Sato-Tate groups of abelian threefolds

Francesc Fité (IAS), Kiran S. Kedlaya (UCSD), A.V. Sutherland (MIT)

Arithmetic of low-dimensional abelian varieties.
ICERM, 5th June 2019.

Sato-Tate groups of elliptic curves

- k a number field.
- E / k an elliptic curve.
- The Sato-Tate group $\mathrm{ST}(E)$ is defined as:
- $\operatorname{SU}(2)$ if E does not have CM.
- $U(1)=\left\{\left(\begin{array}{ll}u & 0 \\ 0 & \bar{u}\end{array}\right): u \in \mathbb{C},|u|=1\right\}$ if E has $C M$ by $M \subseteq k$.
- $N_{\mathrm{SU}(2)}(\mathrm{U}(1))$ if E has CM by $M \nsubseteq k$.
- Note that $\operatorname{Tr}: \operatorname{ST}(E) \rightarrow[-2,2]$. Denote $\mu=\operatorname{Tr}_{*}\left(\mu_{\text {Haar }}\right)$.

The Sato-Tate conjecture for elliptic curves

- Let \mathfrak{p} be a prime of good reduction for E. The normalized Frobenius trace satisfies

$$
\bar{a}_{\mathfrak{p}}=\frac{N(\mathfrak{p})+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)}{\sqrt{N(\mathfrak{p})}}=\frac{\operatorname{Tr}\left(\operatorname{Frob}_{\mathfrak{p}} \mid V_{\ell}(E)\right)}{\sqrt{N(\mathfrak{p})}} \in[-2,2] \quad(\text { for } \mathfrak{p} \nmid \ell)
$$

The Sato-Tate conjecture for elliptic curves

- Let \mathfrak{p} be a prime of good reduction for E. The normalized Frobenius trace satisfies

$$
\bar{a}_{\mathfrak{p}}=\frac{N(\mathfrak{p})+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)}{\sqrt{N(\mathfrak{p})}}=\frac{\operatorname{Tr}\left(\operatorname{Frob}_{\mathfrak{p}} \mid V_{\ell}(E)\right)}{\sqrt{N(\mathfrak{p})}} \in[-2,2] \quad(\text { for } \mathfrak{p} \nmid \ell)
$$

Sato-Tate conjecture
The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $[-2,2]$ w.r.t μ.

- If $\mathrm{ST}(E)=\mathrm{U}(1)$ or $N(\mathrm{U}(1))$: Known in full generality (Hecke, Deuring)
- Known if $S T(E)=S U(2)$ and k is totally real (Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if ST(E) $=\operatorname{SU}(2)$ and k is a CM field (Allen, Calegary, Caraiani, Gee,Helm,LeHung,Newton,Scholze, Taylor, Thorne)

The Sato-Tate conjecture for elliptic curves

- Let \mathfrak{p} be a prime of good reduction for E. The normalized Frobenius trace satisfies

$$
\bar{a}_{\mathfrak{p}}=\frac{N(\mathfrak{p})+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)}{\sqrt{N(\mathfrak{p})}}=\frac{\operatorname{Tr}\left(\operatorname{Frob}_{\mathfrak{p}} \mid V_{\ell}(E)\right)}{\sqrt{N(\mathfrak{p})}} \in[-2,2] \quad(\text { for } \mathfrak{p} \nmid \ell)
$$

Sato-Tate conjecture

The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $[-2,2]$ w.r.t μ.

- If $\mathrm{ST}(E)=\mathrm{U}(1)$ or $N(\mathrm{U}(1))$: Known in full generality (Hecke, Deuring).
- Known if $\mathrm{ST}(E)=\mathrm{SU}(2)$ and k is totally real.
(Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if $\mathrm{ST}(E)=\mathrm{SU}(2)$ and k is a CM field (Allen, Calegary,Caraiani,Gee,Helm,LeHung,Newton,Scholze,Taylor,Thorne).

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}_{\psi_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- Serre defines ST (A) in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\text {Zar }}$ endomorphisms.

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}_{\psi_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- Serre defines $\operatorname{ST}(A)$ in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\mathrm{Zar}}$.
- For $g \leq 3$, Banaszak and Kedlaya describe ST(A) in terms of endomorphisms.
- By Faltings, there is a G_{k}-equivariant isomorphism

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}_{\psi_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- Serre defines $\mathrm{ST}(A)$ in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\mathrm{Zar}}$.
- For $g \leq 3$, Banaszak and Kedlaya describe $\mathrm{ST}(A)$ in terms of endomorphisms.
- By Faltings, there is a G_{k}-equivariant isomorphism

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \simeq \operatorname{End}_{\mathcal{G}_{\ell}^{0}}\left(\mathbb{Q}_{\ell}^{2 g}\right)
$$

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}_{\psi_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- Serre defines $\mathrm{ST}(A)$ in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\mathrm{Zar}}$.
- For $g \leq 3$, Banaszak and Kedlaya describe $\mathrm{ST}(A)$ in terms of endomorphisms.
- By Faltings, there is a G_{k}-equivariant isomorphism

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \simeq \operatorname{End}_{\mathcal{G}_{\ell}^{0}}\left(\mathbb{Q}_{\ell}^{2 g}\right)
$$

Therefore

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}_{\psi_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- Serre defines $\mathrm{ST}(A)$ in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\mathrm{Zar}}$.
- For $g \leq 3$, Banaszak and Kedlaya describe $\mathrm{ST}(A)$ in terms of endomorphisms.
- By Faltings, there is a G_{k}-equivariant isomorphism

