Galois representations associated to ordinary Hilbert modular forms: Wiles' theorem

Francesc Fité

September 21, 2020

Abstract

These are the notes of a talk given by the author at the STNB in January of 2015. It was the fourth talk in a series of five talks coordinated by Victor Rotger devoted to Galois representations attached to modular forms.

Contents

1 Introduction 1
2 General notations and statement of the result 2
3 Main notions for the proof 4
3.1 Pseudo-representations 4
3.2 The space of p-stabilized modular forms 8
$3.3 \quad \Lambda$-adic modular forms 10
4 Sketch of the proof 13
4.1 Warm up: the proof for $F=\mathbb{Q}$ 13
4.2 The general case 14
4.3 On the existence of infinitely many primes Q 17

1 Introduction

The goal of this talk is to present Wiles' theorem on the existence of Galois representations associated to ordinary Hilbert modular forms of parallel weight $k \geq 1$ attached to a totally real number field F (see $\S 2$ for a precise statement), and to sketch the proof of the result.

The theorem follows from a result on the existence of Λ-adic representations attached to Λ-adic modular forms (due to Hida for $F=\mathbb{Q}$ and to Wiles in general; see Theorem 3.28), a lifting theorem of classical modular forms to Λ adic modular forms (due to Hida for $k \geq 2$ and $F=\mathbb{Q}$, and to Wiles for $k \geq 1$
and general F; see Theorem 3.27), and the theorem of Carayol that we have seen in the third talk (see Theorem 2.3).

Wiles' proof of Theorem 3.28 relies on his theory of pseudo-representations, which we will also introduce. A funny aspect (which we will treat) of Wiles' method is that, in the case $F=\mathbb{Q}$, it permits to immediately deduce the results of Deligne/Deligne-Serre (seen in the first and the second talks) for weights $k \geq 2$ and $k=1$ from the classical theory of Eichler-Shimura for weight $k=2$.

In a subsequent paper, Taylor [Tay89] removed the ordinarity hypothesis establishing the existence of Galois representations associated to (non-necessarily ordinary) Hilbert modular forms attached to a totally real number field F of even degree $d:=[F: \mathbb{Q}]$ and of (non-necessarily parallel) weight $k=\left(k_{1}, \ldots, k_{d}\right)$ with $k_{j} \geq 2$ for $j=1, \ldots, d$.

We note that Lafferty's [Laf] presentation of Wiles' theorem has been useful at several passages.

2 General notations and statement of the result

Let F be a totally real field and \mathcal{O}_{F} its ring of integers. Set $d:=[F: \mathbb{Q}]$, and write h for its strict class number and \mathfrak{d} for its different. Let $\left\{\mathfrak{t}_{\gamma}\right\}_{\gamma=1, \ldots, h}$ be a set of ideal representatives of the strict ideal classes of F. For $k \geq 1$, an integral ideal \mathfrak{n} of \mathcal{O}_{F}, and a character $\psi_{0}:\left(\mathcal{O}_{F} / \mathfrak{n}\right)^{*} \rightarrow \overline{\mathbb{Q}}^{*}$, we denote by $S_{k}\left(\mathfrak{n}, \psi_{0}\right)$ the space of cuspidal forms

$$
\mathbf{f}:=\left(f_{1}, \ldots, f_{h}\right) \in \prod_{\gamma=1}^{h} S_{k}\left(\Gamma\left(\mathfrak{t}_{\gamma} \mathfrak{d}, \mathfrak{n}\right), \psi_{0}\right)
$$

Here, $f_{\gamma}: \mathbb{H}^{d} \rightarrow \mathbb{C}$, for $\gamma \in\{1, \ldots, h\}$, is a Hilbert cuspidal form of parallel weight $k \geq 1$, character ψ_{0}, and level
$\Gamma\left(\mathfrak{t}_{\gamma} \mathfrak{d}, \mathfrak{n}\right):=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(F) \right\rvert\, a, d \in \mathcal{O}_{F}^{*}, b \in t_{\gamma}^{-1} \mathfrak{d}^{-1}, c \in \mathfrak{t}_{\gamma} \mathfrak{d} \mathfrak{n}, a d-b c \in \mathcal{O}_{F}^{*}\right\}$
in the sense of the third talk. Here, \mathbb{H} denotes Poincaré upper half plane.
We saw that, for each $\gamma \in\{1, \ldots, h\}$, we can represent f_{γ} by its Fourier expansion

$$
f_{\gamma}\left(z_{1}, \ldots, z_{d}\right)=\sum_{0 \ll \mu \in \mathfrak{t}_{\gamma}} a_{\gamma}(\mu) e^{2 \pi i\left(\sum_{j=1}^{d} \mu_{j} z_{j}\right)}, \quad \text { for }\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{H}^{d}
$$

In the sum, μ runs over totally positive elements of the lattice \mathfrak{t}_{γ}, and μ_{1}, \ldots, μ_{d} denote the images of μ by the d distinct embeddings of F into \mathbb{C}.

Let $\mathfrak{a} \subseteq \mathcal{O}_{F}$ be a nonzero integral ideal. Then (by definition) there exist $\gamma \in\{1, \ldots, h\}$ and a totally positive $\mu \in \mathfrak{t}_{\gamma}$ such that $\mathfrak{a}=\mu \mathfrak{t}_{\gamma}^{-1}$. For a fractional ideal \mathfrak{a} of F, the numbers

$$
c(\mathfrak{a}, \mathbf{f}):= \begin{cases}a_{\gamma}(\mu) N\left(\mathfrak{t}_{\gamma}\right)^{-k / 2} & \text { if } \mathfrak{a}=(\mu) \mathfrak{t}_{\gamma}^{-1} \text { is integral } \\ 0 & \text { otherwise }\end{cases}
$$

depend neither on the choice of the \mathfrak{t}_{γ} 's nor on the choice of μ. The Dirichlet series associated to the cuspidal form \mathbf{f} is then given by

$$
D(\mathbf{f}, s):=\sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{F}} c(\mathfrak{a}, \mathbf{f}) N(\mathfrak{a})^{-s} .
$$

There is a theory of Hecke operators on $S_{k}\left(\mathfrak{n}, \psi_{0}\right)$ given by $\left\{T_{\mathfrak{n}}(\mathfrak{a}), S_{\mathfrak{n}}(\mathfrak{a})\right\}$, where $\mathfrak{a} \subseteq \mathcal{O}_{F}$ is an integral ideal (see [Shi78, §2]). Let $\psi: I_{\mathfrak{n} \infty} \rightarrow \overline{\mathbb{Q}}^{*}$ be a ray class character of modulus $\mathfrak{n} \infty$, where ∞ is the product of the infinite places of F, that restricts to ψ_{0} on $\left(\mathcal{O}_{F} / \mathfrak{n}\right)^{*}$. Then set ${ }^{1}$

$$
S_{k}(\mathfrak{n}, \psi):=\left\{\mathbf{f} \in S_{k}\left(\mathfrak{n}, \psi_{0}\right) \mid S_{\mathfrak{n}}(\mathfrak{a})(\mathbf{f})=\psi(\mathfrak{a}) \mathbf{f} \text { for all } \mathfrak{a} \subseteq \mathcal{O}_{F}\right\}
$$

Suppose from now on that $\mathbf{f} \in S_{k}(\mathfrak{n}, \psi)$ is a newform (that is, it is normalized meaning that $c\left(\mathcal{O}_{F}, \mathbf{f}\right)=1$, it is new at level \mathfrak{n}, and $T_{\mathfrak{n}}(\mathfrak{a}) \mathbf{f}=c(\mathfrak{a}, \mathbf{f}) \mathbf{f}$ for every integral ideal $\mathfrak{a} \subseteq \mathcal{O}_{F}$). Let $K_{\mathbf{f}}$ denote the number field generated by the set of eigenvalues $\{c(\mathfrak{a}, \mathbf{f})\}_{\mathfrak{a} \subseteq \mathcal{O}_{F}}$ and denote by $\mathcal{O}_{\mathbf{f}}$ its ring of integers. Let λ be a prime of $\mathcal{O}_{\mathbf{f}}$ and denote by $\mathcal{O}_{\mathbf{f}, \lambda}$ the completion of $\mathcal{O}_{\mathbf{f}}$ at λ.

Definition 2.1. We say that \mathbf{f} is ordinary at λ if for each prime $\mathfrak{p} \subseteq \mathcal{O}_{F}$ dividing the norm $N(\lambda)$ the equation

$$
x^{2}-c(\mathfrak{p}, \mathbf{f}) x+\psi(\mathfrak{p}) N(\mathfrak{p})^{k-1}
$$

has at least one root which is a unit $\bmod \lambda$.
Let us write G_{F} for the absolute Galois group $\operatorname{Gal}(\bar{F} / F)$.
Theorem 2.2. [Wil88, Thm. 1] Let $\mathbf{f} \in S_{k}(\mathfrak{n}, \psi)$ be a newform with $k \geq 1$. If \mathbf{f} is ordinary at λ, there exists a continuous irreducible representation

$$
\begin{equation*}
\varrho_{\mathbf{f}, \lambda}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{\mathbf{f}, \lambda}\right) \tag{2.1}
\end{equation*}
$$

unramified outside $\mathfrak{n} N(\lambda)$ and such that, for all prime ideals $\mathfrak{q} \nmid \mathfrak{n} N(\lambda)$, one has

$$
\begin{aligned}
& \operatorname{Tr}\left(\varrho_{\mathbf{f}, \lambda}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=c(\mathfrak{q}, \mathbf{f}) \\
& \operatorname{det}\left(\varrho_{\mathbf{f}, \lambda}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\psi(\mathfrak{q}) N(\mathfrak{q})^{k-1}
\end{aligned}
$$

In the third talk, we saw the following result of Carayol. It will be a fundamental tool in the proof of the above theorem.

