Sato-Tate groups of abelian threefolds

Francesc Fité (IAS), Kiran S. Kedlaya (UCSD), A.V. Sutherland (MIT)

Arithmetic of low-dimensional abelian varieties. ICERM, 5th June 2019.

Sato-Tate groups of elliptic curves

- k a number field.
- E/k an elliptic curve.
- The Sato-Tate group ST(E) is defined as:

•
$$U(1) = \left\{ \begin{pmatrix} u & 0 \\ 0 & \overline{u} \end{pmatrix} : u \in \mathbb{C}, |u| = 1 \right\}$$
 if E has CM by $M \subseteq k$.

•
$$N_{SU(2)}(U(1))$$
 if *E* has CM by $M \not\subseteq k$.

• Note that Tr: $ST(E) \rightarrow [-2, 2]$. Denote $\mu = Tr_*(\mu_{Haar})$.

The Sato-Tate conjecture for elliptic curves

• Let p be a prime of good reduction for *E*. The normalized Frobenius trace satisfies

$$\overline{a}_{\mathfrak{p}} = \frac{N(\mathfrak{p}) + 1 - \#E(\mathbb{F}_{\mathfrak{p}})}{\sqrt{N(\mathfrak{p})}} = \frac{\mathsf{Tr}(\mathsf{Frob}_{\mathfrak{p}} | V_{\ell}(E))}{\sqrt{N(\mathfrak{p})}} \in [-2, 2] \qquad (\text{for } \mathfrak{p} \nmid \ell)$$

Sato–Tate conjecture

The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on [-2,2] w.r.t μ .

- If ST(E) = U(1) or N(U(1)): Known in full generality (Hecke, Deuring).
- Known if ST(E) = SU(2) and k is totally real. (Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if ST(E) = SU(2) and k is a CM field (Allen, Calegary, Caraiani, Gee, Helm, LeHung, Newton, Scholze, Taylor, Thorne).

The Sato-Tate conjecture for elliptic curves

• Let p be a prime of good reduction for *E*. The normalized Frobenius trace satisfies

$$\overline{a}_{\mathfrak{p}} = \frac{N(\mathfrak{p}) + 1 - \#E(\mathbb{F}_{\mathfrak{p}})}{\sqrt{N(\mathfrak{p})}} = \frac{\mathsf{Tr}(\mathsf{Frob}_{\mathfrak{p}} \,| \, V_{\ell}(E))}{\sqrt{N(\mathfrak{p})}} \in [-2, 2] \qquad (\text{for } \mathfrak{p} \nmid \ell)$$

Sato-Tate conjecture

The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on [-2,2] w.r.t μ .

- If ST(E) = U(1) or N(U(1)): Known in full generality (Hecke, Deuring).
- Known if ST(E) = SU(2) and k is totally real. (Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if ST(E) = SU(2) and k is a CM field (Allen, Calegary, Caraiani, Gee, Helm, LeHung, Newton, Scholze, Taylor, Thorne).

The Sato-Tate conjecture for elliptic curves

• Let p be a prime of good reduction for *E*. The normalized Frobenius trace satisfies

$$\overline{a}_{\mathfrak{p}} = \frac{N(\mathfrak{p}) + 1 - \#E(\mathbb{F}_{\mathfrak{p}})}{\sqrt{N(\mathfrak{p})}} = \frac{\mathsf{Tr}(\mathsf{Frob}_{\mathfrak{p}} \,| \, V_{\ell}(E))}{\sqrt{N(\mathfrak{p})}} \in [-2, 2] \qquad (\text{for } \mathfrak{p} \nmid \ell)$$

Sato-Tate conjecture

The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on [-2,2] w.r.t μ .

- If ST(E) = U(1) or N(U(1)): Known in full generality (Hecke, Deuring).
- Known if ST(E) = SU(2) and k is totally real.
 (Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if ST(E) = SU(2) and k is a CM field (Allen,Calegary,Caraiani,Gee,Helm,LeHung,Newton,Scholze,Taylor,Thorne).

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

$\varrho_{A,\ell} \colon G_k \to \operatorname{Aut}_{\psi_\ell}(V_\ell(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell).$

- Serre defines ST(A) in terms of $\mathcal{G}_{\ell} = \varrho_{A,\ell}(G_k)^{\operatorname{Zar}}$.
- For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a *G_k*-equivariant isomorphism

 $\operatorname{End}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_{\ell}\simeq \operatorname{End}_{\mathcal{G}_{\ell}^0}(\mathbb{Q}_{\ell}^{2g}).$

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

$$\varrho_{A,\ell}\colon G_k\to \operatorname{Aut}_{\psi_\ell}(V_\ell(A))\simeq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell).$$

- Serre defines ST(A) in terms of $\mathcal{G}_{\ell} = \varrho_{A,\ell}(G_k)^{\operatorname{Zar}}$.
- For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a *G_k*-equivariant isomorphism

 $\operatorname{\mathsf{End}}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_\ell\simeq \operatorname{\mathsf{End}}_{\mathcal{G}_\ell^0}(\mathbb{Q}_\ell^{2g})$

Therefore

$\{\gamma \in \mathrm{GSp}_{2g}(\mathbb{Q}_\ell) \mid \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathrm{End}(A_{\overline{0}})\}$

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

$$\varrho_{A,\ell}\colon G_k \to \operatorname{Aut}_{\psi_\ell}(V_\ell(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell).$$

- Serre defines ST(A) in terms of $\mathcal{G}_{\ell} = \varrho_{A,\ell}(G_k)^{\operatorname{Zar}}$.
- For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a G_k -equivariant isomorphism

$$\operatorname{End}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_{\ell}\simeq \operatorname{End}_{\mathcal{G}^0_{\ell}}(\mathbb{Q}^{2g}_{\ell}).$$

Therefore

 $\mathcal{G}^0_\ell \hookrightarrow \{\gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_\ell) \, | \, \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}(\mathcal{A}_{\overline{\mathbb{O}}}) \}$

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

$$\varrho_{A,\ell} \colon G_k \to \operatorname{Aut}_{\psi_\ell}(V_\ell(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell).$$

- Serre defines ST(A) in terms of $\mathcal{G}_{\ell} = \varrho_{A,\ell}(G_k)^{\operatorname{Zar}}$.
- For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a G_k -equivariant isomorphism

$$\operatorname{End}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_{\ell}\simeq \operatorname{End}_{\mathcal{G}^0_{\ell}}(\mathbb{Q}^{2g}_{\ell}).$$

Therefore

$$\mathcal{G}^{\mathsf{0}}_{\ell} \hookrightarrow \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}$$

- Let A/k be an abelian variety of dimension $g \ge 1$.
- Consider the ℓ -adic representation attached to A

$$\varrho_{A,\ell} \colon G_k \to \operatorname{Aut}_{\psi_\ell}(V_\ell(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell).$$

- Serre defines ST(A) in terms of $\mathcal{G}_{\ell} = \varrho_{A,\ell}(G_k)^{\operatorname{Zar}}$.
- For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a G_k -equivariant isomorphism

$$\operatorname{End}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_{\ell}\simeq \operatorname{End}_{\mathcal{G}^0_{\ell}}(\mathbb{Q}^{2g}_{\ell}).$$

Therefore

$$\mathcal{G}^{\mathsf{0}}_{\ell} \hookrightarrow \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}$$

• More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \} \, .$$

• For g = 4, Mumford has constructed A/k such that

 $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \simeq \mathbb{Z}$ and $\mathcal{G}_{\ell} \subsetneq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$.