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \simeq \operatorname{End}_{\mathcal{G}_{\ell}^{0}}\left(\mathbb{Q}_{\ell}^{2 g}\right)
$$

Therefore

$$
\mathcal{G}_{\ell}^{0} \hookrightarrow\left\{\gamma \in \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

The twisted Lefschetz group

- More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\}
$$

- For $g=4$, Mumford has constructed A / k such that

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z} \quad \text { and } \quad \mathcal{G}_{\ell} \subsetneq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

The twisted Lefschetz group

- More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

- For $g=4$, Mumford has constructed A / k such that

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z} \quad \text { and } \quad \mathcal{G}_{\ell} \subsetneq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- For $g \leq 3$, one has

The twisted Lefschetz group

- More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

- For $g=4$, Mumford has constructed A / k such that

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z} \quad \text { and } \quad \mathcal{G}_{\ell} \subsetneq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- For $g \leq 3$, one has

$$
\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\}
$$

The twisted Lefschetz group

- More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

- For $g=4$, Mumford has constructed A / k such that

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z} \quad \text { and } \quad \mathcal{G}_{\ell} \subsetneq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

- For $g \leq 3$, one has

$$
\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\}
$$

Definition

The Twisted Lefschetz group is defined as

$$
\operatorname{TL}(A)=\bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{Sp}_{2 g} / \mathbb{Q} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.
$\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $\mathrm{TL}(A) \otimes_{\mathbb{Q}} \mathbb{C}$.
 We call F the endomorphism field of A.

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.

Definition
$\operatorname{ST}(A) \subseteq \operatorname{USp}(2 g)$ is a maximal compact subgroup of $\operatorname{TL}(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

- Note that

where F / k is the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$ We call F the endomorphism field of A.

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.

Definition

$\mathrm{ST}(A) \subseteq \operatorname{USp}(2 g)$ is a maximal compact subgroup of $\operatorname{TL}(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

- Note that

$$
\mathrm{ST}(A) / \mathrm{ST}(A)^{0} \simeq \mathrm{TL}(A) / \mathrm{TL}(A)^{0} \simeq \operatorname{Gal}(F / k) .
$$

where F / k is the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$.
We call F the endomorphism field of A.

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.

Definition

$\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $\operatorname{TL}(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

- Note that

$$
\mathrm{ST}(A) / \mathrm{ST}(A)^{0} \simeq \operatorname{TL}(A) / \mathrm{TL}(A)^{0} \simeq \operatorname{Gal}(F / k)
$$

where F / k is the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$.
We call F the endomorphism field of A.

- To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X=\operatorname{Conj}(\operatorname{ST}(A))$ s.t. $\operatorname{Char}\left(x_{\mathfrak{p}}\right)=\operatorname{Char}\left(\frac{\varrho_{A, \ell}\left(\text { Frob }_{p}\right)}{\sqrt{N \mathfrak{p}}}\right)$.

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.

Definition

$\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $\mathrm{TL}(A) \otimes_{\mathbb{Q}} \mathbb{C}$.

- Note that

$$
\mathrm{ST}(A) / \mathrm{ST}(A)^{0} \simeq \operatorname{TL}(A) / \mathrm{TL}(A)^{0} \simeq \operatorname{Gal}(F / k) .
$$

where F / k is the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$.
We call F the endomorphism field of A.

- To each prime \mathfrak{p} of good reduction for A, one can attach a conjugacy class $x_{\mathfrak{p}} \in X=\operatorname{Conj}(\mathrm{ST}(A))$ s.t. $\operatorname{Char}\left(x_{\mathfrak{p}}\right)=\operatorname{Char}\left(\frac{\varrho_{A, \ell}\left(\operatorname{Frob}_{p}\right)}{\sqrt{N_{\mathfrak{p}}}}\right)$.

Sato-Tate conjecture for abelian varieties

The sequence $\left\{x_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on X w.r.t the push forward of the Haar measure of $\mathrm{ST}(A)$.

Sato-Tate axioms for $g \leq 3$

The Sato-Tate axioms for a closed subgroup $G \subseteq U S p(2 g)$ for $g \leq 3$ are:

> Hodge condition (ST1)
> There is a homomorphism $\theta: U(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}

Sato-Tate axioms for $g \leq 3$

The Sato-Tate axioms for a closed subgroup $G \subseteq U S p(2 g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and \bar{u} each with multiplicity g. The image of such a θ is called a Hodge circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}.

Sato-Tate axioms for $g \leq 3$

The Sato-Tate axioms for a closed subgroup $G \subseteq U S p(2 g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and \bar{u} each with multiplicity g. The image of such a θ is called a Hodge circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}.

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character $\chi: \mathrm{GL}_{2 g}(\mathbb{C}) \rightarrow \mathbb{C}$:

$$
\int_{H} \chi(h) \mu_{\text {Haar }} \in \mathbb{Z}
$$

where $\mu_{\text {Haar }}$ is normalized so that $\mu_{\text {Haar }}\left(G^{0}\right)=1$.

Sato-Tate axioms for $g \leq 3$

The Sato-Tate axioms for a closed subgroup $G \subseteq U S p(2 g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and \bar{u} each with multiplicity g. The image of such a θ is called a Hodge circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}.