Theorem 2.3. [Car86, Thm. (B)] For a newform $\mathbf{f} \in S_{k}(\mathfrak{n}, \psi)$ with $k \geq 2$ (not necessarily ordinary at λ), there exists a representation as in (2.1) if either
i) $d:=[F: \mathbb{Q}]$ is odd; or
ii) d is even and there is a prime ideal \mathfrak{p} dividing exactly \mathfrak{n} which does not divide the conductor of ψ.

[^0]In fact, the above is a weaker statement than the one in Carayol's theorem, but it will suffice for deducing Theorem 2.2. One could relax $i i$), by just requiring that for some prime ideal \mathfrak{p} dividing \mathfrak{n}, we have that \mathbf{f} is special or supercuspidal locally at \mathfrak{p}. One can indeed show that if $i i$) holds, then \mathbf{f} is unramified special at \mathfrak{p} (see Lemma 4.6).

The easiest case covered by Theorem 2.2 and not by Theorem 2.3 corresponds to taking \mathbf{f} attached to a real quadratic field F and with trivial level $\mathfrak{n}=\mathcal{O}_{F}$.

3 Main notions for the proof

We introduce the three main notions required for the proof of Theorem 2.2: pseudo-representations, p-stabilized modular forms, and Λ-adic modular forms.

3.1 Pseudo-representations

The first ingredient in the proof of Theorem 2.2 is the notion of pseudo-representation.
Definition 3.1. Let G be a profinite group and let R be a commutative topological integral domain (with unity). A pseudo-representation of G into R is a triple $\pi=\left(A_{\pi}, D_{\pi}, C_{\pi}\right)$ of continuous maps

$$
A_{\pi}: G \rightarrow R, \quad D_{\pi}: G \rightarrow R, \quad C_{\pi}: G \times G \rightarrow R
$$

satisfying the following conditions for all elements $g, g_{i} \in G$:
i) $A_{\pi}\left(g_{1} g_{2}\right)=A_{\pi}\left(g_{1}\right) A_{\pi}\left(g_{2}\right)+C_{\pi}\left(g_{1}, g_{2}\right)$.
ii) $D_{\pi}\left(g_{1} g_{2}\right)=D_{\pi}\left(g_{1}\right) D_{\pi}\left(g_{2}\right)+C_{\pi}\left(g_{1}, g_{2}\right)$.
iii) $C_{\pi}\left(g_{1} g_{2}, g_{3}\right)=A_{\pi}\left(g_{1}\right) C_{\pi}\left(g_{2}, g_{3}\right)+D_{\pi}\left(g_{2}\right) C_{\pi}\left(g_{1}, g_{3}\right)$.
iv) $C_{\pi}\left(g_{1}, g_{2} g_{3}\right)=A_{\pi}\left(g_{3}\right) C_{\pi}\left(g_{1}, g_{2}\right)+D_{\pi}\left(g_{2}\right) C_{\pi}\left(g_{1}, g_{3}\right)$.
v) $A_{\pi}(1)=D_{\pi}(1)=1$.
vi) $C_{\pi}(g, 1)=C_{\pi}(1, g)=0$.
vii) $C_{\pi}\left(g_{1}, g_{2}\right) C_{\pi}\left(g_{3}, g_{4}\right)=C_{\pi}\left(g_{1}, g_{4}\right) C_{\pi}\left(g_{3}, g_{2}\right)$.

Remark 3.2. Note that C_{π} is determined by both A_{π} and D_{π} (as follows from i) and ii)). Its consideration responds to merely notational purposes.

Lemma 3.3. One has:

- If $\varrho: G \rightarrow \mathrm{GL}_{2}(R)$ is a representation with

$$
\varrho(g)=\left(\begin{array}{ll}
a(g) & b(g) \\
c(g) & d(g)
\end{array}\right),
$$

then $\pi_{\rho}:=(A, D, C)$ with

$$
A(g):=a(g), \quad D(g):=d(g), \quad C\left(g_{1}, g_{2}\right):=b\left(g_{1}\right) c\left(g_{2}\right)
$$

defines a pseudo-representation.

- Conversely, if $\pi=(A, D, C)$ is a pseudo-representation of G into R such that $C=0$ (resp. such that there exist $g_{1}, g_{2} \in G$ with $C\left(g_{1}, g_{2}\right) \in R^{*}$), then
$\varrho_{\pi}(g):=\left(\begin{array}{cc}A(g) & 0 \\ 0 & D(g)\end{array}\right) \quad\left(\begin{array}{ll}\text { resp. } & \left.\varrho_{\pi}(g):=\left(\begin{array}{cc}A(g) & C\left(g, g_{2}\right) / C\left(g_{1}, g_{2}\right) \\ C\left(g_{1}, g\right) & D(g)\end{array}\right)\right), ~\left(\begin{array}{c}\end{array}\right) .\end{array}\right.$
defines a representation $\varrho_{\pi}: G \rightarrow \mathrm{GL}_{2}(R)$.
Remark 3.4. The notion of pseudo-representation makes precise the naïve idea that a representation should consist of a tuple of functions $G \rightarrow R$ satisfying a series of compatibility relations. To illustrate that the set of compatibility conditions in Definition 3.1 is the right one, let us prove that the map

$$
\varrho_{\pi}: G \rightarrow \mathrm{GL}_{2}(R)
$$

defined in Lemma 3.3 from a pseudo-representation $\pi=(A, D, C)$ is indeed a homomorphism. We will just consider the interesting case in which there exist $g_{1}, g_{2} \in G$ with $C\left(g_{1}, g_{2}\right) \in R^{*}$, the other being obvious. Indeed,

$$
\begin{aligned}
\varrho_{\pi}\left(h_{1} h_{2}\right) & =\left(\begin{array}{cc}
A\left(h_{1} h_{2}\right) & C\left(h_{1} h_{2}, g_{2}\right) / C\left(g_{1}, g_{2}\right) \\
C\left(g_{1}, h_{1} h_{2}\right) & D\left(h_{1} h_{2}\right)
\end{array}\right) \\
& \stackrel{i), \ldots, i v)}{=}\left(\begin{array}{cc}
A\left(h_{1}\right) A\left(h_{2}\right)+C\left(h_{1}, h_{2}\right) & \frac{A\left(h_{1}\right) C\left(h_{2}, g_{2}\right)+D\left(h_{2}\right) C\left(h_{1}, g_{2}\right)}{C\left(g_{1}, g_{2}\right)} \\
A\left(h_{2}\right) C\left(g_{1}, h_{1}\right)+D\left(h_{1}\right) C\left(g_{1}, h_{2}\right) & D\left(h_{1}\right) D\left(h_{2}\right)+C\left(h_{2}, h_{1}\right)
\end{array}\right) \\
& \stackrel{v i i)}{=} \\
& \left(\begin{array}{cc}
A\left(h_{1}\right) A\left(h_{2}\right)+\frac{C\left(h_{1}, g_{2}\right) C\left(g_{1}, h_{2}\right)}{C\left(g_{1}, g_{2}\right)} & \frac{A\left(h_{1}\right) C\left(h_{2}, g_{2}\right)+D\left(h_{2}\right) C\left(h_{1}, g_{2}\right)}{C\left(g_{1}, g_{2}\right)} \\
A\left(h_{2}\right) C\left(g_{1}, h_{1}\right)+D\left(h_{1}\right) C\left(g_{1}, h_{2}\right) & D\left(h_{1}\right) D\left(h_{2}\right)+\frac{C\left(h_{2}, g_{2}\right) C\left(g_{1}, h_{1}\right)}{C\left(g_{1}, g_{2}\right)}
\end{array}\right) \\
& = \\
& \left(\begin{array}{cc}
A\left(h_{1}\right) & C\left(h_{1}, g_{2}\right) / C\left(g_{1}, g_{2}\right) \\
C\left(g_{1}, h_{1}\right) & D\left(h_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
A\left(h_{2}\right) & C\left(h_{2}, g_{2}\right) / C\left(g_{1}, g_{2}\right) \\
C\left(g_{1}, h_{2}\right) & D\left(h_{2}\right)
\end{array}\right) \\
\varrho_{\pi}\left(h_{1}\right) \varrho_{\pi}\left(h_{2}\right) &
\end{aligned}
$$

In particular, as a consequence of the previous lemma, one has that if R is field, then every pseudo-representation in R comes from a representation with values in $\mathrm{GL}_{2}(R)$. In view of the previous lemma, the following definition is natural.

