any algebraic extension

of Q (resp. Qp) that we consider will be assumed to belong to Q (resp. Qp).
The space Sk(n, ψ) has a basis with coefficients in Z[ψ]. For any subring

Zp[ψ] ⊆ O ⊆ Cp, we thus define

Sk(n, ψ | O) := Sk(n, ψ |Z[ψ])⊗Z[ψ] O .

We assume until the end of this section that the level is of the form npr for
r ≥ 1 and that O is a finite extension of Zp containing Z[ψ]. Since the level
is understood, we will simply write T (p) for the Hecke operator Tnpr (p). The
Hida operator is defined by

e := lim
n→∞

T (p)n! : Sk(npr, ψ | O)→ Sk(npr, ψ | O) .

One can show that e is well-defined and an idempotent of EndO(Sk(npr, ψ | O)).
We define the space of p-stabilized cuspidal forms by

Sord
k (npr, ψ | O) := eSk(npr, ψ | O).

Remark 3.14. Let f ∈ Sk(npr, ψ | O) be a newform of level m|npr and weight
k ≥ 2. Then ef is nonzero if and only if f is ordinary2 (i.e. c(p, f) is a unit in O).

2This somehow justifies the notation Sord
k (npr, ψ | O). Note however that not every or-

dinary cuspidal form lies in Sord
k (npr, ψ | O). It is rather the p-stabilization of any ordinary

cuspidal form that lies in Sord
k (npr, ψ | O).
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In this case, ef is a newform of level mP, where P is the product of primes above
p which do not divide m. The eigenvalue of ef for q - P is the same as for f ; the
eigenvalue of ef for q|P is the unit root of x2 − c(q, f)x+ ψ(q)N(q)k−1.

Remark 3.15. Suppose that f ∈ Sk(npr, ψ | O) is a newform of level m|npr,
that q|pr, and that qm|npr. Then ef(q·) lies in the linear span of ef . We deduce
that Sord

k (npr, ψ | O) is spanned by the set

{efi(qi·) | fi is a newform of level mi, (qi, p) = 1,miqi|npr} .

We illustrate the previous two remarks with an example.

Example 3.16. Let F = Q and N ≥ 1 with (N, p) = 1. Let f =
∑
n≥1 cnq

n ∈
Sk(Γ0(N), ψ) be an ordinary newform. Let α and β denote the roots of x2 −
cp(f)X + ψ(p)pk−1 and suppose that α is a unit.

The action of TNp(p) on q-expansions g(q) =
∑
n≥1 anq

n is well-known: by
definition, one has that TNp(p)(g) =

∑
n≥1 anpq

n. Recall that

SNp(p) : Sk(Γ0(Np), ψ)→ Sk(Γ0(Np), ψ) , SNp(p)(g) := g(qp) .

One easily checks that TNp(p) stabilizes the 2-dimensional subspace gener-
ated by f and SNp(p)(f) of S2(Γ0(Np), ψ). In this basis, we have

TNp(p) =

(
cp 1

−ψ(p)pk−1 0

)
.

The second column follows from the relation TNp(p) ◦SNp(p) = id and the first
is due to the relation TN (p) = TNp(p) +ψ(p)pk−1SNp(p) together with the fact
that TN (p)(f) = cpf .

One readily checks that fα(z) := f(z)− βf(pz) and fβ(z) := f(z)− αf(pz)
are the eigenvectors of the matrix attached to TNp(p) (of eigenvalues α and β,
respectively). From the equalities

TNp(p)(fα) = αfα , TNp(p)(fβ) = βfβ ,

it follows that efα(z) = fα(z) and that efβ(z) = 0. Solving the resulting two
equations linear system, one deduces that

ef(z) =
α

α− β
fα(z) , e(f(pz)) =

1

α− β
fα(z) .

3.3 Λ-adic modular forms

Hypothesis 3.17. For simplicity, we assume from now on that p is a prime ≥ 3.