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character $\chi: \mathrm{GL}_{2 g}(\mathbb{C}) \rightarrow \mathbb{C}$:

$$
\int_{H} \chi(h) \mu_{\text {Haar }} \in \mathbb{Z}
$$

where $\mu_{\text {Haar }}$ is normalized so that $\mu_{\text {Haar }}\left(G^{0}\right)=1$.
Lefschetz condition (ST3)

$$
G^{0}=\left\{\gamma \in \mathrm{USp}(2 g) \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \operatorname{End}_{G^{0}}\left(\mathbb{C}^{2 g}\right)\right\} .
$$

General remarks and dimension $g=1$

Proposition
If $G=S T(A)$ for some A / k with $g \leq 3$, then G satisfies the $S T$ axioms.

General remarks and dimension $g=1$

Proposition

If $G=\operatorname{ST}(A)$ for some A / k with $g \leq 3$, then G satisfies the ST axioms.

$$
\begin{aligned}
\text { Mumford-Tate conjecture } & \rightsquigarrow \text { (ST1) } \\
\text { "Rationality" of } \mathcal{G}_{\ell} & \rightsquigarrow \text { (ST2) } \\
\text { Bicommutant property of } \mathcal{G}_{\ell}^{0} & \rightsquigarrow \text { (ST3) }
\end{aligned}
$$

- Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

General remarks and dimension $g=1$

Proposition

If $G=\operatorname{ST}(A)$ for some A / k with $g \leq 3$, then G satisfies the ST axioms.

$$
\begin{array}{rll}
\text { Mumford-Tate conjecture } & \rightsquigarrow \text { (ST1) } \\
\text { "Rationality" of } \mathcal{G}_{\ell} & \rightsquigarrow & \text { (ST2) } \\
\text { Bicommutant property of } \mathcal{G}_{\ell}^{0} & \rightsquigarrow & \text { (ST3) }
\end{array}
$$

- Axioms (ST1), (ST2) are expected for general g. But not (ST3)!
> - Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
> - All 3 occur as ST groups of elliptic curves defined over number fields.
> - Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

General remarks and dimension $g=1$

Proposition

If $G=S T(A)$ for some A / k with $g \leq 3$, then G satisfies the ST axioms.

$$
\begin{array}{rr}
\text { Mumford-Tate conjecture } & \rightsquigarrow \text { (ST1) } \\
\text { "Rationality" of } \mathcal{G}_{\ell} & \rightsquigarrow \text { (ST2) } \\
\text { Bicommutant property of } \mathcal{G}_{\ell}^{0} & \rightsquigarrow \\
\text { (ST3) }
\end{array}
$$

- Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

Remark

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over totally real fields.

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves"

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 35 of them occur as ST groups of abelian surfaces over totally real number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.
- Above can replace "abelian surfaces" with "Jacobians of genus 2 curves".

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.

Theorem (F.-Guitart; 2016)

There exists a number field (of degree 64) over which all 52 ST groups can be realized.

Sato-Tate conjecture for $g=2$

Theorem (Johansson, N. Taylor; 2014-19)
For $g=2$ and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are $U S p(4)$ and $N(S U(2) \times \operatorname{SU}(2))$.

Sato-Tate conjecture for $g=2$

Theorem (Johansson, N. Taylor; 2014-19)
For $g=2$ and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are $\mathrm{USp}(4)$ and $N(S U(2) \times \operatorname{SU}(2))$.
- The case $N(S U(2) \times S U(2))$ corresponds to an abelian surface A / k, which is either:

```
- Res}\mp@subsup{}{k}{L}(E)\mathrm{ , where L/k quadratic and E/L an e.c. which is not a k-curve;
- absolutely simple with real multiplication not defined over k
```


Sato-Tate conjecture for $g=2$

Theorem (Johansson, N. Taylor; 2014-19)

For $g=2$ and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are $\mathrm{USp}(4)$ and $N(\mathrm{SU}(2) \times \mathrm{SU}(2))$.
- The case $N(S U(2) \times S U(2))$ corresponds to an abelian surface A / k, which is either:
- $\operatorname{Res}_{k}^{L}(E)$, where L / k quadratic and E / L an e.c. which is not a k-curve; or
- absolutely simple with real multiplication not defined over k.

Sato-Tate conjecture for $g=2$

Theorem (Johansson, N. Taylor; 2014-19)

For $g=2$ and k totally real, the ST conjecture holds for 33 of the 35 possible ST groups.

- The missing cases are $\mathrm{USp}(4)$ and $N(S U(2) \times \operatorname{SU}(2))$.
- The case $N(S U(2) \times S U(2))$ corresponds to an abelian surface A / k, which is either:
- $\operatorname{Res}_{k}^{L}(E)$, where L / k quadratic and E / L an e.c. which is not a k-curve; or
- absolutely simple with real multiplication not defined over k.
- If $k=\mathbb{Q}$, the ST conjecture holds for $N(S U(2) \times \operatorname{SU}(2))$ (N. Taylor).

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

The degree of the endomorphism field $[F: \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F: \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

- This refines a previous result of Guralnick and Kedlaya, which asserts

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F: \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

- This refines a previous result of Guralnick and Kedlaya, which asserts

$$
[F: \mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7=\operatorname{Lcm}(192,336,432)
$$

Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
\(S U(2) \times U S p(4)\)
\(\mathrm{U}(1) \times \mathrm{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{U}(1)_{2}\)
\(\mathrm{U}(1) \times \mathrm{SU}(2)_{2}\)
\(\mathrm{U}(1) \times \mathrm{U}(1)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2)_{3}\)
\(\mathrm{U}(1)_{3}\)
```


Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
\(\operatorname{SU}(2) \times \operatorname{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(S U(2) \times U(1) \times U(1)\)
\(S U(2) \times S U(2)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{U}(1)_{2}\)
\(U(1) \times S U(2)_{2}\)
\(\mathrm{U}(1) \times \mathrm{U}(1)_{2}\)
\(S U(2) \times S U(2) \times S U(2)\)
\(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2)_{3}\)
\(\mathrm{U}(1)_{3}\)
```