Definition 3.5. The trace and determinant of a pseudo-representation $\pi=$ $\left(A_{\pi}, D_{\pi}, C_{\pi}\right)$ of G into R are defined by

$$
\operatorname{Tr}(\pi)(g):=A_{\pi}(g)+D_{\pi}(g), \quad \operatorname{det}(\pi)(g):=A_{\pi}(g) D_{\pi}(g)-C_{\pi}(g, g) .
$$

Remark 3.6. Let π_{ϱ} be the pseudo-representation attached to a representation ϱ. Then

$$
\operatorname{Tr}\left(\pi_{\varrho}\right)=\operatorname{Tr}(\varrho), \quad \operatorname{det}\left(\pi_{\varrho}\right)=\operatorname{det}(\varrho) .
$$

Recall that a representation $\varrho: G \rightarrow \mathrm{GL}_{2}(R)$ is called odd if there exists $c \in G$ of order 2 , such that

$$
\varrho(c)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

Definition 3.7. We say that $\pi=\left(A_{\pi}, D_{\pi}, C_{\pi}\right)$ is an odd pseudo-representation if there exists $c \in G$ of order 2 such that, for every $g \in G$, we have that

$$
A_{\pi}(c)=-1, \quad D_{\pi}(c)=1, \quad C_{\pi}(g, c)=0, \quad C_{\pi}(c, g)=0
$$

Lemma 3.8. If 2 is invertible in R, then an odd pseudo-representation π is determined by $\operatorname{Tr}(\pi)$.

Proof. Indeed:

$$
\begin{aligned}
A_{\pi}(g) & =\frac{1}{2}\left(A_{\pi}(g)+D_{\pi}(g)-\left(D_{\pi}(g)-A_{\pi}(g)\right)\right)= \\
& =\frac{1}{2}\left(A_{\pi}(g)+D_{\pi}(g)-\left(D_{\pi}(g c)+A_{\pi}(g c)\right)\right)=\frac{1}{2}(\operatorname{Tr}(\pi)(g)-\operatorname{Tr}(\pi)(g c)), \\
D_{\pi}(g) & =\frac{1}{2}\left(A_{\pi}(g)+D_{\pi}(g)+\left(D_{\pi}(g)-A_{\pi}(g)\right)\right)= \\
& =\frac{1}{2}\left(A_{\pi}(g)+D_{\pi}(g)+\left(D_{\pi}(g c)+A_{\pi}(g c)\right)\right)=\frac{1}{2}(\operatorname{Tr}(\pi)(g)+\operatorname{Tr}(\pi)(g c)), \\
C_{\pi}\left(g_{1}, g_{2}\right) & =A_{\pi}\left(g_{1} g_{2}\right)-A_{\pi}\left(g_{1}\right) A_{\pi}\left(g_{2}\right) .
\end{aligned}
$$

Observe that by the previous lemma, if R is a field of characteristic 0 , then there is a 1-1 correspondence between odd semisimple representations into $\mathrm{GL}_{2}(R)$ and odd pseudo-representations in R.

Remark 3.9. We fix from now on an algebraic closure of the fraction field $\mathbb{Q}_{p}((X))$ of $\mathbb{Z}_{p}[[X]]$, where p is a prime. Any algebraic extension of $\mathbb{Q}_{p}((X))$ is assumed to be contained in this fixed algebraic closure. Let \mathcal{K} denote a finite algebraic extension of $\mathbb{Q}_{p}((X))$ and let Λ denote the integral closure of $\mathbb{Z}_{p}[[X]]$ in \mathcal{K}. We will be concerned with Galois pseudo-representations of G_{F} into $R=\Lambda$.

Remark 3.10. There are two types of prime ideals P of height 1 in Λ. On the one hand, we have those P lying over p. There are only a finite number of them, and in this case Λ / P is a finite extension of $\mathbb{F}_{p}[[X]]$. On the other hand, we have those P not dividing p. In this case, Λ / P is a finite extension of \mathbb{Z}_{p}.

Theorem 3.11. [Wil88, Lem. 2.2.3] Let $\left\{P_{n}\right\}_{n=1}^{\infty}$ be a sequence of distinct height 1 prime ideals of Λ. Let K_{n} denote the field of fractions of Λ / P_{n}, and let \mathcal{O}_{n} be the integral closure of Λ / P_{n} in K_{n}. Suppose that for each $n \geq 1$, there exists a continuous odd representation

$$
\varrho_{n}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{n}\right)
$$

that is unramified outside $\mathfrak{n} p$, for some integral ideal $\mathfrak{n} \subseteq \mathcal{O}_{F}$. Furthermore, suppose that for every prime $\mathfrak{q} \nmid \mathfrak{n} p$, there exist $c_{\mathfrak{q}}(X), \varepsilon_{\mathfrak{q}}(X) \in \Lambda$ such that

$$
\begin{aligned}
& \operatorname{Tr}\left(\varrho_{n}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right) \equiv c_{\mathfrak{q}}(X) \quad\left(\bmod P_{n}\right) \\
& \operatorname{det}\left(\varrho_{n}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right) \equiv \varepsilon_{\mathfrak{q}}(X) \quad\left(\bmod P_{n}\right) .
\end{aligned}
$$

Then there exists a continuous odd representation $\varrho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{K})$ unramified outside $\mathfrak{n} p$ and such that

$$
\begin{aligned}
& \operatorname{Tr}(\varrho)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=c_{\mathfrak{q}}(X) \\
& \operatorname{det}(\varrho)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\varepsilon_{\mathfrak{q}}(X)
\end{aligned}
$$

for every prime $\mathfrak{q} \nmid \mathfrak{n} p$. Furthermore, ϱ is absolutely irreducible if and only if ϱ_{n} is for some n.

Remark 3.12. The notion of continuity for a Galois representation $\varrho: G_{F} \rightarrow$ $\mathrm{GL}_{2}(\mathcal{K})$ on a 2 -dimensional \mathcal{K}-vector space is not relative to the topology of $\mathrm{GL}_{2}(\mathcal{K})$ as a subspace of $\mathcal{K} \times \mathcal{K} \times \mathcal{K} \times \mathcal{K}$. Before proceeding to the proof of Theorem 3.11, let us describe the notion of continuity that is used in its statement. Recall that the ring Λ is complete, local, Noetherian, and of Krull dimension 2. Let \mathfrak{m} denote its maximal ideal. A lattice of \mathcal{K}^{2} is a sub- Λ module L of \mathcal{K}^{2} of finite type over Λ such that $L \otimes_{\Lambda} \mathcal{K}=\mathcal{K}^{2}$. We say that ϱ is continuous if there exists a lattice L of \mathcal{K}^{2} that is stable under ϱ and such that

$$
\varrho: G_{F} \rightarrow \operatorname{Aut}_{\Lambda}(L)
$$

is continuous with respect to the projective limit topology (=Krull topology) on

$$
\operatorname{Aut}_{\Lambda}(L) \simeq \lim _{\leftarrow} \operatorname{Aut}\left(L / \mathfrak{m}^{j} L\right)
$$

Proof of Theorem 3.11. First observe that by hypothesis and the Cebotarev density Theorem, $\operatorname{Tr}\left(\varrho_{n}\right)$ takes values in Λ / P_{n}. Let π_{n} be the pseudo-representation with values (in principle) in \mathcal{O}_{n} attached by Lemma 3.3 to the representation ϱ_{n}. Note that $\operatorname{Tr}\left(\pi_{n}\right)$ coincides with $\operatorname{Tr}\left(\varrho_{n}\right)$ by Remark 3.6, and thus it takes values in Λ / P_{n}. But since π_{n} is odd (as ϱ_{n} is), it is determined by $\operatorname{Tr}\left(\pi_{n}\right)$ as in the proof of Lemma 3.8 and it takes values in the same ring as $\operatorname{Tr}\left(\pi_{n}\right)$, that is, π_{n} takes values in Λ / P_{n} (this is one of the key points of considering pseudorepresentations!). Let us write $Q_{r}=P_{1} \cap \cdots \cap P_{r}$. Suppose that we have constructed a pseudo-representation α_{r} in Λ / Q_{r} such that $\alpha_{r} \equiv \pi_{n}\left(\bmod P_{n}\right)$ for $1 \leq n \leq r$ (to start the induction process, just take $\alpha_{1}:=\pi_{1}$). By the hypothesis (together with the Cebotarev density theorem), we have that for $1 \leq n \leq r$

$$
\operatorname{Tr}\left(\alpha_{r}\right) \equiv \operatorname{Tr}\left(\pi_{n}\right)=\operatorname{Tr}\left(\varrho_{n}\right) \equiv \operatorname{Tr}\left(\varrho_{r+1}\right)=\operatorname{Tr}\left(\pi_{r+1}\right) \quad\left(\bmod \left(P_{n}, P_{r+1}\right)\right)
$$

This implies

$$
\operatorname{Tr}\left(\alpha_{r}\right) \equiv \operatorname{Tr}\left(\pi_{r+1}\right) \quad\left(\bmod \left(Q_{r}, P_{r+1}\right)\right)
$$

But by Lemma 3.8, an odd pseudo-representation is determined by its trace, and thus

$$
\alpha_{r} \equiv \pi_{r+1} \quad\left(\bmod \left(Q_{r}, P_{r+1}\right)\right)
$$

Thanks to this congruence and using the exact sequence

$$
\begin{equation*}
0 \rightarrow \Lambda / Q_{r+1} \rightarrow \Lambda / Q_{r} \oplus \Lambda / P_{r+1} \rightarrow \Lambda /\left(Q_{r}, P_{r+1}\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

we may lift the pseudo-representation $\alpha_{r} \oplus \pi_{r+1}$ of G_{F} into $\Lambda / Q_{r} \oplus \Lambda / P_{r+1}$ to a pseudo-representation α_{r+1} of G_{F} into Λ / Q_{r+1}, with the property that $\alpha_{r+1} \equiv$ $\pi_{n}\left(\bmod P_{n}\right)$ for $1 \leq n \leq r+1$. Then $\lim _{\leftarrow} \alpha_{n}$ is a pseudo-representation of G_{F} into $\lim _{\leftarrow} \Lambda / P_{n}$. This projective limit is canonically isomorphic to Λ, since by hypothesis $\left\{P_{n}\right\}_{n=1}^{\infty}$ is an infinite set of distinct height 1 prime ideals and thus whose intersection is 0 . By Lemma 3.3, taking coefficients over \mathcal{K}, the pseudorepresentation $\lim _{\leftarrow} \alpha_{n}$ defines a representation of G_{F}, which has the desired properties.

