
MÈTODES GEOMÈTRICS EN TEORIA DE NOMBRES

Semestre de primavera de 2022

Problem Set 2

Submit the solutions of Exercises 1, 2, 3, 4 at Campus Virtual by Sunday 13/3/2022
at 23:59.

Exercise 5 is optional, it is not necessary to submit its solution, and it will
not be part of the evaluation (however, you can submit its solution if you wish!).

In all exercises below, K denotes a field and K its algebraic closure.

Exercise 1. Let F (X,Y, Z) = Y 2Z −X3 −X2Z ∈ K[X,Y, Z], G(X,Y, Z) =
Y ∈ K[X,Y, Z], P1 = [0 : 0 : 1] and P2 := [−1 : 0 : 1]. Compute the multiplici-
ties I(P1; CF , CG) and I(P2; CF , CG).

Exercise 2. Show that:

(1) A homogeneous polynomial F (X,Y ) ∈ K[X,Y ] of degree n decomposes as

F (X,Y ) =

n∏
i=1

(aiX − biY ) , where ai, bi ∈ K.

(2) A conic C is smooth if and only if it is geometrically irreducible.

Hint: You need to show that C has a singular point P if and only if its
defining polynomial F (X,Y, Z) factorizes over K as the product of two linear
factors. For the ‘if ’ implication, you may assume without loss of generality
that F (X,Y, Z) is XY or X2. For the ‘only if ’ implication, assume that
P = [0 : 0 : 1], note the constraints this imposes on F , and apply part (1)
of this exercise.

Exercise 3. Show that the cubic defined by the polynomial F (X,Y, Z) =
Y 2Z − X3 ∈ K[X,Y, Z] is geometrically irreducible, but it is not smooth at
[0 : 0 : 1].

Hint: The key point is to show that R = K[x, y]/(y2 − x3) is a domain. To
show this, identify R with a subring of K[T ] by studying the kernel of the ring
homomorphism

Φ : K[x, y]→ K[T ]

that maps x to T 2 and y to T 3.

Exercise 4. Show that a smooth projective plane curve C defined over K is
geometrically irreducible.

Hint: Suppose that the defining polynomial F (X,Y, Z) of C factorizes as F =
G ·H, where G,H ∈ K[X,Y, Z]. Recall that, by Bézout’s theorem, the projective
plane curves CG and CH intersect at at least one K-rational point P . Show that
P is not a smooth point of C.



Exercise 5. Let L/K be a Galois extension and let G denote Gal(L/K).

(1) Show that

σ([a0 : · · · : ad]) := [σ(a0) : · · · : σ(ad)] for σ ∈ G and [a0 : · · · : ad] ∈ Pd(L)

is a well-defined action of G on Pd(L).

(2) Let v ∈ Ld+1\{(0, . . . , 0)} be such that for every σ ∈ G there exists λσ ∈ L×
such that

σ(v) = λσ · v .

Show that λστ = λσ · σ(λτ ).

(3) Consider the map ∑
τ∈G

λτ · τ : L→ L .

(It is a nonzero map by Dedekind’s theorem on independence of characters).
Choose θ ∈ L such that γ :=

∑
τ∈G λττ(θ) is nonzero. Show that λσ =

γ/σ(γ) for all σ ∈ G, and deduce that σ(γ · v) = γ · v for all σ ∈ G.

(4) Consider the set

Pd(L)G := {P ∈ Pd(L) : σ(P ) = P for all σ ∈ G} .

Deduce from (3) that the natural inclusion

Pd(K) ↪→ Pd(L)G .

is a bijection.

(5) Let C be a plane projective curve defined over K. Show that the action of
(1), for d = 2, restricts to an action on C(L). Consider the set

C(L)G := {P ∈ C(L) : σ(P ) = P for all σ ∈ G} .

Deduce from (4) that
C(L)G = C(K) .
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Problem Set 4

Submit the solutions of Exercises 1, 2, 3, 4 at Campus Virtual by Sunday 10/4/2022
at 23:59.

Exercise 5 is optional, it is not necessary to submit its solution, and it will
not be part of the evaluation (however, you can submit its solution if you wish!).

Exercise 1. Determine Q(Q), where Q is the cubic defined by the polynomial:

(1) F (X,Y, Z) = X3 + 2Y 3 − 4Z3 ∈ Q[X,Y, Z].