Notations:

- For $d \in\{2,3\}$ and $H \in\{S U(2), \mathrm{U}(1)\}$:

$$
H_{d}=\{\operatorname{diag}(u,, u) \mid u \in H\}
$$

Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
\(\operatorname{SU}(2) \times \operatorname{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(S U(2) \times U(1) \times U(1)\)
\(S U(2) \times S U(2)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{U}(1)_{2}\)
\(U(1) \times S U(2)_{2}\)
\(\mathrm{U}(1) \times \mathrm{U}(1)_{2}\)
\(S U(2) \times S U(2) \times S U(2)\)
\(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2)_{3}\)
U()\(_{3}\)
```

Notations:

- For $d \in\{2,3\}$ and $H \in\{\mathrm{SU}(2), \mathrm{U}(1)\}$:

$$
H_{d}=\{\operatorname{diag}(u,, u) \mid u \in H\}
$$

- For $d \in\{1,3\}$:

$$
\mathrm{U}(d)=\left(\begin{array}{cc}
\mathrm{U}(d)^{\mathrm{St}} & 0 \\
0 & \overline{\mathrm{U}(d)} \mathrm{St}
\end{array}\right) \subseteq \mathrm{USp}(2 d)
$$

- Note in particular that

Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
\(\operatorname{SU}(2) \times \operatorname{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(S U(2) \times U(1) \times U(1)\)
\(S U(2) \times S U(2)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{U}(1)_{2}\)
\(\mathrm{U}(1) \times \mathrm{SU}(2)_{2}\)
\(\mathrm{U}(1) \times \mathrm{U}(1)_{2}\)
\(S U(2) \times S U(2) \times S U(2)\)
\(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2)_{3}\)
\(\mathrm{U}(1)_{3}\)
```

Notations:

- For $d \in\{2,3\}$ and $H \in\{\mathrm{SU}(2), \mathrm{U}(1)\}$:

$$
H_{d}=\{\operatorname{diag}(u,, u) \mid u \in H\}
$$

- For $d \in\{1,3\}$:

$$
\mathrm{U}(d)=\left(\begin{array}{cc}
\mathrm{U}(d)^{\mathrm{St}} & 0 \\
0 & \overline{\mathrm{U}(d)} \mathrm{St}
\end{array}\right) \subseteq \mathrm{USp}(2 d)
$$

- Note in particular that
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2} \simeq \mathrm{U}(1) \times \mathrm{SU}(2)_{2}$.

Classification: From Lie groups to finite groups

 General strategy to recover the possibilities for G from G^{0} :

Classification: From Lie groups to finite groups

 General strategy to recover the possibilities for G from G^{0} :- Compute $N=N_{\operatorname{USp(6)}}\left(G^{0}\right)$ and N / G^{0}.

Classification: From Lie groups to finite groups

General strategy to recover the possibilities for G from G^{0} :

- Compute $N=N_{\operatorname{USp(6)}}\left(G^{0}\right)$ and N / G^{0}.
- Use

$$
\left\{\begin{array}{c}
\mathcal{G} \subseteq U S p(6) \text { with } \mathcal{G}^{0}=G^{0} \\
\text { satisfying (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
\text { finite } H \subseteq N / G^{0} \text { s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

Classification: From Lie groups to finite groups

General strategy to recover the possibilities for G from G^{0} :

- Compute $N=N_{\operatorname{USp(6)}}\left(G^{0}\right)$ and N / G^{0}.
- Use
- Consider 3 cases depending on G^{0} :
- Genuine of dimension 3: $G^{0} \subseteq U S p(6)$ cannot be written as $G^{0}=G^{0,1} \times G^{0,2}$ with $G^{0,1} \subseteq S U(2)$ and $G^{0,2} \subseteq U S p(4)$.

Classification: From Lie groups to finite groups

General strategy to recover the possibilities for G from G^{0} :

- Compute $N=N_{\operatorname{USp}(6)}\left(G^{0}\right)$ and N / G^{0}.
- Use

$$
\left\{\begin{array}{c}
\mathcal{G} \subseteq \text { USp(6) with } \mathcal{G}^{0}=G^{0} \\
\text { satisfying (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
\text { finite } H \subseteq N / G^{0} \text { s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

- Consider 3 cases depending on G^{0} :
- Genuine of dimension 3: $G^{0} \subseteq \operatorname{USp}(6)$ cannot be written as

$$
\begin{equation*}
G^{0}=G^{0,1} \times G^{0,2} \text { with } G^{0,1} \subseteq S U(2) \text { and } G^{0,2} \subseteq U S p(4) \tag{*}
\end{equation*}
$$

- Split case: G^{0} can be written as in (*) and

$$
N \simeq N_{1} \times N_{2}, \quad \text { where } N_{i}=N_{\operatorname{USp}(2 i)}\left(G^{0, i}\right)
$$

Classification: From Lie groups to finite groups

General strategy to recover the possibilities for G from G^{0} :

- Compute $N=N_{\operatorname{USp}(6)}\left(G^{0}\right)$ and N / G^{0}.
- Use

$$
\left\{\begin{array}{c}
\mathcal{G} \subseteq \text { USp(6) with } \mathcal{G}^{0}=G^{0} \\
\text { satisfying }(\mathrm{ST} 2)
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
\text { finite } H \subseteq N / G^{0} \text { s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