Let Q∞ be the cyclotomic Zp extension of Q and let pe = [F ∩Q∞ : Q]. Set
u := (1 + p)p

e

. For each r ≥ 0, we fix a root of unity ζ of order pr. For k ≥ 1
and r ≥ 0, define the specialization map

νk,r : Zp[[X]]→ Zp[ζ] , X 7→ ζuk−2 − 1 .
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Note that we may use νk,r to view Zp[[X]]/ ker(νk,r) as a finite extension of Zp
in Qp. Since Zp[[X]] has no zero divisors, ker(νk,r) is a prime ideal. It is the

prime ideal generated by the minimal polynomial of ζuk−2 − 1 over Λ.

Remark 3.18. As in Remark 3.9, let K denote a finite extension of the fraction
field Qp((X)) of Zp[[X]], and let Λ denote the integral closure of Zp[[X]] in K.
Suppose that K and Λ are large enough so that Zp[ψ][[X]] ⊆ Λ. Since Λ is
integral and finitely generated over Zp[[X]], by the Going-up theorem of Cohen-
Seidenberg there exists a prime ideal Pk,r ⊆ Λ such that Pk,r ∩ Zp[[X]] =
ker(νk,r). We thus have a diagram

Pk,r ⊆ Λ ⊆ K
| | |

ker(νk,r) ⊆ Zp[[X]] ⊆ Qp((X))

Let O := Λ ∩Qp and K := K ∩Qp, so that O is the valuation ring of the finite
extension K of Zp and Zp[ψ] ⊆ O. The natural projection

ν : Λ→ Λ/Pk,r ⊆ Qp

is an O-algebra homomorphism that extends νk,r. However, ν depends on the
choice of Pk,r above ker(νk,r). Let Xk,r denote the set of all O-algebra homo-
morphisms from Λ to Qp that restrict to νk,r on Zp[[X]]. Write

X :=
⋃

r≥0, k≥1

Xk,r .

Recall that for a fractional ideal a of F such that (a, p) = 1, we can write

N(a) = uαδ , with δ ∈ µp−1, α ∈ Zp .

Let ψ : In∞ → Q∗ be as in §2. We define the following three characters

ψ : lim
←
t

Inpt → Λ , ψ(a) = ψ(a)(1 +X)α ,

%r : IprOF → Q∗ , %r(a) := ζα ,

ω : IpOF → Q∗ , ω(a) = N(a)/uα = δ .

(3.3)

We will call ω the Teichmüller character.

Definition 3.19. A Λ-adic cuspidal form F over F of level n and character
ψ : lim

←
t

Inpt → Λ is a collection of elements of Λ

{c(a,F)(X)}06=a⊆OF ⊆ Λ ,

with the property that, for all but finitely many k ≥ 2 and r ≥ 0 and for all
ν ∈ Xk,r, there exists

fν ∈ Sk(npr, ψ%rω
2−k | O[ζ])
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whose associated Dirichlet series is

D(fν , s) =
∑

0 6=a⊆OF

ν(c(a,F)(X))N(a)−s .

By abuse of notation, we will write ν(F) = fν .

Definition 3.20. We denote by S(n,ψ |Λ)) the space of Λ-adic cuspidal forms
of level n and character ψ. Set

S(n,ψ |Λ) =

∞⋃
t=0

S(npt,ψ |Λ) .

Remark 3.21. The specialization ν(ψ) and the central character ψν of fν =
ν(F) are related by the formula N2−kν(ψ) = ψν . Indeed, suppose that ν ∈
Xk,r, so that ψν = ψ%rω

2−k. Then

N(a)2−kν(ψ(a)) = N2−k(a)ψ(a)ν(1 +X)α =

= N2−k(a)ψ(a)ζαu(k−2)α =

= ψ(a)%r(a)ω(a)2−k ,

from which the desired equality follows.

Remark 3.22. There exists an idempotent

E : S(n,ψ |Λ)→ S(n,ψ |Λ)

of EndΛ(S(n,ψ |Λ)) such that for almost every3 ν we have

ν(E(F)) = e(ν(F)) . (3.4)

The space of p-stabilized Λ-adic cuspidal forms is defined to be

Sord(n,ψ |Λ) := E S(n,ψ |Λ) .

It follows from (3.4) that for a p-stabilized Λ-adic cuspidal form F , the special-
ization ν(F) is a p-stabilized cuspidal form for almost all ν.