Remark 3.13. As already mentioned, a key point of the proof is the following: even when the representation ϱ_{n} of the theorem is has coefficients in the integral closure \mathcal{O}_{n} of Λ / P_{n}, the attached pseudo-representation π_{n} takes values in Λ / P_{n}. In the process of "patching together" the π_{n}, we make use of the exact sequence (3.1), which we have for the rings Λ / P_{n} (without having to worry about their integral closures).

3.2 The space of p-stabilized modular forms

For a subring A of \mathbb{C}, define

$$
\begin{equation*}
S_{k}(\mathfrak{n}, \psi \mid A):=\left\{\mathbf{g} \in S_{k}(\mathfrak{n}, \psi) \mid c(\mathfrak{a}, \mathbf{g}) \in A \text { for all } \mathfrak{a} \subseteq \mathcal{O}_{F}\right\} \tag{3.2}
\end{equation*}
$$

Fix an algebraic closure $\overline{\mathbb{Q}}\left(\right.$ resp. $\left.\overline{\mathbb{Q}}_{p}\right)$ of $\mathbb{Q}\left(\right.$ resp. $\left.\mathbb{Q}_{p}\right)$ and let \mathbb{C}_{p} denote the completion of $\overline{\mathbb{Q}}_{p}$ with respect to the normalized absolute value. Fix an embedding $i_{p}: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}$. Without any further word, any algebraic extension of $\mathbb{Q}\left(\right.$ resp. $\left.\mathbb{Q}_{p}\right)$ that we consider will be assumed to belong to $\overline{\mathbb{Q}}$ (resp. $\overline{\mathbb{Q}}_{p}$).

The space $S_{k}(\mathfrak{n}, \psi)$ has a basis with coefficients in $\mathbb{Z}[\psi]$. For any subring $\mathbb{Z}_{p}[\psi] \subseteq \mathcal{O} \subseteq \mathbb{C}_{p}$, we thus define

$$
S_{k}(\mathfrak{n}, \psi \mid \mathcal{O}):=S_{k}(\mathfrak{n}, \psi \mid \mathbb{Z}[\psi]) \otimes_{\mathbb{Z}[\psi]} \mathcal{O}
$$

We assume until the end of this section that the level is of the form $\mathfrak{n} p^{r}$ for $r \geq 1$ and that \mathcal{O} is a finite extension of \mathbb{Z}_{p} containing $\mathbb{Z}[\psi]$. Since the level is understood, we will simply write $T(p)$ for the Hecke operator $T_{\mathfrak{n} p^{r}}(p)$. The Hida operator is defined by

$$
e:=\lim _{n \rightarrow \infty} T(p)^{n!}: S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right) \rightarrow S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)
$$

One can show that e is well-defined and an idempotent of $\operatorname{End}_{\mathcal{O}}\left(S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)\right)$. We define the space of p-stabilized cuspidal forms by

$$
S_{k}^{\mathrm{ord}}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right):=e S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)
$$

Remark 3.14. Let $\mathbf{f} \in S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$ be a newform of level $\mathfrak{m} \mid \mathfrak{n} p^{r}$ and weight $k \geq 2$. Then $e \mathbf{f}$ is nonzero if and only if \mathbf{f} is ordinary ${ }^{2}$ (i.e. $c(p, \mathbf{f})$ is a unit in \mathcal{O}).

[^1]In this case, $e \mathbf{f}$ is a newform of level $\mathfrak{m} \mathfrak{P}$, where \mathfrak{P} is the product of primes above p which do not divide \mathfrak{m}. The eigenvalue of $e \mathbf{f}$ for $\mathfrak{q} \nmid \mathfrak{P}$ is the same as for \mathbf{f}; the eigenvalue of $e \mathbf{f}$ for $\mathfrak{q} \mid \mathfrak{P}$ is the unit root of $x^{2}-c(\mathfrak{q}, \mathbf{f}) x+\psi(\mathfrak{q}) N(\mathfrak{q})^{k-1}$.

Remark 3.15. Suppose that $\mathbf{f} \in S_{k}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$ is a newform of level $\mathfrak{m} \mid \mathfrak{n} p^{r}$, that $\mathfrak{q} \mid p^{r}$, and that $\mathfrak{q m} \mid \mathfrak{n} p^{r}$. Then $e \mathbf{f}(\mathfrak{q} \cdot)$ lies in the linear span of $e \mathbf{f}$. We deduce that $S_{k}^{\text {ord }}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$ is spanned by the set

$$
\left\{e \mathbf{f}_{i}\left(\mathfrak{q}_{i} \cdot\right) \mid \mathbf{f}_{i} \text { is a newform of level } \mathfrak{m}_{i},\left(\mathfrak{q}_{i}, p\right)=1, \mathfrak{m}_{i} \mathfrak{q}_{i} \mid \mathfrak{n} p^{r}\right\}
$$

We illustrate the previous two remarks with an example.
Example 3.16. Let $F=\mathbb{Q}$ and $N \geq 1$ with $(N, p)=1$. Let $f=\sum_{n \geq 1} c_{n} q^{n} \in$ $S_{k}\left(\Gamma_{0}(N), \psi\right)$ be an ordinary newform. Let α and β denote the roots of $x^{2}-$ $c_{p}(f) X+\psi(p) p^{k-1}$ and suppose that α is a unit.

The action of $T_{N p}(p)$ on q-expansions $g(q)=\sum_{n \geq 1} a_{n} q^{n}$ is well-known: by definition, one has that $T_{N p}(p)(g)=\sum_{n \geq 1} a_{n p} q^{n}$. Recall that

$$
S_{N p}(p): S_{k}\left(\Gamma_{0}(N p), \psi\right) \rightarrow S_{k}\left(\Gamma_{0}(N p), \psi\right), \quad S_{N p}(p)(g):=g\left(q^{p}\right)
$$

One easily checks that $T_{N p}(p)$ stabilizes the 2-dimensional subspace generated by f and $S_{N p}(p)(f)$ of $S_{2}\left(\Gamma_{0}(N p), \psi\right)$. In this basis, we have

$$
T_{N p}(p)=\left(\begin{array}{cc}
c_{p} & 1 \\
-\psi(p) p^{k-1} & 0
\end{array}\right) .
$$

The second column follows from the relation $T_{N p}(p) \circ S_{N p}(p)=i d$ and the first is due to the relation $T_{N}(p)=T_{N p}(p)+\psi(p) p^{k-1} S_{N p}(p)$ together with the fact that $T_{N}(p)(f)=c_{p} f$.

One readily checks that $f_{\alpha}(z):=f(z)-\beta f(p z)$ and $f_{\beta}(z):=f(z)-\alpha f(p z)$ are the eigenvectors of the matrix attached to $T_{N p}(p)$ (of eigenvalues α and β, respectively). From the equalities

$$
T_{N p}(p)\left(f_{\alpha}\right)=\alpha f_{\alpha}, \quad T_{N p}(p)\left(f_{\beta}\right)=\beta f_{\beta},
$$

it follows that $e f_{\alpha}(z)=f_{\alpha}(z)$ and that $e f_{\beta}(z)=0$. Solving the resulting two equations linear system, one deduces that

$$
e f(z)=\frac{\alpha}{\alpha-\beta} f_{\alpha}(z), \quad e(f(p z))=\frac{1}{\alpha-\beta} f_{\alpha}(z)
$$

$3.3 \quad \Lambda$-adic modular forms

Hypothesis 3.17. For simplicity, we assume from now on that p is a prime ≥ 3.
Let \mathbb{Q}_{∞} be the cyclotomic \mathbb{Z}_{p} extension of \mathbb{Q} and let $p^{e}=\left[F \cap \mathbb{Q}_{\infty}: \mathbb{Q}\right]$. Set $u:=(1+p)^{p^{e}}$. For each $r \geq 0$, we fix a root of unity ζ of order p^{r}. For $k \geq 1$ and $r \geq 0$, define the specialization map

$$
\nu_{k, r}: \mathbb{Z}_{p}[[X]] \rightarrow \mathbb{Z}_{p}[\zeta], \quad X \mapsto \zeta u^{k-2}-1
$$

Note that we may use $\nu_{k, r}$ to view $\mathbb{Z}_{p}[[X]] / \operatorname{ker}\left(\nu_{k, r}\right)$ as a finite extension of \mathbb{Z}_{p} in $\overline{\mathbb{Q}}_{p}$. Since $\mathbb{Z}_{p}[[X]]$ has no zero divisors, $\operatorname{ker}\left(\nu_{k, r}\right)$ is a prime ideal. It is the prime ideal generated by the minimal polynomial of $\zeta u^{k-2}-1$ over Λ.