- Consider 3 cases depending on G^{0} :
- Genuine of dimension 3: $G^{0} \subseteq \operatorname{USp}(6)$ cannot be written as

$$
\begin{equation*}
G^{0}=G^{0,1} \times G^{0,2} \text { with } G^{0,1} \subseteq S U(2) \text { and } G^{0,2} \subseteq U S p(4) \tag{*}
\end{equation*}
$$

- Split case: G^{0} can be written as in $\left(^{*}\right)$ and

$$
N \simeq N_{1} \times N_{2}, \quad \text { where } N_{i}=N_{\mathrm{USp}(2 i)}\left(G^{0, i}\right) .
$$

- Non-split case: G^{0} can be written as in (*) and

Classification: From Lie groups to finite groups

General strategy to recover the possibilities for G from G^{0} :

- Compute $N=N_{\operatorname{USp}(6)}\left(G^{0}\right)$ and N / G^{0}.
- Use
- Consider 3 cases depending on G^{0} :
- Genuine of dimension 3: $G^{0} \subseteq \operatorname{USp}(6)$ cannot be written as

$$
\begin{equation*}
G^{0}=G^{0,1} \times G^{0,2} \text { with } G^{0,1} \subseteq S U(2) \text { and } G^{0,2} \subseteq U S p(4) \tag{*}
\end{equation*}
$$

- Split case: G^{0} can be written as in $\left(^{*}\right)$ and

$$
N \simeq N_{1} \times N_{2}, \quad \text { where } N_{i}=N_{\mathrm{USp}(2 i)}\left(G^{0, i}\right) .
$$

- Non-split case: G^{0} can be written as in $\left(^{*}\right)$ and

$$
N_{1} \times N_{2} \subsetneq N .
$$

Classification: cases depending on G^{0}

$$
\begin{aligned}
\text { Genuine dim. } 3 \text { cases } & \left\{\begin{array}{l}
\mathrm{USp}(6) \\
\mathrm{U}(3)
\end{array}\right. \\
\text { Split cases } & \left\{\begin{array}{l}
\mathrm{SU}(2) \times \mathrm{USp}(4) \\
\mathrm{U}(1) \times \mathrm{USp}(4) \\
\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \\
\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1) \\
\mathrm{SU}(2) \times \mathrm{SU}(2)_{2} \\
\mathrm{SU}(2) \times \mathrm{U}(1)_{2} \\
\mathrm{U}(1) \times \mathrm{SU}(2)_{2} \\
\mathrm{U}(1) \times \mathrm{U}(1)_{2}
\end{array}\right. \\
\text { Non-split cases } & \left\{\begin{array}{l}
\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \\
\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1) \\
\mathrm{SU}(2)_{3} \\
\mathrm{U}(1)_{3}
\end{array}\right.
\end{aligned}
$$

Classification: From G^{0} to G

- Genuine cases: USp(6), U(3), $N(\mathrm{U}(3))$.
- Split cases:

Classification: From G^{0} to G

- Genuine cases: USp(6), U(3), $N(\mathrm{U}(3))$.
- Split cases:

$$
\mathcal{A}=\left\{\begin{array}{c}
H \subseteq N / G^{0} \text { finite s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

Classification: From G^{0} to G

- Genuine cases: $\mathrm{USp}(6), \mathrm{U}(3), N(\mathrm{U}(3))$.
- Split cases: Since $N / G^{0} \simeq N_{1} / G^{0,1} \times N_{2} / G^{0,2}$ we have

$$
\mathcal{A}=\left\{\begin{array}{c}
H \subseteq N / G^{0} \text { finite s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
H=H_{1} \times H^{\prime} H_{2} \text { with } \\
H_{i} \subseteq N_{i} / G^{0, i} \text { finite s.t. } \\
H_{i} G^{0, i} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

Classification: From G^{0} to G

- Genuine cases: USp(6), U(3), N(U(3)).
- Split cases: Since $N / G^{0} \simeq N_{1} / G^{0,1} \times N_{2} / G^{0,2}$ we have

$$
\mathcal{A}=\left\{\begin{array}{c}
H \subseteq N / G^{0} \text { finite s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
H=H_{1} \times H^{\prime} H_{2} \text { with } \\
H_{i} \subseteq N_{i} / G^{0, i} \text { finite s.t. } \\
H_{i} G^{0, i} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

- Non-split cases:

Classification: From G^{0} to G

- Genuine cases: USp(6), U(3), $N(U(3))$.
- Split cases: Since $N / G^{0} \simeq N_{1} / G^{0,1} \times N_{2} / G^{0,2}$ we have

$$
\mathcal{A}=\left\{\begin{array}{c}
H \subseteq N / G^{0} \text { finite s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
H=H_{1} \times H^{\prime} H_{2} \text { with } \\
H_{i} \subseteq N_{i} / G^{0, i} \text { finite s.t. } \\
H_{i} G^{0, i} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

The set on the right can be recovered from the ST group classifications in dimensions 1 and 2. This accounts for 211 groups.