The next result will be crucial in §4.

Proposition 3.23. [Wil88, Thm. 1.2.1] The space of p-stabilized Λ-adic cusp-
idal forms Sord(n,ψ |Λ) is a free Λ-module of finite rank.

Remark 3.24. Hecke operators for Λ-adic modular forms. For every integral
ideal a ⊆ OF , one can define a Λ-linear maps

T (a) := T n(a),S(a) := Sn(a) : S(n,ψ |Λ)→ S(n,ψ |Λ)

3Throughout this note “for almost every ν”=“for all but finitely many ν ∈ X”.
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with the key property that for almost every ν we have

ν(T (a)(F)) = Tnpr (a)(ν(F)) and ν(S(a)(F)) = Snpr (a)(ν(F)) ,

if ν ∈ Xr,k. The last formula relates the central character of ν(F) with ψ
compatibly with the relation of Remark 3.21. It is precisely the desire of a
formula of this kind what explains the choice in Definition 3.19 for the central
character of ν(F).

Definition 3.25. Let n0 be the greatest divisor of n which is coprime to p.

i) We say that F ∈ S(n,ψ |Λ) is a Hecke eigenform if, for all integral ideal
a ⊆ OF , we have T (a)(F) = λ(a,F)(X)F for some λ(a,F)(X) ∈ Λ.

ii) A Hecke eigenform F ∈ S(n,ψ |Λ) is called normalized if c(OF ,F)(X) = 1.

iii) A normalized Hecke eigenform F ∈ S(n,ψ |Λ) is called a newform of level n
if for almost every ν (equiv. for infinitely many ν) we have that ν(F) is a
newform of level divisible by n0.

For a normalized Hecke eigenform λ(p,F)(X) = c(p,F)(X) for every prime
ideal p ⊆ OF .

Remark 3.26. From now on (and specially in the next section), we will need
to extend coefficients to K. To this aim, set

Sord(n,ψ | K) := Sord(n,ψ |Λ)⊗Λ K .

Then, it can be shown that the finite extension K of Qp((X)) can be chosen
large enough so that

Sord(n,ψ | K) = K{F(az) | F is a newform of level m with ma|n} .

The next result is crucial for our purposes. It is due to Hida for k ≥ 2.

Theorem 3.27. [Wil88, Thm. 3] Let k ≥ 1, r ≥ 0, and ζ a root of unity of
order pr. Let n ⊆ OF be an integral ideal and let %r be as defined in (3.3).
For every p-stabilized newform f ∈ Sord

k (n, ψ%rω
2−k | O[ζ]), where O is a finite

extension of Zp containing Zp[ψ], there exist a finite extension Λ of Zp[[X]],

ν ∈ Xk,r (as in Remark 3.18), and a newform F ∈ Sord(n,ψ |Λ) such that
ν(F) = f .

This talk is not oriented towards the proof of the above theorem. Instead,
we will focus on the next result, which is due to Hida for F = Q.

Theorem 3.28. [Wil88, Thm. 4] Let F ∈ Sord(n,ψ |Λ) be a p-stabilized new-
form. Then there is a unique continuous irreducible representation

%F : GF → GL2(K)

unramified outside np such that, for every prime q - np, one has

Tr(%F )(Frobq) = c(q,F)(X) ,

det(%F )(Frobq) = ψ(q)N(q) .
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The proof of the above theorem, for which we will use all the theory devel-
oped so far, will be postponed until §4. We will conclude the section by showing
how Theorem 3.28, together with Theorem 3.27, immediately implies the main
Theorem 2.2.

Proof of Theorem 2.2 (case F = Q). We start with two remarks:

• If %f ,λ exists as a representation into GL2(K), with K a finite extension
of Kf ,λ, then Schur’s Lemma guarantees that there is an equivalent rep-
resentation with image in GL2(Of ,λ).

• If %f ,λ exists, then it is irreducible (Ribet).