• For $g \leq 3$, one has

 $\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \} \,.$

Definition

The Twisted Lefschetz group is defined as

 $\mathsf{TL}(A) = \bigcup_{\sigma \in G_k} \{ \gamma \in \mathsf{Sp}_{2g} / \mathbb{Q} | \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$

More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_k} \left\{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \right\}.$$

• For g = 4, Mumford has constructed A/k such that

 $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \simeq \mathbb{Z}$ and $\mathcal{G}_{\ell} \subsetneq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$.

• For $g \leq 3$, one has

 $\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \} \, .$

Definition

The Twisted Lefschetz group is defined as

$$\mathsf{TL}(A) = \bigcup_{\sigma \in G_k} \{ \gamma \in \mathsf{Sp}_{2g} / \mathbb{Q} | \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$$

• More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_k} \left\{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \right\}.$$

• For g = 4, Mumford has constructed A/k such that

$$\operatorname{End}(A_{\overline{\mathbb{Q}}})\simeq \mathbb{Z}$$
 and $\mathcal{G}_\ell \subsetneq \operatorname{GSp}_{2g}(\mathbb{Q}_\ell)$.

• For
$$g \leq 3$$
, one has

$$\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \} \, .$$

Definition

The Twisted Lefschetz group is defined as

$$\mathsf{TL}(A) = \bigcup_{\sigma \in G_k} \{ \gamma \in \mathsf{Sp}_{2g} \, / \mathbb{Q} | \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$$

More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_k} \left\{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \right\}.$$

• For g = 4, Mumford has constructed A/k such that

$$\operatorname{End}(A_{\overline{\mathbb{Q}}}) \simeq \mathbb{Z}$$
 and $\mathcal{G}_{\ell} \subsetneq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$.

• For
$$g \leq 3$$
, one has

$$\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g}(\mathbb{Q}_{\ell}) \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \} \, .$$

Definition

The Twisted Lefschetz group is defined as

$$\mathsf{TL}(A) = \bigcup_{\sigma \in G_k} \{ \gamma \in \mathsf{Sp}_{2g} \, / \mathbb{Q} | \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$$

• From now on, assume $g \leq 3$.

Definition

 $ST(A) \subseteq USp(2g)$ is a maximal compact subgroup of $TL(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0 \simeq \operatorname{TL}(A)/\operatorname{TL}(A)^0 \simeq \operatorname{Gal}(F/k)$$
.

where F/k is the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A.

• To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X = \operatorname{Conj}(\operatorname{ST}(A))$ s.t. $\operatorname{Char}(x_{\mathfrak{p}}) = \operatorname{Char}\left(\frac{\varrho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})}{\sqrt{N\mathfrak{p}}}\right)$.

Sato-Tate conjecture for abelian varieties

The sequence $\{x_p\}_p$ is equidistributed on X w.r.t the push forward of the Haar measure of ST(A).

• From now on, assume $g \leq 3$.

Definition

 $ST(A) \subseteq USp(2g)$ is a maximal compact subgroup of $TL(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0 \simeq \operatorname{TL}(A)/\operatorname{TL}(A)^0 \simeq \operatorname{Gal}(F/k)$$
.

where F/k is the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A.

• To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X = \operatorname{Conj}(\operatorname{ST}(A))$ s.t. $\operatorname{Char}(x_{\mathfrak{p}}) = \operatorname{Char}\left(\frac{\varrho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})}{\sqrt{N\mathfrak{p}}}\right)$.

Sato-Tate conjecture for abelian varieties

• From now on, assume $g \leq 3$.

Definition

 $ST(A) \subseteq USp(2g)$ is a maximal compact subgroup of $TL(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0\simeq\operatorname{TL}(A)/\operatorname{TL}(A)^0\simeq\operatorname{Gal}(F/k)$$
.

where F/k is the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A.

• To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X = \operatorname{Conj}(\operatorname{ST}(A))$ s.t. $\operatorname{Char}(x_{\mathfrak{p}}) = \operatorname{Char}\left(\frac{\varrho_{A,\ell}(\operatorname{Frob}_{\mathfrak{p}})}{\sqrt{N\mathfrak{p}}}\right)$.

Sato-Tate conjecture for abelian varieties

• From now on, assume $g \leq 3$.

Definition

 $ST(A) \subseteq USp(2g)$ is a maximal compact subgroup of $TL(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0\simeq\operatorname{TL}(A)/\operatorname{TL}(A)^0\simeq\operatorname{Gal}(F/k)$$
 .

where F/k is the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A.

• To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X = \operatorname{Conj}(\mathsf{ST}(A))$ s.t. $\operatorname{Char}(x_{\mathfrak{p}}) = \operatorname{Char}\left(\frac{\varrho_{A,\ell}(\mathsf{Frob}_{\mathfrak{p}})}{\sqrt{N\mathfrak{p}}}\right)$.

Sato–Tate conjecture for abelian varieties

• From now on, assume $g \leq 3$.

Definition

 $ST(A) \subseteq USp(2g)$ is a maximal compact subgroup of $TL(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

Note that

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0\simeq\operatorname{TL}(A)/\operatorname{TL}(A)^0\simeq\operatorname{Gal}(F/k)$$
 .

where F/k is the minimal extension such that $\operatorname{End}(A_F) \simeq \operatorname{End}(A_{\overline{\mathbb{Q}}})$. We call F the endomorphism field of A.

• To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X = \operatorname{Conj}(\mathsf{ST}(A))$ s.t. $\operatorname{Char}(x_{\mathfrak{p}}) = \operatorname{Char}\left(\frac{\varrho_{A,\ell}(\mathsf{Frob}_{\mathfrak{p}})}{\sqrt{N\mathfrak{p}}}\right)$.

Sato-Tate conjecture for abelian varieties

The Sato-Tate axioms for a closed subgroup $G \subseteq USp(2g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism θ : U(1) $\rightarrow G^0$ such that $\theta(u)$ has eigenvalues u and \overline{u} each with multiplicity g. The image of such a θ is called a *Hodge circle*. Moreover, the Hodge circles generate a dense subgroup of G^0 .

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character χ : $GL_{2g}(\mathbb{C}) \to \mathbb{C}$:

 $\int_{H} \chi(h) \mu_{\text{Haar}} \in \mathbb{Z} \,,$

where μ_{Haar} is normalized so that $\mu_{\text{Haar}}(G^0) = 1$.

Lefschetz condition (ST3)

 $G^{0} = \{\gamma \in \mathsf{USp}(2g) | \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}_{G^{0}}(\mathbb{C}^{2g}) \}$

The Sato–Tate axioms for a closed subgroup $G \subseteq USp(2g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: U(1) \to G^0$ such that $\theta(u)$ has eigenvalues u and \overline{u} each with multiplicity g. The image of such a θ is called a *Hodge circle*. Moreover, the Hodge circles generate a dense subgroup of G^0 .