- Non-split cases:

G^{0}	N / G^{0}	$\# \mathcal{A}$
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	S_{3}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes S_{3}$	33
$\mathrm{SU}(2)_{3}$	$\mathrm{SO}(3)$	11
$\mathrm{U}(1)_{3}$	$\mathrm{PSU}(3) \rtimes C_{2}$	171

$G^{0}=U(1)_{3}:$ map of the proof

$$
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H \cup(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim
$$

$G^{0}=\mathrm{U}(1)_{3}$: map of the proof

$$
\begin{gathered}
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H U(1)_{3} \\
\text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{I} \subseteq \operatorname{SU}(3) \\
\text { s.t. } H \cup(1)_{3} \text { satisfies (ST2) }
\end{array}\right\} / \sim \quad \cup\left\{\begin{array}{c}
C_{2} \text {-extensions of groups } \\
\text { in the set on the left }
\end{array}\right\} / \sim
\end{gathered}
$$

$G^{0}=\mathrm{U}(1)_{3}$: map of the proof

$$
\begin{gathered}
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\downarrow \\
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \\
\text { s.t. } H \cup(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \quad \cup\left\{\begin{array}{c}
C_{2} \text {-extensions of groups } \\
\text { in the set on the left }
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { st. } \\
H \cup(1)_{3} \text { sat. }(\mathrm{ST} 2) \\
\text { for } \operatorname{Tr}\left(\wedge^{2} \mathbb{C}^{6}\right)
\end{array}\right\} / \sim
\end{gathered}
$$

$G^{0}=\mathrm{U}(1)_{3}$: map of the proof

$$
\begin{gathered}
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\downarrow \\
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \quad \cup\left\{\begin{array}{c}
C_{2} \text {-extensions of groups } \\
\text { in the set on the left }
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { s.t. } \\
H \cup(1)_{3} \text { sat. (ST2) for } \operatorname{Tr}\left(\wedge^{2} \mathbb{C}^{6}\right)
\end{array}\right\} / \sim \\
\| \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { st. } \\
|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { for all } h \in H
\end{array}\right\} / \sim
\end{gathered}
$$

$G^{0}=\mathrm{U}(1)_{3}$: map of the proof

$$
\begin{gathered}
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\downarrow \\
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \quad \cup\left\{\begin{array}{c}
C_{2} \text {-extensions of groups } \\
\text { in the set on the left }
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { s.t. } \\
H \cup(1)_{3} \text { sat. }(\mathrm{ST} 2) \text { for } \operatorname{Tr}\left(\wedge^{2} \mathbb{C}^{6}\right)
\end{array}\right\} / \sim \\
\| \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { st. } \\
|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { for all } h \in H
\end{array}\right\} / \sim
\end{gathered}
$$

- The above injection is seen to be a bijection a posteriori.
\square
- This yields $171=63+108$ groups .

$G^{0}=\mathrm{U}(1)_{3}$: map of the proof

$$
\begin{gathered}
\mathcal{A}=\left\{\begin{array}{c}
\text { finite } H \subseteq \operatorname{PSU}(3) \rtimes C_{2} \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\downarrow \\
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \\
\text { s.t. } H U(1)_{3} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim \quad \cup\left\{\begin{array}{c}
C_{2} \text {-extensions of groups } \\
\text { in the set on the left }
\end{array}\right\} / \sim \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { s.t. } \\
H \cup(1)_{3} \text { sat. }(\mathrm{ST} 2) \text { for } \operatorname{Tr}\left(\wedge^{2} \mathbb{C}^{6}\right)
\end{array}\right\} / \sim \\
\| \\
\left\{\begin{array}{c}
\text { finite } \mu_{3} \subseteq H \subseteq \operatorname{SU}(3) \text { st. } \\
|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { for all } h \in H
\end{array}\right\} / \sim
\end{gathered}
$$

- The above injection is seen to be a bijection a posteriori.
- This yields $171=63+108$ groups.
$G^{0}=U(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 I)$.
- Exceptional subgroups of $\operatorname{SU}(3)$
(projected in PSU(3) are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$). multiplicative Manin-Mumford problem'
$G^{0}=\mathrm{U}(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 I)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
$G^{0}=U(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
- Determining the possible orders of $h \in H$ reduces to solving "a multiplicative Manin-Mumford problem":
$G^{0}=U(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
- Determining the possible orders of $h \in H$ reduces to solving "a multiplicative Manin-Mumford problem":
- If $z_{1}, z_{2}, z_{3} \in \mu_{\infty}$ are the eigenvalues of h, then:

$$
\left|z_{1}+z_{2}+z_{3}\right|^{2}=|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { and } z_{1} z_{2} z_{3}=1
$$

$G^{0}=U(1)_{3}$: Ingredients of the proof

- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
- Determining the possible orders of $h \in H$ reduces to solving "a multiplicative Manin-Mumford problem":
- If $z_{1}, z_{2}, z_{3} \in \mu_{\infty}$ are the eigenvalues of h, then:

$$
\left|z_{1}+z_{2}+z_{3}\right|^{2}=|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { and } z_{1} z_{2} z_{3}=1
$$

- Even more, it must happen $\left|z_{1}^{n}+z_{2}^{n}+z_{3}^{n}\right|^{2} \in \mathbb{Z}$ for all $n \geq 1$.
$G^{0}=U(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
- Determining the possible orders of $h \in H$ reduces to solving "a multiplicative Manin-Mumford problem":
- If $z_{1}, z_{2}, z_{3} \in \mu_{\infty}$ are the eigenvalues of h, then:

$$
\left|z_{1}+z_{2}+z_{3}\right|^{2}=|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { and } z_{1} z_{2} z_{3}=1
$$

