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ARITHMETIC

1 Easy problems

Problem 1. Let a, b, c ∈ Z. Show that if a divides b and c, then a divides b+ c.

Problem 2. Show that if n, n + 2 and n + 4 are primes, then n = 3.

Problem 3. Find all natural solutions (x, y) ∈ N×N of the system of equations{
xy = 51840

gcd(x, y) = 24

Problem 4. Show that there is a unique natural number n ∈ N with only 2
distinct prime divisors, 6 distinct divisors, and such that the sum of these 6
divisors is 28.

Problem 5. Establish Bézout’s identity for the numbers a = 7658 and b = 3853.

Problem 6. Find all integral solutions (x, y) ∈ Z× Z of

• 24x + 106y = 3.

• 24x + 106y = 2.

Problem 7. Show that if p is prime, then p divides
(
p
k

)
for 1 ≤ k ≤ p− 1.

Problem 8. What is the exponent of 2 in the factorization into prime numbers
of 29! ?

Problem 9. For n ∈ N, show that if 2n − 1 is prime, then n is prime.

Problem 10. We say that n ∈ N is a perfect number if it is the sum of its
divisors strictly less than n itself. Show that if 2n−1 is prime, then 2n−1(2n−1)
is a perfect number.

Problem 11. Prove that a natural number n is:

• divisible by 3 if and only if the sum of the digits of n in the decimal
expression is divisible by 3.

• divisible by 11 if and only if the sum of the digits in the odd positions
minus the sum of the digits in the even positions in the decimal expression
of n is divisible by 11.

Hint: Use congruences.

Problem 12. Compute 217 (mod 25).

Hint: Use that 17 = 24 + 20.

Problem 13. Show that for natural numbers n > 1, a and b, we have

gcd(na − 1, nb − 1) = ngcd(a,b) − 1 .



2 Intermediate problems

Problem 14. Assign a natural number to each of the faces of a cube. Assign
to each of the vertices of the cube, the product of the numbers assigned to each
of the 3 faces meeting at that vertex. If the sum of the numbers assigned to the
vertices of the cube is 1001, which is the sum of the numbers assigned to the
faces of the cube?

Problem 15. Show that:

i) There exist infinitely many primes of the form 4n− 1.

ii) There exist infinitely many primes of the form 6n− 1.

Problem 16. Find all integral solutions (x, y) ∈ Z× Z of the equation

p(x + y) = xy ,

where p is a prime number.

Problem 17. Find all integral solutions (x, y) ∈ Z× Z of the equation

x3 + y3 = 1729.

Problem 18. Show that for any prime p, we have

ap ≡ bp (mod p) ⇒ ap ≡ bp (mod p2) .

Hint: Use Problem 7.

Problem 19. Show that there is no nonconstant polynomial f(x) ∈ Z[x] such
that f(a) is a prime for every a ∈ Z.

Problem 20. Show that 22225555 + 55552222 is divisible by 7.

Problem 21. Consider the sequence defined by a1 = 7 and an+1 = 7an for
n ≥ 1. Which is the last digit of the number a1001?

Problem 22. Let p > 5 be a prime. Show that p− 4 is not the fourth power of
an integer.

Problem 23. Consider the function f : N→ N such that

• f(1) = 1.

• f(n) = f(n/2) if n is even.

• f(n) = f((n− 1)/2) + 1 if n is odd.

Compute the maximum value of f(n) for n ≤ 2018.

Problem 24. Show that 3n + 2 · 17n is not a perfect square for any n ∈ N.



3 Hard problems

Problem 25. Let d1 < d2 · · · < dk be the positive divisors of a natural number
n > 1. Show that

d1d2 + d2d3 + · · ·+ dk−1dk < n2 .

Problem 26. Find all natural solutions (n,m) ∈ N× N of

(m + 1)n − 1 = m!

Problem 27. Determine the last 3 digits of 20032002
2001

.

Problem 28. Show that the function f : N→ N defined by

f(n) =

⌊
n +
√
n +

1

2

⌋
takes all the values of N except of the perfect squares.

Problem 29. Show that the sequence

1, 11, 111, 1111, . . .

contains an infinite subsequence all of whose terms are pairwise relatively prime.

Problem 30. Show that n5 + n4 + 1 is not a prime for any n > 1.