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character χ : $GL_{2g}(\mathbb{C}) \to \mathbb{C}$:

 $\int_{H} \chi(h) \mu_{\text{Haar}} \in \mathbb{Z} \,,$

where μ_{Haar} is normalized so that $\mu_{\text{Haar}}(G^0) = 1$.

Lefschetz condition (ST3)

 $G^{0} = \{ \gamma \in \mathsf{USp}(2g) | \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}_{G^{0}}(\mathbb{C}^{2g}) \}$

The Sato–Tate axioms for a closed subgroup $G \subseteq USp(2g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism θ : $U(1) \rightarrow G^0$ such that $\theta(u)$ has eigenvalues u and \overline{u} each with multiplicity g. The image of such a θ is called a *Hodge circle*. Moreover, the Hodge circles generate a dense subgroup of G^0 .

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character χ : $GL_{2g}(\mathbb{C}) \to \mathbb{C}$:

 $\int_{H} \chi(h) \mu_{\mathrm{Haar}} \in \mathbb{Z} \,,$

where μ_{Haar} is normalized so that $\mu_{\text{Haar}}(G^0) = 1$.

Lefschetz condition (ST3)

 $G^{0} = \{ \gamma \in \mathsf{USp}(2g) | \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}_{G^{0}}(\mathbb{C}^{2g}) \}$

The Sato-Tate axioms for a closed subgroup $G \subseteq USp(2g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: U(1) \to G^0$ such that $\theta(u)$ has eigenvalues u and \overline{u} each with multiplicity g. The image of such a θ is called a *Hodge circle*. Moreover, the Hodge circles generate a dense subgroup of G^0 .

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character χ : $GL_{2g}(\mathbb{C}) \to \mathbb{C}$:

 $\int_{H} \chi(h) \mu_{\mathrm{Haar}} \in \mathbb{Z} \,,$

where μ_{Haar} is normalized so that $\mu_{\text{Haar}}(G^0) = 1$.

Lefschetz condition (ST3)

$$G^0 = \{\gamma \in \mathsf{USp}(2g) | \gamma lpha \gamma^{-1} = lpha ext{ for all } lpha \in \mathsf{End}_{G^0}(\mathbb{C}^{2g}) \}$$

Proposition

If G = ST(A) for some A/k with $g \leq 3$, then G satisfies the ST axioms.

Mumford–Tate conjecture	$\sim \rightarrow$	(ST1)
"Rationality" of \mathcal{G}_ℓ	$\sim \rightarrow$	(ST2)
Bicommutant property of \mathcal{G}^0_ℓ	$\sim \rightarrow$	(ST3)

• Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

Proposition

If G = ST(A) for some A/k with $g \leq 3$, then G satisfies the ST axioms.

Mumford–Tate conjecture	\rightsquigarrow	(ST1)
"Rationality" of \mathcal{G}_ℓ	\rightsquigarrow	(ST2)
Bicommutant property of \mathcal{G}^0_ℓ	\rightsquigarrow	(ST3)

• Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

Proposition

If G = ST(A) for some A/k with $g \leq 3$, then G satisfies the ST axioms.

 $\begin{array}{rcl} \text{Mumford-Tate conjecture} & \rightsquigarrow & (\text{ST1}) \\ & \text{``Rationality'' of } \mathcal{G}_{\ell} & \rightsquigarrow & (\text{ST2}) \\ \text{Bicommutant property of } \mathcal{G}_{\ell}^0 & \rightsquigarrow & (\text{ST3}) \end{array}$

• Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

Proposition

If G = ST(A) for some A/k with $g \leq 3$, then G satisfies the ST axioms.

 $\begin{array}{rcl} \text{Mumford-Tate conjecture} & \rightsquigarrow & (\text{ST1}) \\ & \text{``Rationality'' of } \mathcal{G}_{\ell} & \rightsquigarrow & (\text{ST2}) \\ \text{Bicommutant property of } \mathcal{G}_{\ell}^0 & \rightsquigarrow & (\text{ST3}) \end{array}$

• Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- $\bullet\,$ 34 of them occur as ST groups of abelian surfaces over $\mathbb{Q}.$
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q} .
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q} .
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q} .
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q} .
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are USp(4) and $N(SU(2) \times SU(2))$.
- The case $N(SU(2) \times SU(2))$ corresponds to an abelian surface A/k, which is either:
 - ▶ Res^L_k(E), where L/k quadratic and E/L an e.c. which is not a k-curve; or
 - ▶ absolutely simple with real multiplication not defined over *k*.

• If $k = \mathbb{Q}$, the ST conjecture holds for $N(SU(2) \times SU(2))$ (N. Taylor).

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are USp(4) and $N(SU(2) \times SU(2))$.
- The case $N(SU(2) \times SU(2))$ corresponds to an abelian surface A/k, which is either:
 - ▶ Res^L_k(E), where L/k quadratic and E/L an e.c. which is not a k-curve; or
 - ▶ absolutely simple with real multiplication not defined over *k*.

• If $k = \mathbb{Q}$, the ST conjecture holds for $N(SU(2) \times SU(2))$ (N. Taylor).

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are USp(4) and $N(SU(2) \times SU(2))$.
- The case $N(SU(2) \times SU(2))$ corresponds to an abelian surface A/k, which is either:
 - Res^L_k(E), where L/k quadratic and E/L an e.c. which is not a k-curve; or
 - ▶ absolutely simple with real multiplication not defined over *k*.

• If $k = \mathbb{Q}$, the ST conjecture holds for $N(SU(2) \times SU(2))$ (N. Taylor).

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are USp(4) and $N(SU(2) \times SU(2))$.
- The case $N(SU(2) \times SU(2))$ corresponds to an abelian surface A/k, which is either:
 - Res^L_k(E), where L/k quadratic and E/L an e.c. which is not a k-curve; or
 - ▶ absolutely simple with real multiplication not defined over *k*.
- If $k = \mathbb{Q}$, the ST conjecture holds for $N(SU(2) \times SU(2))$ (N. Taylor).
Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato–Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F : \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

This refines a previous result of Guralnick and Kedlaya, which asserts

 $[F:\mathbb{Q}] \mid 2^6 \cdot 3^3 \cdot 7 = \mathsf{Lcm}(192, 336, 432).$

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F : \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

• This refines a previous result of Guralnick and Kedlaya, which asserts

$$[F:\mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7 = \mathsf{Lcm}(192, 336, 432).$$

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F : \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

• This refines a previous result of Guralnick and Kedlaya, which asserts

$$[F:\mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7 = \mathsf{Lcm}(192, 336, 432).$$

USp(6)U(3) $SU(2) \times USp(4)$ $U(1) \times USp(4)$ $U(1) \times SU(2) \times SU(2)$ $SU(2) \times U(1) \times U(1)$ $SU(2) \times SU(2)_2$ $SU(2) \times U(1)_2$ $U(1) \times SU(2)_2$ $U(1) \times U(1)_2$ $SU(2) \times SU(2) \times SU(2)$ $U(1) \times U(1) \times U(1)$ $SU(2)_3$ $U(1)_{3}$

Notations:

• For $d \in \{2,3\}$ and $H \in \{SU(2), U(1)\}$: $H_d = \{diag(u, .4., u) | u \in H\}$ • For $d \in \{1,3\}$: $U(d) = \begin{pmatrix} U(d)^{St} & 0\\ 0 & U(d)^{St} \end{pmatrix} \subseteq USp(2d)$

Note in particular that

 ${
m SU}(2) imes {
m U}(1)_2\simeq {
m U}(1) imes {
m SU}(2)_2$.