Remark 3.18. As in Remark 3.9, let \mathcal{K} denote a finite extension of the fraction field $\mathbb{Q}_{p}((X))$ of $\mathbb{Z}_{p}[[X]]$, and let Λ denote the integral closure of $\mathbb{Z}_{p}[[X]]$ in \mathcal{K}. Suppose that \mathcal{K} and Λ are large enough so that $\mathbb{Z}_{p}[\psi][[X]] \subseteq \Lambda$. Since Λ is integral and finitely generated over $\mathbb{Z}_{p}[[X]]$, by the Going-up theorem of CohenSeidenberg there exists a prime ideal $P_{k, r} \subseteq \Lambda$ such that $P_{k, r} \cap \mathbb{Z}_{p}[[X]]=$ $\operatorname{ker}\left(\nu_{k, r}\right)$. We thus have a diagram

$$
\begin{array}{ccccc}
P_{k, r} & \subseteq & \Lambda & \subseteq & \mathcal{K} \\
\mid & & \mid & & \mid \\
\operatorname{ker}\left(\nu_{k, r}\right) & \subseteq & \mathbb{Z}_{p}[[X]] & \subseteq & \mathbb{Q}_{p}((X))
\end{array}
$$

Let $\mathcal{O}:=\Lambda \cap \overline{\mathbb{Q}}_{p}$ and $K:=\mathcal{K} \cap \overline{\mathbb{Q}}_{p}$, so that \mathcal{O} is the valuation ring of the finite extension K of \mathbb{Z}_{p} and $\mathbb{Z}_{p}[\psi] \subseteq \mathcal{O}$. The natural projection

$$
\nu: \Lambda \rightarrow \Lambda / P_{k, r} \subseteq \overline{\mathbb{Q}}_{p}
$$

is an \mathcal{O}-algebra homomorphism that extends $\nu_{k, r}$. However, ν depends on the choice of $P_{k, r}$ above $\operatorname{ker}\left(\nu_{k, r}\right)$. Let $\mathfrak{X}_{k, r}$ denote the set of all \mathcal{O}-algebra homomorphisms from Λ to $\overline{\mathbb{Q}}_{p}$ that restrict to $\nu_{k, r}$ on $\mathbb{Z}_{p}[[X]]$. Write

$$
\mathfrak{X}:=\bigcup_{r \geq 0, k \geq 1} \mathfrak{X}_{k, r} .
$$

Recall that for a fractional ideal \mathfrak{a} of F such that $(\mathfrak{a}, p)=1$, we can write

$$
N(\mathfrak{a})=u^{\alpha} \delta, \quad \text { with } \delta \in \mu_{p-1}, \alpha \in \mathbb{Z}_{p}
$$

Let $\psi: I_{\mathfrak{n} \infty} \rightarrow \overline{\mathbb{Q}}^{*}$ be as in $\S 2$. We define the following three characters

$$
\begin{array}{ll}
\psi: \lim _{\overleftarrow{t}} I_{\mathfrak{n} p^{t}} \rightarrow \Lambda, & \boldsymbol{\psi}(\mathfrak{a})=\psi(\mathfrak{a})(1+X)^{\alpha} \\
\varrho_{r}: I_{p^{r} \mathcal{O}_{F}} \rightarrow \overline{\mathbb{Q}}^{*}, & \varrho_{r}(\mathfrak{a}):=\zeta^{\alpha} \tag{3.3}\\
\omega: I_{p \mathcal{O}_{F}} \rightarrow \overline{\mathbb{Q}}^{*}, & \omega(\mathfrak{a})=N(\mathfrak{a}) / u^{\alpha}=\delta
\end{array}
$$

We will call ω the Teichmüller character.
Definition 3.19. A Λ-adic cuspidal form \mathcal{F} over F of level \mathfrak{n} and character $\psi: \lim _{\overleftarrow{t}} I_{\mathfrak{n} p^{t}} \rightarrow \Lambda$ is a collection of elements of Λ

$$
\{c(\mathfrak{a}, \mathcal{F})(X)\}_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{F}} \subseteq \Lambda,
$$

with the property that, for all but finitely many $k \geq 2$ and $r \geq 0$ and for all $\nu \in \mathfrak{X}_{k, r}$, there exists

$$
\mathbf{f}_{\nu} \in S_{k}\left(\mathfrak{n} p^{r}, \psi \varrho_{r} \omega^{2-k} \mid \mathcal{O}[\zeta]\right)
$$

whose associated Dirichlet series is

$$
D\left(\mathbf{f}_{\nu}, s\right)=\sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{F}} \nu(c(\mathfrak{a}, \mathcal{F})(X)) N(\mathfrak{a})^{-s}
$$

By abuse of notation, we will write $\nu(\mathcal{F})=\mathbf{f}_{\nu}$.
Definition 3.20. We denote by $\mathcal{S}(\mathfrak{n}, \boldsymbol{\psi} \mid \Lambda)$) the space of Λ-adic cuspidal forms of level \mathfrak{n} and character $\boldsymbol{\psi}$. Set

$$
\mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)=\bigcup_{t=0}^{\infty} \mathcal{S}\left(\mathfrak{n} p^{t}, \boldsymbol{\psi} \mid \Lambda\right)
$$

Remark 3.21. The specialization $\nu(\boldsymbol{\psi})$ and the central character ψ_{ν} of $\mathbf{f}_{\nu}=$ $\nu(\mathcal{F})$ are related by the formula $N^{2-k} \nu(\boldsymbol{\psi})=\psi_{\nu}$. Indeed, suppose that $\nu \in$ $\mathfrak{X}_{k, r}$, so that $\psi_{\nu}=\psi \varrho_{r} \omega^{2-k}$. Then

$$
\begin{aligned}
N(\mathfrak{a})^{2-k} \nu(\boldsymbol{\psi}(\mathfrak{a})) & =N^{2-k}(\mathfrak{a}) \psi(\mathfrak{a}) \nu(1+X)^{\alpha}= \\
& =N^{2-k}(\mathfrak{a}) \psi(\mathfrak{a}) \zeta^{\alpha} u^{(k-2) \alpha}= \\
& =\psi(\mathfrak{a}) \varrho_{r}(\mathfrak{a}) \omega(\mathfrak{a})^{2-k},
\end{aligned}
$$

from which the desired equality follows.
Remark 3.22. There exists an idempotent

$$
\mathcal{E}: \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda) \rightarrow \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)
$$

of $\operatorname{End}_{\Lambda}(\mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda))$ such that for almost every ${ }^{3} \nu$ we have

$$
\begin{equation*}
\nu(\mathcal{E}(\mathcal{F}))=e(\nu(\mathcal{F})) \tag{3.4}
\end{equation*}
$$

The space of p-stabilized Λ-adic cuspidal forms is defined to be

$$
\mathcal{S}^{\operatorname{ord}}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda):=\mathcal{E} \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)
$$

It follows from (3.4) that for a p-stabilized Λ-adic cuspidal form \mathcal{F}, the specialization $\nu(\mathcal{F})$ is a p-stabilized cuspidal form for almost all ν.

The next result will be crucial in $\S 4$.
Proposition 3.23. [Wil88, Thm. 1.2.1] The space of p-stabilized Λ-adic cuspidal forms $\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ is a free Λ-module of finite rank.

Remark 3.24. Hecke operators for Λ-adic modular forms. For every integral ideal $\mathfrak{a} \subseteq \mathcal{O}_{F}$, one can define a Λ-linear maps

$$
\mathcal{T}(\mathfrak{a}):=\mathcal{T}_{\overline{\mathfrak{n}}}(\mathfrak{a}), \mathcal{S}(\mathfrak{a}):=\mathcal{S}_{\overline{\mathfrak{n}}}(\mathfrak{a}): \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda) \rightarrow \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)
$$

[^2]with the key property that for almost every ν we have
$$
\nu(\mathcal{T}(\mathfrak{a})(\mathcal{F}))=T_{\mathfrak{n} p^{r}}(\mathfrak{a})(\nu(\mathcal{F})) \quad \text { and } \quad \nu(\mathcal{S}(\mathfrak{a})(\mathcal{F}))=S_{\mathfrak{n} p^{r}}(\mathfrak{a})(\nu(\mathcal{F}))
$$
if $\nu \in \mathfrak{X}_{r, k}$. The last formula relates the central character of $\nu(\mathcal{F})$ with $\boldsymbol{\psi}$ compatibly with the relation of Remark 3.21. It is precisely the desire of a formula of this kind what explains the choice in Definition 3.19 for the central character of $\nu(\mathcal{F})$.
Definition 3.25. Let \mathfrak{n}_{0} be the greatest divisor of \mathfrak{n} which is coprime to p.
i) We say that $\mathcal{F} \in \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ is a Hecke eigenform if, for all integral ideal $\mathfrak{a} \subseteq \mathcal{O}_{F}$, we have $\mathcal{T}(\mathfrak{a})(\mathcal{F})=\lambda(\mathfrak{a}, \mathcal{F})(X) \mathcal{F}$ for some $\lambda(\mathfrak{a}, \mathcal{F})(X) \in \Lambda$.
ii) A Hecke eigenform $\mathcal{F} \in \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ is called normalized if $c\left(\mathcal{O}_{F}, \mathcal{F}\right)(X)=1$.
iii) A normalized Hecke eigenform $\mathcal{F} \in \mathcal{S}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ is called a newform of level $\overline{\mathfrak{n}}$ if for almost every ν (equiv. for infinitely many ν) we have that $\nu(\mathcal{F})$ is a newform of level divisible by \mathfrak{n}_{0}.

For a normalized Hecke eigenform $\lambda(\mathfrak{p}, \mathcal{F})(X)=c(\mathfrak{p}, \mathcal{F})(X)$ for every prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{F}$.