Problem 31. Show that for every n ∈ N, we have(
3n

0

)
+

(
3n

3

)
+ · · ·+

(
3n

3n− 3

)
+

(
3n

3n

)
=

1

3
(2(−1)n + 23n) .

Problem 32. We say that (x, y, z) ∈ N × N × N is a Pythagorean triple if
x2 + y2 = z2. Show that (x, y, z) is a Pythagorean triple if and only if there
exist natural numbers m,n, k with m > n and gcd(n,m) = 1 such that

x = k · (m2 − n2), y = k · (2mn), z = k · (m2 + n2).

Problem 33. Show that the equation x4 + y4 = z4 has no solutions in positive
integers x, y, z.



4 Solutions

Solution of 1: If a divides b and c, there exist b′ and c′ in Z such that b = b′a
and c = c′a. Then b + c = a(b′ + c′).
Solution of 2: Let r be the remainder of n divided by 3. If r = 0, then n = 3
since n is prime. If r = 1, then n+ 2 > 3 would be divisible by 3. If r = 2, then
n + 4 > 3 would be divisible by 3.
Solution of 3: Write x = 24t and y = 24u, where t and u are relatively prime.
Then 242tu = 51840 and therefore tu = 90. It only remains to find all coprime
factorizations of 90 into two factors:

• 90 = 45 · 2. Then x = 1080 and y = 48.

• 90 = 9 · 10. Then x = 216 and y = 240.

• 90 = 18 · 5 Then x = 432 and y = 120.

Permuting x and y we obtain another triple of solutions.
Solution of 4: We are told that n is of the form paqb, for prime numbers a and
b. Since 6 = (a+ 1)(b+ 1), we may assume that a = 1 and b = 2. The condition

2 · 14 = 4 · 7 = 28 = 1 + q + q2 + p + pq + pq2 = (1 + p)(1 + q + q2)

impies that 7 = 1 + q+ q2 (otherwise p = 1 or p = 6 would not be prime). Thus
q = 2 and p = 3, whereby n = 12.
Solution of 5: Bézout’s identity reads

ax + by = 1 ,

where x = −883, y = 1755.
Solution of 6: The first equation has no solution, since gcd(24, 106) = 2 - 3.
The general solution of the second equation is{

x = −22 + 53k

y = 5− 12k

for k ∈ Z.
Solution of 7: Note that(

p

k

)
=

1 · 2 · 3 · · · · · (p− 1) · p
(1 · 2 · · · · · k)(1 · 2 · · · · · (p− k))

and that p divides the numerator but not the denominator of the above expres-
sion.
Solution of 8: The exponent of 2 is:⌊

29

2

⌋
+

⌊
29

22

⌋
+

⌊
29

23

⌋
+

⌊
29

24

⌋
= 14 + 7 + 3 + 1 = 25.

Solution of 9: Suppose that n = ab with a, b > 1. The factorization

xb − 1 = (x− 1)(xb−1 + xb−2 + · · ·+ x + 1)



for x = 2a gives the factorization

2n − 1 = (2a − 1)(2a(b−1) + xa(b−2) + · · ·+ 2a + 1) .

Solution of 10: If 2n− 1 is prime, then the proper divisors of 2n−1(2n− 1) are

1, 2, . . . , 2n−1, 2n − 1, 2(2n − 1), . . . , 2n−2(2n − 1).

The sum of these divisors is

2n − 1 + (2n − 1)(2n−1 − 1) = (2n − 1)2n−1 .

Solution of 11: Let atat−1 . . . a1a0 be the decimal expression of n. Then:

n = at10t + at−110t−1 + · · ·+ a110 + a0 ≡
≡ at + at−1 + · · ·+ a1 + a0 (mod 3)

n = at10t + at−110t−1 + · · ·+ a110 + a0 ≡
≡ at(−1)t + at−1(−1)t−1 + · · ·+ a1(−1) + a0 (mod 11)

Solution of 12: We use the modular exponentiation method. Note that:
22 ≡ 4 (mod 25)
24 ≡ (22)2 ≡ 16 (mod 25)
28 ≡ (24)2 ≡ 162 ≡ 92 = 81 ≡ 6 (mod 25)
216 ≡ (28)2 ≡ 62 ≡ 36 ≡ 11 (mod 25)
Thus:

217 ≡ 216 · 2 ≡ 11 · 2 ≡ 22 (mod 25).