USp(6)U(3) $SU(2) \times USp(4)$ $U(1) \times USp(4)$ $U(1) \times SU(2) \times SU(2)$ $SU(2) \times U(1) \times U(1)$ $SU(2) \times SU(2)_2$ $SU(2) \times U(1)_2$ $U(1) \times SU(2)_2$ $U(1) \times U(1)_2$ $SU(2) \times SU(2) \times SU(2)$ $U(1) \times U(1) \times U(1)$ $SU(2)_3$ $U(1)_{3}$

Notations:

• For $d \in \{2,3\}$ and $H \in \{SU(2), U(1)\}$: $H_d = \{diag(u, .d., u) | u \in H\}$ • For $d \in \{1,3\}$: $U(d) = \begin{pmatrix} U(d)^{St} & 0\\ 0 & U(d)^{St} \end{pmatrix} \subseteq USp(2d)$

Note in particular that

 $\mathsf{SU}(2) imes\mathsf{U}(1)_2\simeq\mathsf{U}(1) imes\mathsf{SU}(2)_2$.

USp(6)U(3) $SU(2) \times USp(4)$ $U(1) \times USp(4)$ $U(1) \times SU(2) \times SU(2)$ $SU(2) \times U(1) \times U(1)$ $SU(2) \times SU(2)_2$ $SU(2) \times U(1)_2$ $U(1) \times SU(2)_2$ $U(1) \times U(1)_2$ $SU(2) \times SU(2) \times SU(2)$ $U(1) \times U(1) \times U(1)$ $SU(2)_3$ $U(1)_{3}$

Notations:

• For $d \in \{2,3\}$ and $H \in \{SU(2), U(1)\}$: $H_d = \{diag(u, .d., u) | u \in H\}$ • For $d \in \{1,3\}$: $U(d) = \begin{pmatrix} U(d)^{St} & 0\\ 0 & \overline{U(d)}^{St} \end{pmatrix} \subseteq USp(2d)$

• Note in particular that

 ${
m SU}(2) imes {
m U}(1)_2\simeq {
m U}(1) imes {
m SU}(2)_2$.

USp(6)U(3) $SU(2) \times USp(4)$ $U(1) \times USp(4)$ $U(1) \times SU(2) \times SU(2)$ $SU(2) \times U(1) \times U(1)$ $SU(2) \times SU(2)_2$ $SU(2) \times U(1)_2$ $U(1) \times SU(2)_2$ $U(1) \times U(1)_2$ $SU(2) \times SU(2) \times SU(2)$ $U(1) \times U(1) \times U(1)$ $SU(2)_3$ $U(1)_{3}$

Notations:

- For $d \in \{2,3\}$ and $H \in \{SU(2), U(1)\}$: $H_d = \{diag(u, .4, ., u) | u \in H\}$ • For $d \in \{1, 3\}$: $U(d) = \begin{pmatrix} U(d)^{St} & 0\\ 0 & \overline{U(d)}^{St} \end{pmatrix} \subseteq USp(2d)$
- Note in particular that

$$\mathsf{SU}(2) imes\mathsf{U}(1)_2\simeq\mathsf{U}(1) imes\mathsf{SU}(2)_2$$
 .

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

• Use

$$\left\{\begin{array}{l} \mathcal{G} \subseteq \mathsf{USp(6)} \text{ with } \mathcal{G}^0 = G^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{l} \text{finite } H \subseteq N/G^0 \text{ s.t.} \\ HG^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

• Consider 3 cases depending on G^0 :

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

• Use

 $\left\{\begin{array}{c} \mathcal{G} \subseteq \mathsf{USp}(6) \text{ with } \mathcal{G}^0 = \mathcal{G}^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{c} \text{finite } H \subseteq N/\mathcal{G}^0 \text{ s.t.} \\ H\mathcal{G}^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$

• Consider 3 cases depending on *G*⁰:

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

Use

$$\left\{\begin{array}{l} \mathcal{G} \subseteq \mathsf{USp}(6) \text{ with } \mathcal{G}^0 = \mathcal{G}^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{l} \text{finite } \mathcal{H} \subseteq \mathcal{N}/\mathcal{G}^0 \text{ s.t.} \\ \mathcal{H}\mathcal{G}^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

Consider 3 cases depending on G⁰:
 Genuine of dimension 3: G⁰ ⊆ USp(6) cannot be written as G⁰ = G^{0,1} × G^{0,2} with G^{0,1} ⊆ SU(2) and G^{0,2} ⊆ USp(4). (*)
 Split case: G⁰ can be written as in (*) and M(≤ M₁ × M₂). (where N₁ = M₀s₀(c₁) (G^{0,1}).
 Non-split case: G⁰ can be written as in (*) and M(≤ M₁ × M₂). (*)

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

Use

$$\left\{\begin{array}{l} \mathcal{G} \subseteq \mathsf{USp(6) with} \ \mathcal{G}^0 = G^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{l} \text{finite } H \subseteq N/G^0 \text{ s.t.} \\ HG^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

• Consider 3 cases depending on G^0 :

• Genuine of dimension 3: $G^0 \subseteq USp(6)$ cannot be written as

 $G^0 = G^{0,1} imes G^{0,2}$ with $G^{0,1} \subseteq \mathsf{SU}(2)$ and $G^{0,2} \subseteq \mathsf{USp}(4)$. (*)

▶ **Split case**: G⁰ can be written as in (*) and

 $N\simeq N_1 imes N_2\,,\qquad$ where $N_i=N_{\mathrm{USp}(2i)}(G^{0,i})$.

Non-split case: G⁰ can be written as in (*) and

 $N_1 \times N_2 \subsetneq N$.

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

Use

$$\left\{\begin{array}{c} \mathcal{G} \subseteq \mathsf{USp(6)} \text{ with } \mathcal{G}^0 = \mathcal{G}^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{c} \text{finite } \mathcal{H} \subseteq \mathcal{N}/\mathcal{G}^0 \text{ s.t.} \\ \mathcal{H}\mathcal{G}^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

• Consider 3 cases depending on G^0 :

▶ Genuine of dimension 3: $G^0 \subseteq USp(6)$ cannot be written as

 $G^0 = G^{0,1} \times G^{0,2}$ with $G^{0,1} \subseteq SU(2)$ and $G^{0,2} \subseteq USp(4)$. (*)

▶ **Split case**: G⁰ can be written as in (*) and

 $N \simeq N_1 \times N_2$, where $N_i = N_{\text{USp}(2i)}(G^{0,i})$.

Non-split case: G⁰ can be written as in (*) and

 $N_1 \times N_2 \subsetneq N$.