Remark 3.26. From now on (and specially in the next section), we will need to extend coefficients to \mathcal{K}. To this aim, set

$$
\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K}):=\mathcal{S}^{\mathrm{ord}}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda) \otimes_{\Lambda} \mathcal{K} .
$$

Then, it can be shown that the finite extension \mathcal{K} of $\mathbb{Q}_{p}((X))$ can be chosen large enough so that

$$
\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})=\mathcal{K}\{\mathcal{F}(\mathfrak{a} z) \mid \mathcal{F} \text { is a newform of level } \overline{\mathfrak{m}} \text { with } \overline{\mathfrak{m} \mathfrak{a} \mid \overline{\mathfrak{n}}\} . ~}
$$

The next result is crucial for our purposes. It is due to Hida for $k \geq 2$.
Theorem 3.27. [Wil88, Thm. 3] Let $k \geq 1, r \geq 0$, and ζ a root of unity of order p^{r}. Let $\mathfrak{n} \subseteq \mathcal{O}_{F}$ be an integral ideal and let ϱ_{r} be as defined in (3.3). For every p-stabilized newform $f \in S_{k}^{\text {ord }}\left(\mathfrak{n}, \psi \varrho_{r} \omega^{2-k} \mid \mathcal{O}[\zeta]\right)$, where \mathcal{O} is a finite extension of \mathbb{Z}_{p} containing $\mathbb{Z}_{p}[\psi]$, there exist a finite extension Λ of $\mathbb{Z}_{p}[[X]]$, $\nu \in \mathfrak{X}_{k, r}$ (as in Remark 3.18), and a newform $\mathcal{F} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ such that $\nu(\mathcal{F})=f$.

This talk is not oriented towards the proof of the above theorem. Instead, we will focus on the next result, which is due to Hida for $F=\mathbb{Q}$.
Theorem 3.28. [Wil88, Thm. 4] Let $\mathcal{F} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ be a p-stabilized newform. Then there is a unique continuous irreducible representation

$$
\varrho_{\mathcal{F}}: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{K})
$$

unramified outside $\mathfrak{n} p$ such that, for every prime $\mathfrak{q} \nmid \mathfrak{n} p$, one has

$$
\begin{aligned}
& \operatorname{Tr}\left(\varrho_{\mathcal{F}}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=c(\mathfrak{q}, \mathcal{F})(X) \\
& \operatorname{det}\left(\varrho_{\mathcal{F}}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\boldsymbol{\psi}(\mathfrak{q}) N(\mathfrak{q})
\end{aligned}
$$

The proof of the above theorem, for which we will use all the theory developed so far, will be postponed until $\S 4$. We will conclude the section by showing how Theorem 3.28, together with Theorem 3.27, immediately implies the main Theorem 2.2.

Proof of Theorem 2.2 (case $F=\mathbb{Q}$). We start with two remarks:

- If $\varrho_{\mathbf{f}, \lambda}$ exists as a representation into $\mathrm{GL}_{2}(K)$, with K a finite extension of $K_{\mathbf{f}, \lambda}$, then Schur's Lemma guarantees that there is an equivalent representation with image in $\mathrm{GL}_{2}\left(\mathcal{O}_{\mathbf{f}, \lambda}\right)$.
- If $\varrho_{\mathbf{f}, \lambda}$ exists, then it is irreducible (Ribet).

By Theorem 3.27, given a p-stabilized newform $\mathbf{f} \in S_{k}^{\text {ord }}(\mathfrak{n}, \psi \mid \mathcal{O})$, there exists $\mathcal{F} \in \mathcal{S}^{\text {ord }}\left(\overline{\mathfrak{n}}, \boldsymbol{\psi} \omega^{k-2} \mid \Lambda\right)$ such that $\nu(\mathcal{F})=\mathbf{f}$ for some $\nu \in \mathfrak{X}_{k, 1}$. By Theorem $3.28, \mathcal{F}$ has attached a continuous irreducible representation $\varrho_{\mathcal{F}}$. Consider the representation

$$
\varrho_{\mathbf{f}}: G_{F} \xrightarrow{\varrho_{\mathcal{F}}} \mathrm{GL}_{2}(L) \xrightarrow{\nu} \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right) .
$$

It satisfies that

$$
\begin{aligned}
\operatorname{Tr}\left(\varrho_{\mathbf{f}}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right) & =\nu(c(\mathfrak{q}, \mathcal{F})(X))=c(\mathfrak{q}, \mathbf{f}) \\
\operatorname{det}\left(\varrho_{\mathbf{f}}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right) & =\nu(\boldsymbol{\psi}(\mathfrak{q}) N(\mathfrak{q}))=\psi(\mathfrak{q}) N(\mathfrak{q})^{k-2} N(\mathfrak{q}),
\end{aligned}
$$

where we have used Remark 3.21.

4 Sketch of the proof

4.1 Warm up: the proof for $F=\mathbb{Q}$

We set $F=\mathbb{Q}$ in this section. Then, the statement of Theorem 2.2 is contained in the results that we have seen in the first (weight $k \geq 2$; see [Del68]) and the second talks (weight $k=1$; [DS74]). However, we consider remarkable the fact that Wiles' method recovers these results from the classical theory of EichlerShimura (weight $k=2$), and we wish to describe this in detail in this short section.

In the present setting, an element $\mathbf{f} \in S_{k}(\mathfrak{n}, \psi)$ consists of a single function $f: \mathbb{H} \rightarrow \mathbb{C}$. If $\mathfrak{n}=(N)$ for $N \geq 1$, then $\psi:(\mathbb{Z} / N \mathbb{Z})^{*} \rightarrow \overline{\mathbb{Q}}^{*}$ is a Dirichlet character. The space $S_{k}(\mathfrak{n}, \psi)$ is what is usually denoted by

$$
S_{k}(N, \psi):=S_{k}\left(\Gamma_{0}(N), \psi\right)
$$

Let $f \in S_{k}^{\text {ord }}(N, \psi \mid \mathcal{O})$ and $\mathcal{F} \in \mathcal{S}^{\text {ord }}(\bar{N}, \boldsymbol{\psi} \mid \Lambda)$, where the notation for the spaces is analogous to that used in (3.2). For an ideal (n) of \mathbb{Z}, for $n \geq 0$, let us use the notation $c_{n}(f)$ (resp. $c_{n}(\mathcal{F})(X)$) for the Fourier coefficient $c((n), f)$ (resp. $c((n), \mathcal{F})(X))$. Let \mathcal{K} and Λ be as defined in Remark 3.18.

Proof of Theorem 3.28. Let $\mathcal{F} \in \mathcal{S}^{\text {ord }}(\bar{N}, \boldsymbol{\psi} \mid \Lambda)$ be a p-stabilized newform. This means that there exist infinitely many $n \geq 1$ such that

$$
f_{n}:=\nu(\mathcal{F}) \in S_{2}^{\text {ord }}\left(N p^{n}, \psi \varrho_{n} \mid \mathcal{O}\left[\zeta_{n}\right]\right)
$$

is a normalized Hecke eigenform for some $\nu \in \mathfrak{X}_{2, n}$. Let $P_{2, n}$ be the prime of Λ corresponding to $\nu \in \mathfrak{X}_{2, n}$. By the theory of Eichler-Shimura seen in the first talk, attached to f_{n} there is a continuous irreducible odd representation

$$
\varrho_{n}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}\left[\zeta_{n}\right]\right)
$$

unramified outside $N p$ satisfying that, for every $q \nmid N p$, one has

$$
\begin{aligned}
& \operatorname{Tr}\left(\varrho_{n}\right)\left(\operatorname{Frob}_{q}\right)=c_{q}(f) \equiv c_{q}(\mathcal{F})(X) \quad\left(\bmod P_{2, n}\right) \\
& \operatorname{det}\left(\varrho_{n}\right)\left(\operatorname{Frob}_{q}\right)=\psi(q) q^{1} \equiv \boldsymbol{\psi}(q) q \quad\left(\bmod P_{2, n}\right)
\end{aligned}
$$

The statement now follows immediately from Theorem 3.11.

4.2 The general case

Remark 4.1. If $d:=[F: \mathbb{Q}]$ is odd, then Theorem 3.28 is proven proceeding as we did in $\S 4.1$. Let \mathcal{F} be a p-stabilized Λ-adic newform. One observes that infinitely many specializations of \mathcal{F} (for example, $\nu(\mathcal{F})$ with $\nu \in \mathfrak{X}_{k, 1}$ for all but finitely many $k \geq 2$) have attached a representation by part i) of Carayol's Theorem with the desired properties. Then, one just applies Theorem 3.11. We will therefore assume from now on that d is even.

Let us give a few words on the general strategy. Let $\mathcal{F} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \Lambda)$ be a p-stabilized Λ-adic newform. Choose a prime \mathfrak{l}, so that hypothesis $i i$) of Theorem 2.3 with respect to \mathfrak{l} and $\mathfrak{l n}$ is satisfied. Consider a basis of newforms (with respect to \mathfrak{l}) of the space of forms of level $\mathfrak{n} \mathfrak{l}$. By our choice of the prime \mathfrak{l}, Carayol's Theorem says that there are λ-adic representations attached to almost all specializations of each element in this basis. One obtains a Λ-adic representation attached to each element in this basis by patching the Carayol representations together using Theorem 3.11. By assembling the Λ-adic representations attached to each element of the basis, one obtains a representation ϱ on $(\mathbb{T} \otimes \mathcal{K}) \oplus(\mathbb{T} \otimes \mathcal{K})$, where \mathbb{T} denotes the Hecke algebra. One then defines an ideal $I_{\mathcal{F}}$ of \mathbb{T}, such that for every prime ideal $I_{\mathcal{F}} \subseteq P \subseteq \mathbb{T}$ the representation ϱ modulo P is essentially the representation we are looking for reduced modulo a certain prime Q of Λ. Let ϱ_{Q} denote this representation. By varying \mathfrak{l}, one shows that infinitely many distinct such primes Q exist. One then concludes by patching together the corresponding representations ϱ_{Q} by using Theorem 3.11 again. The Hecke algebra \mathbb{T} plays a fundamental role in relating our original \mathcal{F} of level $\overline{\mathfrak{n}}$ with the basis of newforms (with respect to \mathfrak{l}) of the space of forms of level $\overline{\mathfrak{n}}$.