Solution of 13: Without loss of generality we may assume that a > b. Note
that

gcd(na− 1, nb− 1) = gcd(na− 1−na−b(nb− 1), nb− 1) = gcd(na−b− 1, nb− 1)

Iterating this calculation, we obtain the result by Euclid’s algorithm.
Solution of 14: Let a and f be the numbers assigned to the top and bottom
faces of the cube, respectively. Let b, c, d, e be the numbers assigned to the
lateral faces of the cube. Then:

7·11·13 = 1001 = abc+abe+acd+ade+bcf+bef+cdf+def = (a+f)(b+d)(c+e)

Thus {7, 11, 13} = {a+f, b+d, c+e} and a+b+c+d+e+f = 7+11+13 = 31.
Solution of 15: First note that a prime is either of the form 4n− 1 or 4n + 1.
Suppose that there was only a finite number of primes of the form 4n − 1, say
p1, . . . , pr. Consider the product

4p1 . . . pr − 1

Since it is of the form 4n− 1 and larger than the pi, it cannot be a prime. It is
not possible that all of its prime factors are of the form 4n+1, since the product
of two numbers of the form 4n + 1 is again of the form 4n + 1. Thus there is a



prime of the form 4n− 1, that is a certain pi, dividing 4p1 . . . pr − 1. But then
pi divides 1, which is a contradiction.

The oder case is analogous once one notes that every prime is either of the
form 6n + 1 or 6n− 1.
Solution of 16: One solution is (x, y) = (0, 0). Suppose that x, y 6= 0. Suppose
that p divides x and write x = pt, for a nonzero t ∈ Z. We have

p(pt + y) = pty, that is pt = y(t− 1).

Since gcd(t, t− 1) = 1, either p|y or p = t− 1 and y = t.
If p|y, then y = pu for a nonzero u ∈ Z and then t = u(t − 1). Since t 6= 0,

so is t− 1 6= 0. Then

u =
t

t− 1
= 1 +

1

t− 1
.

Thus t − 1 = 1 and then x = 2p and y = 2p. If p = t − 1 and y = t we obtain
y = p + 1 and x = py = p(p + 1).

Since the equation is symmetric in x and y, we also have the solution x = p+1
and y = p(p + 1).
Solution of 17: Note that

7 · 13 · 19 = 1729 = x3 + y3 = (x + y)(x2 − xy + y2)

Consider the system: 
x + y = a

x2 − xy + y2 = b

a · b = 7 · 13 · 19

One easily sees that x2 − xy + y2 > 0 and thus b > 0 an a > 0. Combining the
first two equations, we find

3x2 − 3ax + a2 − b = 0.

Therefore

x =
3a±

√
12b− 3a2

6
.

One easily checks that the only possible integral values of a > 0 and b > 0 for
which a ·b = 7 ·13 ·19 and 12b−3a2 is a perfect square are a = 13 and b = 7 ·19;
a = 19 and b = 7 · 13. We obtain that {x, y} = {9, 10} or {x, y} = {1, 12}.
Solution of 18: Just note that

ap − bp = ap − (a + b− a)p = p(b− a)ap−1 + · · ·+ p(b− a)p−1a + (b− a)p .

Thus if p|ap − bp, then p|(b− a). But then p2|ap − bp.
Solution of 19: Suppose that such a polynomial exists. Take a0 ∈ Z. Then
f(a0) = p0 is a prime. For every k ∈ Z, we have that f(a0 + kp0) is prime and
also

f(a0 + kp0) ≡ f(a0) ≡ 0 (mod p0) .

It follows that f(a0 + kp0) = p0 for every k. Thus the polynomial g(x) =
f(a0 + xp0) − p0 has a zero at every integer. Since a nonzero polynomial can
have only a finite number of zeros, we find that g(x) is identically 0, which
implies that f(x) is constant. This is a contradiction.



Solution of 20: By Fermat’s little theorem, for a ∈ Z such that gcd(a, 7) = 1,
we have that a6 ≡ 1 (mod 7). Then

22225555 + 55552222 ≡ 35555 + 42222 ≡ 35 + 42 ≡ 5 + 2 ≡ 0 (mod 7) .