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

Use

$$\left\{\begin{array}{c} \mathcal{G} \subseteq \mathsf{USp}(6) \text{ with } \mathcal{G}^0 = \mathcal{G}^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{c} \text{finite } H \subseteq N/\mathcal{G}^0 \text{ s.t.} \\ H\mathcal{G}^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

• Consider 3 cases depending on G^0 :

▶ Genuine of dimension 3: $G^0 \subseteq USp(6)$ cannot be written as

 $G^0 = G^{0,1} \times G^{0,2}$ with $G^{0,1} \subseteq SU(2)$ and $G^{0,2} \subseteq USp(4)$. (*)

▶ **Split case**: G⁰ can be written as in (*) and

$$N\simeq N_1 imes N_2\,,\qquad$$
 where $N_i=N_{{
m USp}(2i)}(G^{0,i})\,.$

▶ Non-split case: G⁰ can be written as in (*) and

 $N_1 \times N_2 \subsetneq N$.

General strategy to recover the possibilities for G from G^0 :

• Compute $N = N_{\text{USp}(6)}(G^0)$ and N/G^0 .

Use

$$\left\{\begin{array}{c} \mathcal{G} \subseteq \mathsf{USp(6)} \text{ with } \mathcal{G}^0 = \mathcal{G}^0 \\ \text{satisfying (ST2)} \end{array}\right\} / \sim \longleftrightarrow \left\{\begin{array}{c} \text{finite } H \subseteq N/\mathcal{G}^0 \text{ s.t.} \\ \mathcal{H}\mathcal{G}^0 \text{ satisfies (ST2)} \end{array}\right\} / \sim$$

• Consider 3 cases depending on G^0 :

▶ Genuine of dimension 3: $G^0 \subseteq USp(6)$ cannot be written as

$$G^0=G^{0,1} imes G^{0,2}$$
 with $G^{0,1}\subseteq {
m SU}(2)$ and $G^{0,2}\subseteq {
m USp}(4)$. (*)

▶ **Split case**: G⁰ can be written as in (*) and

$$N\simeq \mathit{N}_1 imes \mathit{N}_2\,, \qquad$$
 where $\mathit{N}_i=\mathit{N}_{\mathrm{USp}(2i)}(\mathit{G}^{0,i})\,.$

▶ Non-split case: G⁰ can be written as in (*) and

$$N_1 \times N_2 \subsetneq N$$
.

Classification: cases depending on G^0

Convince dime 2 conve	∫USp(6)
Genuine dim. 3 cases	∫U(3)
Split cases	$\int SU(2) \times USp(4)$
	U(1) imes USp(4)
	$U(1) \times SU(2) \times SU(2)$
	SU(2) imes U(1) imes U(1)
	$SU(2) \times SU(2)_2$
	${\sf SU}(2) imes {\sf U}(1)_2$
	$U(1) imesSU(2)_2$
	$U(1) imes U(1)_2$
Non-split cases	$\int SU(2) \times SU(2) \times SU(2)$
	U(1) imes U(1) imes U(1)
	$\int SU(2)_3$
	$(U(1)_{3})$

• Genuine cases: USp(6), U(3), N(U(3)).

• Split cases: Since $N/G^0 \simeq N_1/G^{0,1} \times N_2/G^{0,2}$ we have

 $\mathcal{A} = \left\{ \begin{array}{l} H \subseteq N/G^0 \text{ finite s.t.} \\ HG^0 \text{ satisfies (ST2)} \end{array} \right\} / \sim \longleftrightarrow \left\{ \begin{array}{l} H \cong H_1 \times_H H_2 \text{ with} \\ H_1 \subseteq N_1/G^0 \text{ finite s.t.} \\ H_2 \subseteq N_1/G^0 \text{ finite s.t.} \end{array} \right\}$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

Non-split cases:

 G^0 N/G^0 #A $SU(2) \times SU(2) \times SU(2)$ S_3 4 $U(1) \times U(1) \times U(1)$ $(C_2 \times C_2) \rtimes S_3$ 33 $SU(2)_3$ SO(3)11 $U(1)_3$ $PSU(3) \rtimes C_2$ 171

- Genuine cases: USp(6), U(3), N(U(3)).
- Split cases: Since $N/G^0 \simeq N_1/G^{0,1} \times N_2/G^{0,2}$ we have

$$\mathcal{A} = \left\{ \begin{array}{c} H \subseteq N/G^{0} \text{ finite s.t.} \\ HG^{0} \text{ satisfies (ST2)} \end{array} \right\} /\sim \longleftrightarrow \left\{ \begin{array}{c} H = H_{1} \times_{H'} H_{2} \text{ with} \\ H_{i} \subseteq N_{i}/G^{0,i} \text{ finite s.t.} \\ H_{i}G^{0,i} \text{ satisfies (ST2)} \end{array} \right\}$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

• Non-split cases:

- Genuine cases: USp(6), U(3), N(U(3)).
- \bullet Split cases: Since ${\it N}/{\it G}^0\simeq {\it N}_1/{\it G}^{0,1}\times {\it N}_2/{\it G}^{0,2}$ we have

$$\mathcal{A} = \left\{ \begin{array}{c} H \subseteq N/G^{0} \text{ finite s.t.} \\ HG^{0} \text{ satisfies (ST2)} \end{array} \right\} /_{\sim} \longleftrightarrow \left\{ \begin{array}{c} H = H_{1} \times_{H'} H_{2} \text{ with} \\ H_{i} \subseteq N_{i}/G^{0,i} \text{ finite s.t.} \\ H_{i}G^{0,i} \text{ satisfies (ST2)} \end{array} \right\} /_{\sim}$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

• Non-split cases:

- Genuine cases: USp(6), U(3), N(U(3)).
- \bullet Split cases: Since ${\it N}/{\it G}^0\simeq {\it N}_1/{\it G}^{0,1}\times {\it N}_2/{\it G}^{0,2}$ we have

$$\mathcal{A} = \left\{ \begin{array}{c} H \subseteq N/G^0 \text{ finite s.t.} \\ HG^0 \text{ satisfies (ST2)} \end{array} \right\} / \sim \longleftrightarrow \left\{ \begin{array}{c} H = H_1 \times_{H'} H_2 \text{ with} \\ H_i \subseteq N_i/G^{0,i} \text{ finite s.t.} \\ H_i G^{0,i} \text{ satisfies (ST2)} \end{array} \right\} / \sim$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

• Non-split cases:

 G^0 N/G^0 #A $SU(2) \times SU(2) \times SU(2)$ S_3 4 $U(1) \times U(1) \times U(1)$ $(C_2 \times C_2 \times C_2) \rtimes S_3$ 33 $SU(2)_3$ SO(3)11 $U(1)_3$ $PSU(3) \rtimes C_2$ 171

- Genuine cases: USp(6), U(3), N(U(3)).
- \bullet Split cases: Since ${\it N}/{\it G}^0\simeq {\it N}_1/{\it G}^{0,1}\times {\it N}_2/{\it G}^{0,2}$ we have

$$\mathcal{A} = \left\{ \begin{array}{c} H \subseteq N/G^0 \text{ finite s.t.} \\ HG^0 \text{ satisfies (ST2)} \end{array} \right\} / \sim \longleftrightarrow \left\{ \begin{array}{c} H = H_1 \times_{H'} H_2 \text{ with} \\ H_i \subseteq N_i/G^{0,i} \text{ finite s.t.} \\ H_i G^{0,i} \text{ satisfies (ST2)} \end{array} \right\} / \sim$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