- Even more, it must happen $\left|z_{1}^{n}+z_{2}^{n}+z_{3}^{n}\right|^{2} \in \mathbb{Z}$ for all $n \geq 1$.
- One deduces that ord $(h) \mid 21,24,36$.
$G^{0}=U(1)_{3}$: Ingredients of the proof
- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of $\operatorname{SU}(3)$ (projected in $\operatorname{PSU}(3)$ are $E_{36}, E_{72}, E_{216}, A_{5}, A_{6}, E_{168} \simeq \operatorname{PSL}(2,7)$).
- Determining the possible orders of $h \in H$ reduces to solving "a multiplicative Manin-Mumford problem":
- If $z_{1}, z_{2}, z_{3} \in \mu_{\infty}$ are the eigenvalues of h, then:

$$
\left|z_{1}+z_{2}+z_{3}\right|^{2}=|\operatorname{Tr}(h)|^{2} \in \mathbb{Z} \text { and } z_{1} z_{2} z_{3}=1
$$

- Even more, it must happen $\left|z_{1}^{n}+z_{2}^{n}+z_{3}^{n}\right|^{2} \in \mathbb{Z}$ for all $n \geq 1$.
- One deduces that ord $(h) \mid 21,24,36$.
- Assemble elements to build groups of the shape described by the BMD classification.

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as
$M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}$.

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as
$M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}$.
- The tuple $\left\{M_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \nsim\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The tuple $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \nsim\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In fact, $M_{i, j, k}\left(G_{1}\right)=M_{i, j, k}\left(G_{2}\right)$ for all i, j, k !

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The tuple $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \nsim\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In fact, $\mathrm{M}_{i, j, k}\left(G_{1}\right)=\mathrm{M}_{i, j, k}\left(G_{2}\right)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for $g=1$ and 414 for $g=2$).

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The tuple $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \not 千\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In fact, $\mathrm{M}_{i, j, k}\left(G_{1}\right)=\mathrm{M}_{i, j, k}\left(G_{2}\right)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for $g=1$ and 414 for $g=2$).
- There are 30 maximal groups (for prescribed identity component).

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The tuple $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \not 千\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In fact, $\mathrm{M}_{i, j, k}\left(G_{1}\right)=\mathrm{M}_{i, j, k}\left(G_{2}\right)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for $g=1$ and 414 for $g=2$).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G / G^{0} divides 192, 336, or 432.

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The tuple $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i+j+k \leq 6}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \nsucceq\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In fact, $\mathrm{M}_{i, j, k}\left(G_{1}\right)=\mathrm{M}_{i, j, k}\left(G_{2}\right)$ for all i, j, k !
- In total, the 433 groups have 10988 connected components (4 for $g=1$ and 414 for $g=2$).
- There are 30 maximal groups (for prescribed identity component).
- Any possible order of G / G^{0} divides 192,336 , or 432.

Realization

- By Shimura, if A / k has CM by M, then $F=M^{*} k$. This rules out: - 20 groups in the case $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$. - 3 groups in the case $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$.

Realization

- By Shimura, if A / k has CM by M, then $F=M^{*} k$. This rules out:
- 20 groups in the case $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- 3 groups in the case $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$.

- This leaves 410 groups.

- It suffices to realize the 33 maximal groups (for prescribed identity

Realization

- By Shimura, if A / k has CM by M, then $F=M^{*} k$. This rules out:
- 20 groups in the case $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- 3 groups in the case $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:

Realization

- By Shimura, if A / k has CM by M, then $F=M^{*} k$. This rules out:
- 20 groups in the case $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- 3 groups in the case $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:

Realization

- By Shimura, if A / k has CM by M, then $F=M^{*} k$. This rules out:
- 20 groups in the case $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- 3 groups in the case $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$.
- This leaves 410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Indeed:
- The iso $\mathrm{ST}(A) / \mathrm{ST}(A)^{0} \simeq \operatorname{Gal}(F / k)$ is compatible with base change. Given $F / k^{\prime} / k$:

Realization of the maximal groups

- Genuine cases (2 max. groups):
- $\operatorname{USp}(6)$: generic case. Eg.: $y^{2}=x^{7}-x+1 / \mathbb{Q}$.
- $N(U(3))$: Picard curves. Eg.: $y^{3}=x^{4}+x+1 / \mathbb{Q}$.
- Split cases (13 max. groups):
Maximality ensures the triviality of the fiber product, i.e.

$$
G \simeq G_{1} \times G_{2},
$$

where G_{1} and G_{2} are realizable in dimensions 1 and 2 .

- Non-split cases (18 max. groups)

Realization of the maximal groups

- Genuine cases (2 max. groups):
- $\operatorname{USp}(6)$: generic case. Eg.: $y^{2}=x^{7}-x+1 / \mathbb{Q}$.
- $N(U(3))$: Picard curves. Eg.: $y^{3}=x^{4}+x+1 / \mathbb{Q}$.
- Split cases (13 max. groups):

Maximality ensures the triviality of the fiber product, i.e.

$$
G \simeq G_{1} \times G_{2}
$$

where G_{1} and G_{2} are realizable in dimensions 1 and 2 .

Realization of the maximal groups

- Genuine cases (2 max. groups):
- $\operatorname{USp}(6)$: generic case. Eg.: $y^{2}=x^{7}-x+1 / \mathbb{Q}$.
- $N(U(3))$: Picard curves. Eg.: $y^{3}=x^{4}+x+1 / \mathbb{Q}$.
- Split cases (13 max. groups):

Maximality ensures the triviality of the fiber product, i.e.

$$
G \simeq G_{1} \times G_{2}
$$

where G_{1} and G_{2} are realizable in dimensions 1 and 2 .