Let $\mathfrak{l} \subseteq \mathcal{O}_{F}$ be a prime ideal such that $(\mathfrak{l}, \mathfrak{n} p)=1$. As always, $\boldsymbol{\psi}$ comes from a ray class character ψ of modulus $\mathfrak{n} \infty$. Let Λ and \mathcal{K} be as in Remark 3.26.

Definition 4.2. The space of p-stabilized Λ-adic oldforms with respect to \mathfrak{l} is

$$
\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {old }}:=\left\{\mathcal{G}_{1}(z)+\mathcal{G}_{2}(\mathfrak{l z}) \mid \mathcal{G}_{1}, \mathcal{G}_{2} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})\right\}
$$

The space of p-stabilized Λ-adic newforms with respect to \mathfrak{l} is

$$
\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n} l}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}:=\mathcal{K}\left\{\begin{array}{l|l}
\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right) & \begin{array}{l}
\mathcal{G}_{i} \in \mathcal{S}^{\text {ord }}\left(\overline{\mathfrak{m}}_{i}, \boldsymbol{\psi} \mid \Lambda\right) \text { newform } \\
\text { and } \mathfrak{l}\left|\overline{\mathfrak{m}}_{i}, \mathfrak{a}_{i j} \overline{\mathfrak{m}}_{i}\right| \overline{\mathfrak{n} l}
\end{array} \tag{4.1}
\end{array}\right\} .
$$

We say that $\left\{\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)\right\}_{i, j}$ is a special basis for $\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} l, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}$. Note that this special basis has a finite number of elements thanks to Proposition 3.23. By Remark 3.15, we may moreover assume that $\left(\mathfrak{a}_{i j}, p\right)=1$.

One can show that there exists a decomposition

$$
\begin{equation*}
\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n} l}, \boldsymbol{\psi} \mid \mathcal{K})=\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} \mathfrak{l}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {old }} \oplus \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} \mathfrak{l}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }} \tag{4.2}
\end{equation*}
$$

which does not necessarily hold if we take coefficients in Λ instead of \mathcal{K}.
Definition 4.3. Set

$$
\begin{aligned}
H(\mathcal{F}, \mathfrak{l} \mid \mathcal{K}):= & \left\{\mathcal{H} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} \mathfrak{l}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }} \mid \mathcal{H}=\mathcal{G}-u \mathcal{F}-v \mathcal{F}(\mathfrak{l} z),\right. \\
& \text { with } \mathcal{G} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n} \mathfrak{l}, \boldsymbol{\psi} \mid \Lambda), u, v \in \mathcal{K}\}}
\end{aligned}
$$

The congruence module for \mathcal{F} is

$$
C(\mathcal{F}, \mathfrak{l} \mid \mathcal{K}):=H(\mathcal{F}, \mathfrak{l} \mid \mathcal{K}) /\left(\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n} l}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }} \cap \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n} l}, \boldsymbol{\psi} \mid \Lambda)\right)
$$

and it measures how far the direct sum decomposition (4.2) fails to be a direct sum over Λ (see $\S 4.3$ for more information on the congruence module).

Proof of Theorem 3.28. Let \mathbb{T} denote the ring generated over Λ by the Hecke operators $\mathcal{T}(\mathfrak{m})$, for \mathfrak{m} prime to \mathfrak{l}, in $\operatorname{End}_{\mathcal{K}}\left(\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}\right)$. Set

$$
I_{\mathcal{F}}=\operatorname{Ann}(C(\mathcal{F}, \mathfrak{l} \mid \mathcal{K})) \subseteq \mathbb{T}
$$

Note that since

$$
\begin{equation*}
\mathcal{T}(\mathfrak{m})-c(\mathfrak{m}, \mathcal{F})(X) \in I_{\mathcal{F}} \tag{4.3}
\end{equation*}
$$

for each ideal \mathfrak{m} prime to \mathfrak{l}, we have that $\mathbb{T} / I_{\mathcal{F}} \simeq \Lambda / \mathfrak{b}_{\mathcal{F}, \mathfrak{l}}$ for some ideal $\mathfrak{b}_{\mathcal{F}, \mathfrak{r}} \subseteq \Lambda$.
Let $\left\{\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)\right\}_{i, j}$ be a special basis for $\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}$. By our choice ${ }^{4}$ of \mathfrak{l}, and as in Remark 4.1 or in $\S 4.1$, Carayol's Theorem and Theorem 3.11 imply that there exists a Λ-adic representation $\varrho_{\mathcal{G}_{i}\left(\mathfrak{a}_{i j}\right)}: G_{F} \rightarrow \mathrm{GL}_{2}(\mathcal{K})$ attached to $\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)$.

Endow the finite dimensional \mathcal{K}-vector space

$$
A:=\prod_{i, j} \mathcal{K}
$$

[^3]where the product runs over the elements defining the special basis, with an action of \mathbb{T} by transport of structure. One can show that the map
\[

$$
\begin{equation*}
\mathbb{T} \otimes \mathcal{K} \rightarrow A \quad \text { induced by } \quad \mathcal{T} \mapsto \prod_{i, j} c\left(\mathcal{O}_{F}, \mathcal{T}\left(\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)\right)(X)\right. \tag{4.4}
\end{equation*}
$$

\]

is an isomorphism of $\mathbb{T} \otimes \mathcal{K}$-modules. Let G_{F} act on

$$
W:=A \oplus A
$$

by means of $\bigoplus \varrho_{\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)} \otimes \mathcal{K}$. We obtain an odd representation

$$
\varrho: G_{F} \rightarrow \mathrm{GL}_{2}(\mathbb{T} \otimes \mathcal{K})
$$

such that, for any $\mathfrak{q} \nmid \mathfrak{n l} p$, one has

$$
\begin{aligned}
\operatorname{Tr}(\varrho)\left(\operatorname{Frob}_{\mathfrak{q}}\right) & =\prod_{i, j} c\left(\mathfrak{q}, \mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)\right)(X)= \\
& =\prod_{i, j} c\left(\mathcal{O}_{F}, \mathcal{T}(\mathfrak{q})\left(\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)\right)\right)(X) \\
& =\mathcal{T}(\mathfrak{q}) \in \mathbb{T},
\end{aligned}
$$

where we have used the isomorphism $\mathbb{T} \otimes \mathcal{K} \simeq A$ given by (4.4) for the last equality. Its associated odd pseudo-representation π has thus values in \mathbb{T}. By reduction modulo $I_{\mathcal{F}}$, we get an odd pseudo-representation $\bar{\pi}$ with values in $\mathbb{T} / I_{\mathcal{F}} \simeq \Lambda / \mathfrak{b}_{\mathcal{F}, \mathfrak{l}}$. Because of (4.3), for any $\mathfrak{q} \nmid \mathfrak{n l} p$, we have

$$
\operatorname{Tr}(\bar{\pi})\left(\operatorname{Frob}_{\mathfrak{q}}\right)=\mathcal{T}(\mathfrak{q}) \equiv c(\mathfrak{q}, \mathcal{F})(X) \in \Lambda / \mathfrak{b}_{\mathcal{F}, \mathfrak{l}}
$$

Choose a prime ideal $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}} \subseteq Q \subseteq \Lambda$. Let π_{Q} denote the pseudo-representation $\bar{\pi}$ reduced modulo Q. By Lemma 3.3, associated to π_{Q} there exists an odd representation

$$
\varrho_{Q}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{Q}\right)
$$

where \mathcal{O}_{Q} denotes the integral closure of Λ / Q in its field of fractions, such that for any $\mathfrak{q} \nmid \mathfrak{n l} p$, we have

$$
\operatorname{Tr}\left(\varrho_{Q}\right)\left(\operatorname{Frob}_{\mathfrak{q}}\right)=c(\mathfrak{q}, \mathcal{F})(X) \in \Lambda / Q
$$

The proof continues with a technical argument to ensure that, by making distinct choices of \mathfrak{l}, we may find infinitely many distinct primes $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}} \subseteq Q \subseteq \Lambda$. One then concludes by patching all the representations ϱ_{Q} together by means of Theorem 3.11. We give some of the ideas used to show the existence of this infinite set of primes Q in $\S 4.3$.