• Non-split cases:

G^0	N/G^0	$\#\mathcal{A}$
$SU(2) \times SU(2) \times SU(2)$	<i>S</i> ₃	4
U(1) imesU(1) imesU(1)	$(C_2 \times C_2 \times C_2) \rtimes S_3$	33
SU(2) ₃	SO(3)	11
$U(1)_{3}$	$PSU(3) \rtimes C_2$	171

 $\mathcal{A} = \left\{ \begin{array}{c} \text{finite } H \subseteq \mathsf{PSU}(3) \rtimes C_2\\ \text{s.t. } H \, \mathsf{U}(1)_3 \text{ satisfies } (\mathsf{ST2}) \end{array} \right\} / \sim$

The above injection is seen to be a bijection a posteriori.

$$\mathcal{A} = \left\{ \begin{array}{c} \text{finite } H \subseteq \mathsf{PSU}(3) \rtimes C_2 \\ \text{s.t. } H \cup (1)_3 \text{ satisfies } (\mathsf{ST2}) \end{array} \right\} / \sim \\ \uparrow \\ \left\{ \begin{array}{c} \text{finite } \mu_3 \subseteq H \subseteq \mathsf{SU}(3) \\ \text{s.t. } H \cup (1)_3 \text{ satisfies } (\mathsf{ST2}) \end{array} \right\} / \sim \\ \downarrow \\ \left\{ \begin{array}{c} \text{finite } \mu_3 \subseteq H \subseteq \mathsf{SU}(3) \text{ s.t.} \\ H \cup (1)_3 \text{ sat. } (\mathsf{ST2}) \text{ for } \mathsf{Tr}(\wedge^2 \mathbb{C}^6) \end{array} \right\} / \sim \\ \left\{ \begin{array}{c} \text{finite } \mu_3 \subseteq H \subseteq \mathsf{SU}(3) \text{ s.t.} \\ | \\ \mathsf{Tr}(h)|^2 \in \mathbb{Z} \text{ for all } h \in H \end{array} \right\} / \sim \end{array} \right\}$$

The above injection is seen to be a bijection a posteriori.

The above injection is seen to be a bijection a posteriori.

• The above injection is seen to be a bijection a posteriori.

• The above injection is seen to be a bijection a posteriori.

- The above injection is seen to be a bijection a posteriori.
- This yields 171 = 63 + 108 groups.

 \sim

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - ► C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of h ∈ H reduces to solving "a multiplicative Manin-Mumford problem":

 $||f| \ge |f| \ge |f_{2}| \ge |f_{\infty}|$ are the eigenvalues of h, then:

 $|\alpha + \alpha + \alpha|^2 = |\operatorname{Tr}(h)|^2 \in \mathbb{Z}$ and $\alpha \otimes \alpha = 1$.

Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$. One deduces that ord(h)[21, 24, 36]

 Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of h ∈ H reduces to solving "a multiplicative Manin-Mumford problem":

• If $z_1, z_2, z_3 \in \mu_{\infty}$ are the eigenvalues of *h*, then:

 $|z_1+z_2+z_3|^2=|\operatorname{Tr}(h)|^2\in\mathbb{Z}$ and $z_1z_2z_3=1$.

- ▶ Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$. ▶ One deduces that $\operatorname{ord}(h)|21, 24, 36$.
- Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of *h* ∈ *H* reduces to solving "a multiplicative Manin-Mumford problem":

▶ If $z_1, z_2, z_3 \in \mu_\infty$ are the eigenvalues of *h*, then:

 $|z_1 + z_2 + z_3|^2 = |\operatorname{Tr}(h)|^2 \in \mathbb{Z}$ and $z_1 z_2 z_3 = 1$.

- Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$.
- One deduces that ord(*h*)|21,24,36

 Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of h ∈ H reduces to solving "a multiplicative Manin-Mumford problem":
 - If $z_1, z_2, z_3 \in \mu_{\infty}$ are the eigenvalues of *h*, then:

$$|z_1+z_2+z_3|^2 = |\operatorname{\mathsf{Tr}}(h)|^2 \in \mathbb{Z}$$
 and $z_1z_2z_3 = 1$.

- Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$.
- One deduces that ord(h)|21, 24, 36.

• Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of *h* ∈ *H* reduces to solving "a multiplicative Manin-Mumford problem":
 - If $z_1, z_2, z_3 \in \mu_{\infty}$ are the eigenvalues of *h*, then:

$$|z_1 + z_2 + z_3|^2 = |\operatorname{Tr}(h)|^2 \in \mathbb{Z}$$
 and $z_1 z_2 z_3 = 1$.

- Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$.
- One deduces that ord(h)|21, 24, 36.

• Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of h ∈ H reduces to solving "a multiplicative Manin-Mumford problem":
 - If $z_1, z_2, z_3 \in \mu_{\infty}$ are the eigenvalues of *h*, then:

$$|z_1+z_2+z_3|^2 = |\operatorname{\mathsf{Tr}}(h)|^2 \in \mathbb{Z}$$
 and $z_1z_2z_3 = 1$.

- Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$.
- One deduces that ord(h)|21, 24, 36.
- Assemble elements to build groups of the shape described by the BMD classification.

- The finite µ₃ ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and Dickson (1916). They are:
 - Abelian groups
 - C₂-extensions of abelian groups.
 - C₃-extenions of abelian groups.
 - S_3 -extensions of abelian groups.
 - cyclic extensions of exceptional subgroups of SU(2) (2T, 2O, 2I).
 - ► Exceptional subgroups of SU(3) (projected in PSU(3) are E₃₆, E₇₂, E₂₁₆, A₅, A₆, E₁₆₈ ≃ PSL(2,7)).
- Determining the possible orders of *h* ∈ *H* reduces to solving "a multiplicative Manin-Mumford problem":
 - If $z_1, z_2, z_3 \in \mu_{\infty}$ are the eigenvalues of *h*, then:

$$|z_1+z_2+z_3|^2 = |\operatorname{\mathsf{Tr}}(h)|^2 \in \mathbb{Z}$$
 and $z_1z_2z_3 = 1$.

- Even more, it must happen $|z_1^n + z_2^n + z_3^n|^2 \in \mathbb{Z}$ for all $n \ge 1$.
- One deduces that ord(*h*)|21, 24, 36.
- Assemble elements to build groups of the shape described by the BMD classification.

Classification: Invariants

• Only 210 distinct pairs $(G^0, G/G^0)$.

• Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

 $\mathsf{M}_{i,j,k}(G) := \dim_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k} \right)^G \in \mathbb{Z}_{\geq 0} \,.$

The tuple {M_{i,j,k}(G)}_{i+j+k≤6} attains 432 values. It only conflates a pair of groups G₁, G₂, for which however

$$G_1/G_1^0\simeq \langle 54,5
angle
ot= \langle 54,8
angle \simeq G_2/G_2^0$$
 .