By Theorem 3.27, given a p-stabilized newform f ∈ Sord
k (n, ψ | O), there exists

F ∈ Sord(n,ψωk−2 |Λ) such that ν(F) = f for some ν ∈ Xk,1. By Theo-
rem 3.28, F has attached a continuous irreducible representation %F . Consider
the representation

%f : GF
%F−→ GL2(L)

ν−→ GL2(Qp) .

It satisfies that

Tr(%f )(Frobq) = ν(c(q,F)(X)) = c(q, f) ,

det(%f )(Frobq) = ν(ψ(q)N(q)) = ψ(q)N(q)k−2N(q) ,

where we have used Remark 3.21.

4 Sketch of the proof

4.1 Warm up: the proof for F = Q
We set F = Q in this section. Then, the statement of Theorem 2.2 is contained
in the results that we have seen in the first (weight k ≥ 2; see [Del68]) and the
second talks (weight k = 1; [DS74]). However, we consider remarkable the fact
that Wiles’ method recovers these results from the classical theory of Eichler-
Shimura (weight k = 2), and we wish to describe this in detail in this short
section.

In the present setting, an element f ∈ Sk(n, ψ) consists of a single function

f : H → C. If n = (N) for N ≥ 1, then ψ : (Z/NZ)∗ → Q∗ is a Dirichlet
character. The space Sk(n, ψ) is what is usually denoted by

Sk(N,ψ) := Sk(Γ0(N), ψ) .

Let f ∈ Sord
k (N,ψ | O) and F ∈ Sord(N,ψ |Λ), where the notation for the spaces

is analogous to that used in (3.2). For an ideal (n) of Z, for n ≥ 0, let us use
the notation cn(f) (resp. cn(F)(X)) for the Fourier coefficient c((n), f) (resp.
c((n),F)(X)). Let K and Λ be as defined in Remark 3.18.
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Proof of Theorem 3.28. Let F ∈ Sord(N,ψ |Λ) be a p-stabilized newform. This
means that there exist infinitely many n ≥ 1 such that

fn := ν(F) ∈ Sord
2 (Npn, ψ%n | O[ζn])

is a normalized Hecke eigenform for some ν ∈ X2,n. Let P2,n be the prime of Λ
corresponding to ν ∈ X2,n. By the theory of Eichler-Shimura seen in the first
talk, attached to fn there is a continuous irreducible odd representation

%n : GQ → GL2(O[ζn])

unramified outside Np satisfying that, for every q - Np, one has

Tr(%n)(Frobq) = cq(f) ≡ cq(F)(X) (mod P2,n) ,

det(%n)(Frobq) = ψ(q)q1 ≡ ψ(q)q (mod P2,n) .

The statement now follows immediately from Theorem 3.11.

4.2 The general case

Remark 4.1. If d := [F : Q] is odd, then Theorem 3.28 is proven proceeding
as we did in §4.1. Let F be a p-stabilized Λ-adic newform. One observes that
infinitely many specializations of F (for example, ν(F) with ν ∈ Xk,1 for all
but finitely many k ≥ 2) have attached a representation by part i) of Carayol’s
Theorem with the desired properties. Then, one just applies Theorem 3.11. We
will therefore assume from now on that d is even.

Let us give a few words on the general strategy. Let F ∈ Sord(n,ψ |Λ)
be a p-stabilized Λ-adic newform. Choose a prime l, so that hypothesis ii) of
Theorem 2.3 with respect to l and ln is satisfied. Consider a basis of new-
forms (with respect to l) of the space of forms of level nl. By our choice of the
prime l, Carayol’s Theorem says that there are λ-adic representations attached
to almost all specializations of each element in this basis. One obtains a Λ-adic
representation attached to each element in this basis by patching the Carayol
representations together using Theorem 3.11. By assembling the Λ-adic repre-
sentations attached to each element of the basis, one obtains a representation %
on (T⊗K)⊕ (T⊗K), where T denotes the Hecke algebra. One then defines an
ideal IF of T, such that for every prime ideal IF ⊆ P ⊆ T the representation %
modulo P is essentially the representation we are looking for reduced modulo
a certain prime Q of Λ. Let %Q denote this representation. By varying l, one
shows that infinitely many distinct such primes Q exist. One then concludes by
patching together the corresponding representations %Q by using Theorem 3.11
again. The Hecke algebra T plays a fundamental role in relating our original F
of level n with the basis of newforms (with respect to l) of the space of forms of
level nl.