- Non-split cases (18 max. groups):
- $G^{0}=\operatorname{SU}(2) \times \operatorname{SU}(2) \times \operatorname{SU}(2)\left(1 . \max\right.$. group): $\operatorname{Res}_{\mathbb{Q}}^{L}(E)$, where L / \mathbb{Q} a non-normal cubic and E / L e.c. which is not a \mathbb{Q}-curve.
- $G^{0}=\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$ (3 max. groups):

Products of CM abelian varieties.

- $G^{0}=\operatorname{SU}(2)_{3}$ (2 max. groups):

Twists of curves with many automorphisms.

Realization of the maximal groups

- $G^{0}=\mathrm{U}(1)_{3}$ (12 max. groups):

\author{

- All such G satisfy
}

$$
G / G^{0} \hookrightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{M}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where M is a quadratic imaginary field of class number 1 . - Reinterpret

where E / \mathbb{Q} is an elliptic curve with CM by \mathcal{O}_{M}. - This gives a 1-cocycle

$$
\tilde{\xi} \in H^{1}\left(G / G^{0}, \operatorname{Aut}\left(E^{3}\right)\right) .
$$

Realization of the maximal groups

- $G^{0}=\mathrm{U}(1)_{3}$ (12 max. groups):
- All such G satisfy

$$
G / G^{0} \hookrightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{M}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where M is a quadratic imaginary field of class number 1 .

- Reinterpret

$$
G / G^{0} \hookrightarrow \operatorname{Aut}\left(E_{M}^{3}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where E / \mathbb{Q} is an elliptic curve with $C M$ by \mathcal{O}_{M}.

- This gives a 1-cocycle

$$
\tilde{\xi} \in H^{1}\left(G / G^{0}, \operatorname{Aut}\left(E^{3}\right)\right) .
$$

Realization of the maximal groups

- $G^{0}=\mathrm{U}(1)_{3}$ (12 max. groups):
- All such G satisfy

$$
G / G^{0} \hookrightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{M}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where M is a quadratic imaginary field of class number 1 .

- Reinterpret

$$
G / G^{0} \hookrightarrow \operatorname{Aut}\left(E_{M}^{3}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where E / \mathbb{Q} is an elliptic curve with $C M$ by \mathcal{O}_{M}.

- This gives a 1-cocycle

$$
\tilde{\xi} \in H^{1}\left(G / G^{0}, \operatorname{Aut}\left(E^{3}\right)\right) .
$$

- There exists L / \mathbb{Q} such that $G / G^{0} \simeq \operatorname{Gal}(L / \mathbb{Q})$.
- Then setting

Realization of the maximal groups

- $G^{0}=\mathrm{U}(1)_{3}$ (12 max. groups):
- All such G satisfy

$$
G / G^{0} \hookrightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{M}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where M is a quadratic imaginary field of class number 1 .

- Reinterpret

$$
G / G^{0} \hookrightarrow \operatorname{Aut}\left(E_{M}^{3}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where E / \mathbb{Q} is an elliptic curve with $C M$ by \mathcal{O}_{M}.

- This gives a 1-cocycle

$$
\tilde{\xi} \in H^{1}\left(G / G^{0}, \operatorname{Aut}\left(E^{3}\right)\right) .
$$

- There exists L / \mathbb{Q} such that $G / G^{0} \simeq \operatorname{Gal}(L / \mathbb{Q})$.

$$
\xi: \operatorname{Gal}(L / \mathbb{Q}) \simeq G / G^{0} \xrightarrow{\xi} \operatorname{Aut}\left(E^{3}\right)
$$

and $A=\left(E^{3}\right)_{\xi}$ one finds $S T(A) \simeq G$.

Realization of the maximal groups

- $G^{0}=U(1)_{3}$ (12 max. groups):
- All such G satisfy

$$
G / G^{0} \hookrightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{M}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where M is a quadratic imaginary field of class number 1 .

- Reinterpret

$$
G / G^{0} \hookrightarrow \operatorname{Aut}\left(E_{M}^{3}\right) \rtimes \operatorname{Gal}(M / \mathbb{Q})
$$

where E / \mathbb{Q} is an elliptic curve with $C M$ by \mathcal{O}_{M}.

- This gives a 1-cocycle

$$
\tilde{\xi} \in H^{1}\left(G / G^{0}, \operatorname{Aut}\left(E^{3}\right)\right) .
$$

- There exists L / \mathbb{Q} such that $G / G^{0} \simeq \operatorname{Gal}(L / \mathbb{Q})$.
- Then setting

$$
\xi: \operatorname{Gal}(L / \mathbb{Q}) \simeq G / G^{0} \xrightarrow{\tilde{\xi}} \operatorname{Aut}\left(E^{3}\right)
$$

and $A=\left(E^{3}\right)_{\xi}$ one finds $\mathrm{ST}(A) \simeq G$.

Open questions

- Realizability over totally real fields?
- Realizability over \mathbb{Q} ?
- Existence of a number field over which all 410 groups can be realized?
- Realizability via principally polarized abelian thereefolds?
- Realizability via Jacobians of genus 3 curves?
- Partial answer: At least 22 of the 33 maximal groups can be realized via Jacobians...

G / G^{0}	$\#\left(G / G^{0}\right)$	C with $\operatorname{ST}(\operatorname{Jac}(C))$
$\left(C_{4} \times C_{4}\right) \rtimes S_{3} \times C_{2}$	192	Twist of the Fermat quartic
$\mathrm{PSL}(2,7) \rtimes C_{2}$	336	Twist of the Klein quartic
$\left(C_{6} \times C_{6}\right) \rtimes S_{3} \times C_{2}$	432	$?$
$E_{216} \times C_{2}$	432	$?$