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G/G⁰ divides 192, 336, or 432.

Classification: Invariants

• Only 210 distinct pairs $(G^0, G/G^0)$.

• Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

 $\mathsf{M}_{i,j,k}(G) := \dim_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k} \right)^G \in \mathbb{Z}_{\geq 0} \,.$

The tuple {M_{i,j,k}(G)}_{i+j+k≤6} attains 432 values. It only conflates a pair of groups G₁, G₂, for which however

$$G_1/G_1^0\simeq \langle 54,5
angle
ot= \langle 54,8
angle \simeq G_2/G_2^0$$
 .

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G/G⁰ divides 192, 336, or 432

Classification: Invariants

- Only 210 distinct pairs $(G^0, G/G^0)$.
- Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

$$\mathsf{M}_{i,j,k}(\mathsf{G}):=\mathsf{dim}_{\mathbb{C}}\left((\wedge^1\mathbb{C}^6)^{\otimes i}\otimes(\wedge^2\mathbb{C}^6)^{\otimes j}\otimes(\wedge^3\mathbb{C}^6)^{\otimes k}
ight)^{\mathsf{G}}\in\mathbb{Z}_{\geq 0}\,.$$

• The tuple $\{M_{i,j,k}(G)\}_{i+j+k\leq 6}$ attains 432 values. It only conflates a pair of groups G_1, G_2 , for which however

$$G_1/\,G_1^0\simeq \langle 54,5\rangle \not\simeq \langle 54,8\rangle \simeq \,G_2/\,G_2^0\,.$$

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
 Any possible order of G/G⁰ divides 192, 336, or 432.
- Only 210 distinct pairs $(G^0, G/G^0)$.
- Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

$$\mathsf{M}_{i,j,k}(\mathsf{G}) := \mathsf{dim}_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k}
ight)^{\mathsf{G}} \in \mathbb{Z}_{\geq 0} \,.$$

$$G_1/\,G_1^0\simeq \langle 54,5\rangle \not\simeq \langle 54,8\rangle \simeq \,G_2/\,G_2^0\,.$$

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G/G⁰ divides 192, 336, or 432.

- Only 210 distinct pairs $(G^0, G/G^0)$.
- Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

$$\mathsf{M}_{i,j,k}(\mathsf{G}) := \mathsf{dim}_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k}
ight)^{\mathsf{G}} \in \mathbb{Z}_{\geq 0} \,.$$

$$G_1/G_1^0 \simeq \langle 54,5\rangle \not\simeq \langle 54,8\rangle \simeq \, G_2/G_2^0 \, .$$

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
 Any possible order of G/G⁰ divides 192, 336, or 432.

- Only 210 distinct pairs $(G^0, G/G^0)$.
- Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

$$\mathsf{M}_{i,j,k}(\mathsf{G}) := \mathsf{dim}_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k}
ight)^{\mathsf{G}} \in \mathbb{Z}_{\geq 0} \,.$$

$${\it G}_1/{\it G}_1^0\simeq \langle 54,5\rangle \not\simeq \langle 54,8\rangle \simeq {\it G}_2/{\it G}_2^0\,.$$

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G/G^0 divides 192, 336, or 432.

- Only 210 distinct pairs $(G^0, G/G^0)$.
- Define the (i, j, k)-th moment, for $i, j, k \ge 0$, as

$$\mathsf{M}_{i,j,k}(\mathsf{G}) := \mathsf{dim}_{\mathbb{C}} \left((\wedge^1 \mathbb{C}^6)^{\otimes i} \otimes (\wedge^2 \mathbb{C}^6)^{\otimes j} \otimes (\wedge^3 \mathbb{C}^6)^{\otimes k}
ight)^{\mathsf{G}} \in \mathbb{Z}_{\geq 0} \,.$$

$${\it G}_1/{\it G}_1^0\simeq \langle 54,5\rangle \not\simeq \langle 54,8\rangle \simeq {\it G}_2/{\it G}_2^0\,.$$

- In fact, $M_{i,j,k}(G_1) = M_{i,j,k}(G_2)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for g = 1 and 414 for g = 2).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G/G^0 divides 192, 336, or 432.

- By Shimura, if A/k has CM by M, then $F = M^*k$. This rules out:
 - ▶ 20 groups in the case $U(1) \times U(1) \times U(1)$.
 - ▶ 3 groups in the case $SU(2) \times U(1) \times U(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso ST(A)/ST(A)⁰ ≃ Gal(F/k) is compatible with base change. Given F/k'/k:

- By Shimura, if A/k has CM by M, then $F = M^*k$. This rules out:
 - ▶ 20 groups in the case $U(1) \times U(1) \times U(1)$.
 - ▶ 3 groups in the case $SU(2) \times U(1) \times U(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso ST(A)/ST(A)⁰ ~ Gal(F/k) is compatible with base change. Given F/k'/k:

- By Shimura, if A/k has CM by M, then $F = M^*k$. This rules out:
 - 20 groups in the case $U(1) \times U(1) \times U(1)$.
 - 3 groups in the case $SU(2) \times U(1) \times U(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso ST(A)/ST(A)⁰ ~ Gal(F/k) is compatible with base change. Given F/k'/k:

- By Shimura, if A/k has CM by M, then $F = M^*k$. This rules out:
 - 20 groups in the case $U(1) \times U(1) \times U(1)$.
 - 3 groups in the case SU(2) \times U(1) \times U(1).
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso ST(A)/ST(A)⁰ ~ Gal(F/k) is compatible with base change. Given F/k'/k:

- By Shimura, if A/k has CM by M, then $F = M^*k$. This rules out:
 - 20 groups in the case $U(1) \times U(1) \times U(1)$.
 - 3 groups in the case SU(2) \times U(1) \times U(1).
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso ST(A)/ST(A)⁰ ~ Gal(F/k) is compatible with base change. Given F/k'/k:

• Genuine cases (2 max. groups):

- USp(6): generic case. Eg.: $y^2 = x^7 x + 1/\mathbb{Q}$.
- N(U(3)): Picard curves. Eg.: $y^3 = x^4 + x + 1/\mathbb{Q}$.

• Split cases (13 max. groups):

Maximality ensures the triviality of the fiber product, i.e.

 $G\simeq G_1 \times G_2$,

where G_1 and G_2 are realizable in dimensions 1 and 2.

• Non-split cases (18 max. groups):

- ► $G^0 = SU(2) \times SU(2) \times SU(2)$ (1. max. group): $\operatorname{Res}_{\mathbb{Q}}^L(E)$, where L/\mathbb{Q} a non-normal cubic and E/L e.c. which is not a \mathbb{Q} -curve.
- ► G⁰ = U(1) × U(1) × U(1) (3 max. groups): Products of CM abelian varieties.
- G⁰ = SU(2)₃ (2 max. groups): Twists of curves with many automorphisms.

• Genuine cases (2 max. groups):

- USp(6): generic case. Eg.: $y^2 = x^7 x + 1/\mathbb{Q}$.
- N(U(3)): Picard curves. Eg.: $y^3 = x^4 + x + 1/\mathbb{Q}$.
- Split cases (13 max. groups): Maximality ensures the triviality of the fiber product, i.e.