Let l ⊆ OF be a prime ideal such that (l, np) = 1. As always, ψ comes from
a ray class character ψ of modulus n∞. Let Λ and K be as in Remark 3.26.
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Definition 4.2. The space of p-stabilized Λ-adic oldforms with respect to l is

Sord(nl,ψ | K)old := {G1(z) + G2(lz) | G1,G2 ∈ Sord(n,ψ | K)} .

The space of p-stabilized Λ-adic newforms with respect to l is

Sord(nl,ψ | K)new := K
{
Gi(aijz)

Gi ∈ Sord(mi,ψ |Λ) newform
and l|mi, aijmi|nl

}
. (4.1)

We say that {Gi(aijz)}i,j is a special basis for Sord(nl,ψ | K)new. Note that
this special basis has a finite number of elements thanks to Proposition 3.23.
By Remark 3.15, we may moreover assume that (aij , p) = 1.

One can show that there exists a decomposition

Sord(nl,ψ | K) = Sord(nl,ψ | K)old ⊕ Sord(nl,ψ | K)new , (4.2)

which does not necessarily hold if we take coefficients in Λ instead of K.

Definition 4.3. Set

H(F , l | K) := {H ∈ Sord(nl,ψ | K)new |H = G − uF −vF(lz),

with G ∈ Sord(nl,ψ |Λ), u, v ∈ K} .

The congruence module for F is

C(F , l | K) := H(F , l | K)/(Sord(nl,ψ | K)new ∩ Sord(nl,ψ |Λ)),

and it measures how far the direct sum decomposition (4.2) fails to be a direct
sum over Λ (see §4.3 for more information on the congruence module).

Proof of Theorem 3.28. Let T denote the ring generated over Λ by the Hecke
operators T (m), for m prime to l, in EndK(Sord(nl,ψ | K)new). Set

IF = Ann(C(F , l | K)) ⊆ T .

Note that since
T (m)− c(m,F)(X) ∈ IF (4.3)

for each ideal m prime to l, we have that T /IF ' Λ/bF,l for some ideal bF,l ⊆ Λ.

Let {Gi(aijz)}i,j be a special basis for Sord(nl,ψ | K)new. By our choice4 of l,
and as in Remark 4.1 or in §4.1, Carayol’s Theorem and Theorem 3.11 imply
that there exists a Λ-adic representation %Gi(aij) : GF → GL2(K) attached to
Gi(aijz).

Endow the finite dimensional K-vector space

A :=
∏
i,j

K ,

4We remark that l is not in the support of the modulus of the central character of any
specialization of Gi(aijz) (since l was taken coprime to n) and that it divides aijmi exactly
(by the definition (4.1) of the l-newspace). Thus hypothesis ii) of Theorem 2.3 with respect
to l and aijmi is satisfied for almost every specialization of Gi(aijz).
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where the product runs over the elements defining the special basis, with an
action of T by transport of structure. One can show that the map

T⊗K → A induced by T 7→
∏
i,j

c(OF , T (Gi(aijz))(X) (4.4)

is an isomorphism of T⊗K-modules. Let GF act on

W := A⊕A

by means of
⊕
%Gi(aijz) ⊗K. We obtain an odd representation

% : GF → GL2(T⊗K)

such that, for any q - nlp, one has

Tr(%)(Frobq) =
∏
i,j c(q,Gi(aijz))(X) =

=
∏
i,j c(OF , T (q)(Gi(aijz)))(X)

= T (q) ∈ T ,

where we have used the isomorphism T⊗K ' A given by (4.4) for the last
equality. Its associated odd pseudo-representation π has thus values in T. By
reduction modulo IF , we get an odd pseudo-representation π with values in
T /IF ' Λ/bF,l. Because of (4.3), for any q - nlp, we have

Tr(π)(Frobq) = T (q) ≡ c(q,F)(X) ∈ Λ/bF,l .