Solution of 21: By Euler’s theorem, we need to compute a1001 ≡ 7b (mod 10),
where b ≡ a1000 (mod 4) (recall that ϕ(10) = 4). But

b ≡ a1000 ≡ 7a999 ≡ (−1)a999 ≡ −1 ≡ 3 (mod 4) ,

where we have used that all the ai are obviously odd. Thus

a1001 ≡ 73 ≡ 3 (mod 10) .

Solution of 22: Suppose that p− 4 = q4 for some q ∈ Z. Then

p = q4 + 4q2 + 4− 4q2 = (q2 + 2)2 − (2q)2 = (q2 + 2q + 2)(q2 − 2q + 2)

We next show that the two factors in the above expression are > 1. It is enough
to show it for the second. But in this case we have:

q2 − 2q + 2 = (q − 1)2 + 1 > 1

since if q = 1, then p = 5, contrary to the hypothesis.
Solution of 23: f(n) is the sum of the digits of n expressed in base 2. The
maximum value of f(n) for n ≤ 2018 is thus f(1023) = 10.
Solution of 24: Note that 34 ≡ 1 (mod 16). Then

3n + 2 · 17n ≡


3 + 2 ≡ 5 (mod 16) if n ≡ 1 (mod 4)

9 + 2 ≡ 11 (mod 16) if n ≡ 2 (mod 4)

11 + 2 ≡ 13 (mod 16) if n ≡ 3 (mod 4)

1 + 2 ≡ 3 (mod 16) if n ≡ 0 (mod 4)

But note that the squares modulo 16 are 0, 1, 4, 9.
Solution of 25: It is enough to show that

1

d1d2
+

1

d2d3
+ · · ·+ 1

dk−1dk
< 1 .

But note that

1

d1d2
+

1

d2d3
+ · · ·+ 1

dk−1dk
≤ d2 − d1

d1d2
+

d3 − d2
d2d3

+ · · ·+ dk − dk−1
dk−1dk

=

1

d1
− 1

d2
+

1

d2
− 1

d3
+ · · ·+ 1

dk−1
− 1

dk
= 1− 1

n
< 1 .

Solution of 26: We first try a few values. For m = 1, we get n = 1. For
m = 2, we get n = 1. For m = 3, there is no solution. For m = 4, we get n = 2.

Suppose that m > 4. We will see that there are no solutions in this case.
Note that m + 1 must be prime and, in particular, m must be even. Then

m! = (m+ 1)n− 1 = (m+ 1− 1)((m+ 1)n−1 + (m+ 1)n−2 + · · ·+ (m+ 1) + 1).



Therefore
(m− 1)! ≡ n (mod m)

Since m is even and m ≥ 6, we have that m|(m − 1)!. Hence m|n and in
particular m ≤ n. But then

(m + 1)n ≥ (m + 1)m > mm + 1 > m! + 1 .

Solution of 27: Since ϕ(1000) = ϕ(53)ϕ(23) = 52(5−1)22(2−1) = 16·25 = 400,
we need to determine

20022001 ≡ 22001 ≡ 16 · 21997 (mod 16 · 25) .

To find this value, we need to determine 21997 (mod 25). Since ϕ(25) = 20, we
have

21997 ≡ 217 ≡ 22 (mod 25) .

The last congruence above has been proven in Problem 12. We thus get:

20022001 ≡ 22001 ≡ 16 · 22 ≡ 352 (mod 16 · 25) .

Therefore

20032002
2001

≡ 3352 ≡ 9176 ≡ (10− 1)176 ≡
(

176

2

)
102 −

(
176

1

)
10 + 1 ≡

≡ 0− 760 + 1 ≡ 241 (mod 1000) .

Solution of 28: Suppose that f misses the value m ∈ N. This means that
there exists n ∈ N such that

n +
√
n +

1

2
< m m + 1 < n + 1 +

√
n + 1 +

1

2

This implies that
√
n < m− n− 1

2
<
√
n + 1.

That is

n < (m−n)2−(m−n)+
1

4
< n+1 or n−1

4
< (m−n)2−(m−n) < n+1−1

4
.

But since m and n are natural numbers, this means that (m−n)2−(m−n) = n,
that is, m = (m− n)2.