4.3 On the existence of infinitely many primes Q

Keep the notations and assumptions (on Λ and \mathcal{K}, and on $\mathfrak{l}, \mathfrak{p}, \mathfrak{n}$) of the previous section. The idea is to gain control on the size of $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}}$, so that the existence of infinitely many primes $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}} \subseteq Q \subseteq \Lambda$ can be guaranteed. To make precise
what we mean by "control on the size" let us introduce some notation. For a fractional ideal \mathfrak{a} of \mathcal{K}, define

$$
\operatorname{div}(\mathfrak{a}):=\sum v_{P_{i}}(\mathfrak{a}) P_{i}
$$

where the sum is taken over prime ideals P_{i} of height one and $v_{P_{i}}$ denotes the discrete valuation at P_{i}. In the proposition below, we will show that there exists a fractional ideal $\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}$ of \mathcal{K} such that $C(\mathcal{F}, \mathfrak{l} \mid \mathcal{K}) \simeq \mathfrak{a}_{\mathcal{F}, \mathfrak{l}} / \Lambda$. It then follows from the definition of $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}}$ that

$$
-\operatorname{div}\left(\mathfrak{b}_{\mathcal{F}, \mathfrak{l}}\right) \leq \operatorname{div}\left(\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}\right)
$$

Thus, control on $\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}$ will provide control on $\mathfrak{b}_{\mathcal{F}, \mathfrak{l}}$. This is achieved in the next proposition (see also the conjecture below).

Proposition 4.4. [Wil88, Thm. 1.6.1] Let

$$
\begin{aligned}
w_{\mathfrak{l}}:=w_{\mathfrak{l}}(X) & :=\left(\alpha_{\mathfrak{l}}^{2}-\boldsymbol{\psi}(\mathfrak{l})\right)\left(\beta_{\mathfrak{l}}^{2}-\boldsymbol{\psi}(\mathfrak{l})\right)= \\
& =-\boldsymbol{\psi}(\mathfrak{l})\left(c(\mathfrak{l}, \mathcal{F})(X)^{2}-\boldsymbol{\psi}(\mathfrak{l})(1+N(\mathfrak{l}))^{2}\right) \in \Lambda
\end{aligned}
$$

where $\alpha_{\mathfrak{l}}:=\alpha_{\mathfrak{l}}(X)$ and $\beta_{\mathfrak{l}}:=\beta_{\mathfrak{l}}(X)$ are the roots of $x^{2}-c(\mathfrak{l}, \mathcal{F})(X) x+\boldsymbol{\psi}(\mathfrak{l}) N(\mathfrak{l})$. There exists a fractional ideal $\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}$ of \mathcal{K} such that $C(\mathcal{F}, \mathfrak{l} \mid \mathcal{L}) \simeq \mathfrak{a}_{\mathcal{F}, \mathfrak{l}} / \Lambda$ and

$$
\begin{equation*}
\operatorname{div}\left(w_{\mathfrak{l}}^{-1}\right) \leq \operatorname{div}\left(\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}\right) \leq \operatorname{div}\left(w_{\mathfrak{l}}^{-1}\right)+\operatorname{div}(V)+c \operatorname{div}(1+N(\mathfrak{l})) \tag{4.5}
\end{equation*}
$$

where $V \in \Lambda$ and $c \in \mathbb{Z}$ are both independent of \mathfrak{l}.
Conjecture 4.5. [Wil88, p. 555] For P of Λ not above p, we have $v_{P}\left(w_{\mathfrak{l}}^{-1}\right)=$ $v_{P}\left(\mathfrak{a}_{\mathcal{F}, \mathfrak{l}}\right)$.

Ideas on the proof of Proposition 4.4. Let us prove the left inequality of (4.5). This amounts to showing that $w_{\mathfrak{l}}$ annihilates the image of the injective map

$$
\gamma: C(\mathcal{F}, \mathfrak{l} \mid \mathcal{K}) \rightarrow \mathcal{K} / \Lambda, \quad \gamma(\mathcal{H})=u
$$

where $\mathcal{H}=\mathcal{G}-u \mathcal{F}-v \mathcal{F}(\mathfrak{l z})$ is as in Definition 4.3. By Lemma 4.6 below, we have that $\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}$ is the kernel of the operator $\mathcal{T}(\mathfrak{l})^{2}-\boldsymbol{\psi}(\mathfrak{l})$. Define the operator $\mathcal{U}(\mathfrak{l}):=\left(\alpha_{\mathfrak{l}}^{2}-\mathcal{T}(\mathfrak{l})^{2}\right)\left(\beta_{\mathfrak{l}}^{2}-\mathcal{T}(\mathfrak{l})^{2}\right)$ and consider the equalities

$$
\begin{equation*}
w_{\mathfrak{l}} \mathcal{H}=\mathcal{U}(\mathfrak{l})(\mathcal{H})=\mathcal{U}(\mathfrak{l})(\mathcal{G}) \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} \mathfrak{l}, \boldsymbol{\psi} \mid \Lambda) . \tag{4.6}
\end{equation*}
$$

The first equality is due to the fact that \mathcal{H} is an element of $\mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}}, \boldsymbol{\psi} \mid \mathcal{K})^{\text {new }}$, and the second equality follows from the fact that $\mathcal{U}(\mathfrak{l})(\mathcal{F})=\mathcal{U}(\mathfrak{l})(\mathcal{F}(\mathfrak{l z}))=0$. In particular, we have that $\omega_{\mathfrak{l}} \mathcal{H} \in \mathcal{S}^{\text {ord }}(\overline{\mathfrak{n}} \mathfrak{l}, \boldsymbol{\psi} \mid \Lambda)$. Taking $c\left(\mathcal{O}_{F}, \cdot\right)(X)$ coefficients to the equality

$$
w_{\mathfrak{l}} \mathcal{G}-w_{\mathfrak{l}} u \mathcal{F}-w_{\mathfrak{l}} v \mathcal{F}(\mathfrak{l} z)=w_{\mathfrak{l}} \mathcal{H}
$$

we obtain

$$
\begin{aligned}
-w_{\mathfrak{l}} u & =-w_{\mathfrak{\imath}} u \cdot c\left(\mathcal{O}_{F}, \mathcal{F}\right)(X)-w_{\mathfrak{\imath}} v \cdot c\left(\mathcal{O}_{F}, \mathcal{F}(\mathfrak{l} z)\right)(X) \equiv \\
& \equiv c\left(\mathcal{O}_{F}, w_{\mathfrak{l}} \mathcal{H}\right)(X) \equiv 0 \quad(\bmod \Lambda)
\end{aligned}
$$

The other inequality requires a lot of deep and hard work.

Lemma 4.6. [Wil88, Lem. 1.4.5] Let $k \geq 2$, let \mathfrak{q} be a prime not dividing \mathfrak{n}, let ψ be defined modulo \mathfrak{n}, and let $\mathbf{f} \in S_{k}^{\text {ord }}(\mathfrak{n q}, \psi)$ be a normalized Hecke eigenform. Then \mathbf{f} is new with respect to \mathfrak{l} if and only if $c(\mathfrak{q}, \mathbf{f})^{2}-\psi(\mathfrak{q}) N(\mathfrak{q})^{k-2}=0$. In this case, \mathbf{f} is locally (unramified) special at \mathfrak{q}.

Acknowledgements. Thanks to Victor Rotger, the coordinator of the series of talks, for many discussions, explanations, and corrections during the writing of this note.

References

[Car86] H. Carayol, Sur les représentations ℓ-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Ec. Norm. Super., IV. Ser. 17, 361468 (1986).
[DS74] P. Deligne, J-P. Serre, Formes modulaires de poids 1, Annales scientifiques de l'É.N.S. 4^{e} série, tome 7 , n. 4 (1974), 507-530.
[Del68] P. Deligne, Formes modulaires et reprsentations ℓ-adiques, Séminaire Bourbaki 355, 21 année, 1968/69.
[Laf] J. M. Lafferty, Hida Theory, notes, available at http://math.arizona.edu/ mlafferty/Papers/.
[Ser81] J-P. Serre, Quelques applications du théorème de desité de Chebotarev, Publ. Math. Inst. Hautes Etud. Sci. 54 (1981), 123-202.
[Shi78] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Mathematical Journal 45 n. 3 (1978), 637-679.
[Tay89] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. math. 98, 265-280 (1989).
[Wil88] A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. math. 94 (1988), 529-573.

[^0]: ${ }^{1}$ There is no distinction between $S_{k}\left(\mathfrak{n}, \psi_{0}\right)$ and $S_{k}(\mathfrak{n}, \psi)$ for $F=\mathbb{Q}$. Indeed, for $N \geq 1$ the ray class group of modulus $(N) \infty$ is isomorphic to $(\mathbb{Z} / N \mathbb{Z})^{*}$.

[^1]: ${ }^{2}$ This somehow justifies the notation $S_{k}^{\text {ord }}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$. Note however that not every ordinary cuspidal form lies in $S_{k}^{\text {ord }}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$. It is rather the p-stabilization of any ordinary cuspidal form that lies in $S_{k}^{\text {ord }}\left(\mathfrak{n} p^{r}, \psi \mid \mathcal{O}\right)$.

[^2]: ${ }^{3}$ Throughout this note "for almost every ν " $=$ "for all but finitely many $\nu \in \mathfrak{X}$ ".

[^3]: ${ }^{4}$ We remark that \mathfrak{l} is not in the support of the modulus of the central character of any specialization of $\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)$ (since \mathfrak{l} was taken coprime to \mathfrak{n}) and that it divides $\mathfrak{a}_{i j} \overline{\mathfrak{m}}_{i}$ exactly (by the definition (4.1) of the l-newspace). Thus hypothesis $i i$) of Theorem 2.3 with respect to \mathfrak{l} and $\mathfrak{a}_{i j} \overline{\mathfrak{m}}_{i}$ is satisfied for almost every specialization of $\mathcal{G}_{i}\left(\mathfrak{a}_{i j} z\right)$.