Choose a prime ideal bF,l ⊆ Q ⊆ Λ. Let πQ denote the pseudo-representation
π reduced modulo Q. By Lemma 3.3, associated to πQ there exists an odd
representation

%Q : GF → GL2(OQ) ,

where OQ denotes the integral closure of Λ/Q in its field of fractions, such that
for any q - nlp, we have

Tr(%Q)(Frobq) = c(q,F)(X) ∈ Λ/Q .

The proof continues with a technical argument to ensure that, by making dis-
tinct choices of l, we may find infinitely many distinct primes bF,l ⊆ Q ⊆ Λ.
One then concludes by patching all the representations %Q together by means
of Theorem 3.11. We give some of the ideas used to show the existence of this
infinite set of primes Q in §4.3.

4.3 On the existence of infinitely many primes Q

Keep the notations and assumptions (on Λ and K, and on l, p, n) of the previous
section. The idea is to gain control on the size of bF,l, so that the existence
of infinitely many primes bF,l ⊆ Q ⊆ Λ can be guaranteed. To make precise
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what we mean by “control on the size” let us introduce some notation. For a
fractional ideal a of K, define

div(a) :=
∑

vPi(a)Pi

where the sum is taken over prime ideals Pi of height one and vPi denotes the
discrete valuation at Pi. In the proposition below, we will show that there exists
a fractional ideal aF,l of K such that C(F , l | K) ' aF,l/Λ. It then follows from
the definition of bF,l that

−div(bF,l) ≤ div(aF,l) .

Thus, control on aF,l will provide control on bF,l. This is achieved in the next
proposition (see also the conjecture below).

Proposition 4.4. [Wil88, Thm. 1.6.1] Let

wl := wl(X) := (α2
l −ψ(l))(β2

l −ψ(l)) =

= −ψ(l)(c(l,F)(X)2 −ψ(l)(1 +N(l))2) ∈ Λ ,

where αl := αl(X) and βl := βl(X) are the roots of x2−c(l,F)(X)x+ψ(l)N(l).
There exists a fractional ideal aF,l of K such that C(F , l | L) ' aF,l/Λ and

div(w−1
l ) ≤ div(aF,l) ≤ div(w−1

l ) + div(V ) + cdiv(1 +N(l)) , (4.5)

where V ∈ Λ and c ∈ Z are both independent of l.

Conjecture 4.5. [Wil88, p. 555] For P of Λ not above p, we have vP (w−1
l ) =

vP (aF,l).

Ideas on the proof of Proposition 4.4. Let us prove the left inequality of (4.5).
This amounts to showing that wl annihilates the image of the injective map

γ : C(F , l | K)→ K/Λ , γ(H) = u ,

where H = G − uF −vF(lz) is as in Definition 4.3. By Lemma 4.6 below, we
have that Sord(nl,ψ | K)new is the kernel of the operator T (l)2 − ψ(l). Define
the operator U(l) := (α2

l − T (l)2)(β2
l − T (l)2) and consider the equalities

wlH = U(l)(H) = U(l)(G) ∈ Sord(nl,ψ |Λ) . (4.6)

The first equality is due to the fact that H is an element of Sord(nl,ψ | K)new,
and the second equality follows from the fact that U(l)(F) = U(l)(F(lz)) = 0. In
particular, we have that ωlH ∈ Sord(nl,ψ |Λ). Taking c(OF , ·)(X) coefficients
to the equality

wlG − wluF −wlvF(lz) = wlH
we obtain

−wlu = −wlu · c(OF ,F)(X)− wlv · c(OF ,F(lz))(X) ≡
≡ c(OF , wlH)(X) ≡ 0 (mod Λ) .

The other inequality requires a lot of deep and hard work.
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Lemma 4.6. [Wil88, Lem. 1.4.5] Let k ≥ 2, let q be a prime not dividing n,
let ψ be defined modulo n, and let f ∈ Sord

k (nq, ψ) be a normalized Hecke eigen-
form. Then f is new with respect to l if and only if c(q, f)2 −ψ(q)N(q)k−2 = 0.
In this case, f is locally (unramified) special at q.

Acknowledgements. Thanks to Victor Rotger, the coordinator of the
series of talks, for many discussions, explanations, and corrections during the
writing of this note.
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