To see that f takes all the values which are not perfect squares, fix k ∈ N.
Note that the set

{n ∈ N | f(n) ≤ k2 + k}

has cardinality k2. This means that up to k2+k, the function f misses k values.
But up to k2 + k, there are precisely k perfect squares. Thus f misses precisely
the perfect squares.
Solution of 29: Denote by xn that the nth term of the sequence of the state-
ment of the problem. That is, set

xn =
10n − 1

9
.



Observe that if gcd(n,m) = 1, then by Problem 13 we have that

gcd(xn, xm) =
1

9
gcd(10n − 1, 10m − 1) =

9

9
= 1 .

It is thus enough to find an infinite sequence of natural numbers which are
pairwise relatively prime. Take for example the sequence of prime numbers.
Solution of 30: The primitive cubic roots of unity ω, ω are the roots of the
polynomial

X2 + X + 1

They satisfy ω3 = (ω)3 = 1. Thus:

ω5 + ω4 + 1 = ω2 + ω + 1 = 0

and similarly for ω. We deduce that the polynomial X2 + X + 1 must divide
X5 + X4 + 1. By performing the polynomial division we obtain

X5 + X4 + 1 = (X2 + X + 1)(X3 −X + 1).

Solution of 31: Consider the sums

A =
(
3n
0

)
+
(
3n
3

)
+ . . .

B =
(
3n
1

)
+
(
3n
4

)
+ . . .

C =
(
3n
2

)
+
(
3n
5

)
+ . . .

Let 1, ω, and ω denote the three cubic roots of unity. We easily see that

(1 + 1)3n = A + B + C ,

(1 + ω)3n = A + Bω + Cω ,

(1 + ω)3n = A + Bω + Cω .

Since 1 + ω + ω = 0, by adding the three equations, we obtain that

23n + (−ω)3n + (−ω)3n = 3A or 23n + 2(−1)n = 3A .

Solution of 32: Note that (x, y, z) is a Pythagorean triple if and only if the
point (X,Y ) = (x/z, y/z) of rational coordinates lies on the intersection of the
circle C of equation

X2 + Y 2 = 1

and the first quadrant of the plane.
Note that the points (X,Y ) with rational coordinates lying on the intersec-

tion of the circle C and the first quadrant of the plane are in bijection with the
lines ` of rational slope 0 < t < 1 passing through the point (−1, 0).

To determine this set of points, note that ` is given by the equation Y =
t(X + 1). Thus, its intersection point other than (−1, 0) with C satisfies

X2 + t2(X + 1)2 = 1

(X + 1)(X − 1 + t2(X + 1)) = 0



Therefore X − 1 + t2(X + 1) = 0, that is, X(1 + t2) = 1 − t2. Substituting in
Y = t(X + 1), we obtain

(X,Y ) =

(
1− t2

1 + t2
,

2t

1 + t2

)
with t ∈ Q .

But we can write t = n/m for n,m ∈ Z with gcd(n,m) = 1. The condition
0 < t < 1, says that n,m ∈ N and that m > n. Thus we have(x

z
,
y

z

)
=

(
m2 − n2

m2 + n2
,

2mn

m2 + n2

)
,

which completes the proof.
Solution of 33: We will show a stronger result, that is, x4 + y4 = z2 has
no solutions in positive integers. Assume that such a solution exists. Take
the solution for which z has the smallest value. We must have that x, y, z are
coprime, since otherwise by dividing we would obtain an even smaller solution.
Since (x2, y2, z) is a Pythagorean triple, by Problem 32 we have that

x2 = 2pq , y2 = p2 − q2 , z = p2 + q2 ,

for some coprime p > q. Note that the equation y2 = p2 − q2 gives rise to
another Pythagorean triple and hence

q = 2ab , y = a2 − b2 , p = a2 + b2 ,

for some coprime a > b. Then

x2 = 2pq = 4ab(a2 + b2)

If p is a prime such that p|a or p|b, then it cannot divide a2 + b2, since a and
b are coprime. Hence ab and a2 + b2 are coprime and thus they are perfect
squares. Since a and b are coprime, so are a and b perfect squares. Therefore

P 2 = a2 + b2 = A4 + B4

But note that
P 2 = a2 + b2 = p < p2 + q2 = z

and thus P < z. This is a contradiction with the minimality of z.