 $G\simeq\,G_1\times\,G_2\,,$

where G_1 and G_2 are realizable in dimensions 1 and 2.

• Non-split cases (18 max. groups):

- ▶ $G^0 = SU(2) \times SU(2) \times SU(2)$ (1. max. group): $\operatorname{Res}_{\mathbb{Q}}^L(E)$, where L/\mathbb{Q} a non-normal cubic and E/L e.c. which is not a \mathbb{Q} -curve.
- G⁰ = U(1) × U(1) × U(1) (3 max. groups): Products of CM abelian varieties.
- G⁰ = SU(2)₃ (2 max. groups): Twists of curves with many automorphisms.

• Genuine cases (2 max. groups):

- USp(6): generic case. Eg.: $y^2 = x^7 x + 1/\mathbb{Q}$.
- N(U(3)): Picard curves. Eg.: $y^3 = x^4 + x + 1/\mathbb{Q}$.
- Split cases (13 max. groups): Maximality ensures the triviality of the fiber product, i.e.

$$G\simeq G_1 \times G_2$$
,

where G_1 and G_2 are realizable in dimensions 1 and 2.

• Non-split cases (18 max. groups):

- G⁰ = SU(2) × SU(2) × SU(2) (1. max. group): Res^L_Q(E), where L/Q a non-normal cubic and E/L e.c. which is not a Q-curve.
- G⁰ = U(1) × U(1) × U(1) (3 max. groups): Products of CM abelian varieties.
- G⁰ = SU(2)₃ (2 max. groups): Twists of curves with many automorphisms.

• $G^0 = U(1)_3$ (12 max. groups):

All such G satisfy

 $G/G^0 \hookrightarrow \operatorname{GL}_3(\mathcal{O}_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$

where M is a quadratic imaginary field of class number 1. Reinterpret

 $G/G^0 \hookrightarrow \operatorname{Aut}(E^3_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$

where E/\mathbb{Q} is an elliptic curve with CM by \mathcal{O}_M .

This gives a 1-cocycle

 $\widetilde{\xi} \in H^1(G/G^0,\operatorname{Aut}(E^3))$.

- There exists L/\mathbb{Q} such that $G/G^0 \simeq \operatorname{Gal}(L/\mathbb{Q})$.
- Then setting

 $\xi\colon\operatorname{Gal}(L/{\mathbb Q})\simeq G/G^0\stackrel{\xi}{
ightarrow}\operatorname{Aut}(E^3)$

•
$$G^0 = U(1)_3$$
 (12 max. groups):

All such G satisfy

$$G/G^0 \hookrightarrow \operatorname{GL}_3(\mathcal{O}_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$$

where *M* is a quadratic imaginary field of class number 1. Reinterpret

 $G/G^0 \hookrightarrow \operatorname{Aut}(E^3_M)
times \operatorname{Gal}(M/{\mathbb Q})$

where E/\mathbb{Q} is an elliptic curve with CM by \mathcal{O}_M .

This gives a 1-cocycle

 $\widetilde{\xi} \in H^1(G/G^0,\operatorname{Aut}(E^3))$.

- ► There exists L/Q such that G/G⁰ ≃ Gal(L/Q).
- Then setting

 $\xi\colon\operatorname{Gal}(L/\mathbb{Q})\simeq G/G^0\stackrel{\hat{\xi}}{
ightarrow}\operatorname{Aut}(E^3)$

•
$$G^0 = U(1)_3$$
 (12 max. groups):

All such G satisfy

$$G/G^0 \hookrightarrow \operatorname{GL}_3(\mathcal{O}_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$$

where *M* is a quadratic imaginary field of class number 1. ► Reinterpret

$$G/G^0 \hookrightarrow \operatorname{Aut}(E^3_M)
times \operatorname{Gal}(M/{\mathbb Q})$$

where E/\mathbb{Q} is an elliptic curve with CM by \mathcal{O}_M .

This gives a 1-cocycle

$$ilde{\xi}\in H^1(G/G^0,\operatorname{Aut}(E^3))$$
 .

- There exists L/\mathbb{Q} such that $G/G^0 \simeq \text{Gal}(L/\mathbb{Q})$.
- Then setting

$$\xi: \operatorname{Gal}(L/\mathbb{Q}) \simeq G/G^0 \stackrel{\widetilde{\xi}}{
ightarrow} \operatorname{Aut}(E^3)$$

•
$$G^0 = U(1)_3$$
 (12 max. groups):

All such G satisfy

$$G/G^0 \hookrightarrow \operatorname{GL}_3(\mathcal{O}_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$$

where *M* is a quadratic imaginary field of class number 1. ► Reinterpret

$$G/G^0 \hookrightarrow \operatorname{Aut}(E^3_M)
times \operatorname{Gal}(M/{\mathbb Q})$$

where E/\mathbb{Q} is an elliptic curve with CM by \mathcal{O}_M .

This gives a 1-cocycle

$$ilde{\xi}\in H^1(G/G^0,\operatorname{Aut}(E^3))$$
 .

- There exists L/\mathbb{Q} such that $G/G^0 \simeq \text{Gal}(L/\mathbb{Q})$.
- Then setting

$$\xi \colon \operatorname{Gal}(L/\mathbb{Q}) \simeq G/G^0 \stackrel{\xi}{
ightarrow} \operatorname{Aut}(E^3)$$

•
$$G^0 = U(1)_3$$
 (12 max. groups):

All such G satisfy

$$G/G^0 \hookrightarrow \operatorname{GL}_3(\mathcal{O}_M) \rtimes \operatorname{Gal}(M/\mathbb{Q})$$

where *M* is a quadratic imaginary field of class number 1. Reinterpret

$$G/G^0 \hookrightarrow \operatorname{Aut}(E^3_M)
times \operatorname{Gal}(M/{\mathbb Q})$$

where E/\mathbb{Q} is an elliptic curve with CM by \mathcal{O}_M .

This gives a 1-cocycle

$$ilde{\xi}\in H^1(G/G^0,\operatorname{Aut}(E^3))$$
 .

- There exists L/\mathbb{Q} such that $G/G^0 \simeq \operatorname{Gal}(L/\mathbb{Q})$.
- Then setting

$$\xi \colon \operatorname{\mathsf{Gal}}(L/\mathbb{Q}) \simeq G/G^0 \stackrel{\tilde{\xi}}{
ightarrow} \operatorname{\mathsf{Aut}}(E^3)$$

Open questions

- Realizability over totally real fields?
- Realizability over Q?
- Existence of a number field over which all 410 groups can be realized?
- Realizability via principally polarized abelian thereefolds?
- Realizability via Jacobians of genus 3 curves?
 - Partial answer: At least 22 of the 33 maximal groups can be realized via Jacobians...

G/G^0	$\#(G/G^0)$	C with $ST(Jac(C))$
$(C_4 \times C_4) \rtimes S_3 \times C_2$	192	Twist of the Fermat quartic
$PSL(2,7) \times C_2$	336	Twist of the Klein quartic
$(C_6 \times C_6) \rtimes S_3 \times C_2$	432	?
$E_{216} \times C_2$	432	?