(2) F (X,Y, Z) = (Y + Z)3 − 2X3 ∈ Q[X,Y, Z].

Hint: For (1), study the divisibility by powers of 2 of an eventual solution, once
assumed to be given by integral coordinates. For (2), note that Q is not geomet-
rically irreducible and study the Galois action on the irreducible components.

Exercise 2. Let K be a field of characteristic 6= 2 and let E : y2 = x3 + ax+ b
be an elliptic curve defined over K. Show that if P1 = (x1, y1), P2 = (x2, y2) ∈
E(K) are such that P1 6= −P2, then:

P1 + P2 =
(
m2 − x1 − x2,−y1 −m(m2 − 2x1 − x2)

)
,

where

m =


3x2

1+a
2y1

if P1 = P2 ,

y1−y2

x1−x2
if P1 6= P2 .

Deduce that for every P = (x, y) such that 2P 6= O, we have

2 · P =

(
p′(x)2

4p(x)
− 2x,−y

(
1 +

p′(x)

2p(x)2

(
p′(x)2

4p(x)
− 3x

)))
.

Hint: If P1 and P2 if are distinct, write an equation for the line through P1 and
P2, and find the x-coordinate of the third point of intersection of this line with
E. If the points P1 and P2 coincide, repeat the argument with the tangent to E
at P1.

Exercise 3. Let E be the elliptic curve y2 = x3 + x + 2 defined over F5.
Determine the isomorphism class of the group of F5-rational points E(F5).

Hint: Determine the set E(F5) by exhaustive search and study the orders of its
elements by applying the formulas of Exercise 2.



Exercise 4. Let K be a field of characteristic 6= 2. Let a, b ∈ K be such that
b 6= 0 and a2 − 4b 6= 0.

(1) Show that

E1 : y2 = x3 + ax2 + bx , E2 : y2 = x3 − 2ax2 + (a2 − 4b)x .

are elliptic curves.

(2) Show that

φ(x, y) =

(
y2

x2
, y
x2 − b
x2

)
is an isogeny from E1 to E2.

(3) Determine ker(φ).

Comment: For part (1), you may use the formula for the discriminant of a
general cubic polynomial given at class. In part (2), for the sake of brevity,
when checking that

φ(P1 + P2) = φ(P1) + φ(P2) ,

you may just consider the general case in which P1, P2 6∈ {(0, 0),O}. When one
among P1, P2 lies in {(0, 0),O}, the general argument fails and an additional
argument is needed; feel free to disregard this degenerate case.

Exercise 5. Let K be a field and let Q be the nodal curve

y2 = x3 + αx2 , with α ∈ K× .

Recall that the chord-and-tangent operation equips the set of nonsingular points
of Qns(K) with a group structure. Show that:

(1) The map

ϕ : Qns(K)→ K
×
, ϕ([r : s : t]) =

s+
√
αr

s−
√
αr

is a group isomorphism.

(2) If Q is split multiplicative, then ϕ induces an isomorphism Qns(K) ' K×.

(3) If Q is non-split multiplicative, then

Qns(K) ' {β ∈ K(
√
α)× : β · σ(β) = 1} ,

where σ is the generator of Gal(K(
√
α)/K).

Hint: For part (1), once you have shown that ϕ is a bijection, to show that it
is a group homomorphism it will suffice to see that if P1 = ϕ(u1), P2 = ϕ(u2),
and P3 = ϕ(u3) lie on a line, then u1 · u2 · u3 = 1. For part (3), use that by
Hilbert’s 90th Theorem for every β ∈ K(

√
α) such that β · σ(β) = 1, there exist

r, s ∈ K such that

β =
s+
√
αr

s−
√
αr

.
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Submit the solutions of Exercises 1, 2, 3, 4 at Campus Virtual by Sunday 8/5/2022
at 23:59.

Exercise 1. Let E : y2 = f(x) be an elliptic curve defined over Fp.

(1) Show that if
(
·
p

)
denotes the Legendre symbol, then

#E(Fp) = p+ 1 +
∑
x∈Fp

(
f(x)

p

)
.

(2) Let n ∈ Z≥1 be such that p - n. Show that if p ≡ 3 (mod 4) and f(x) =
x(x2 − n2) ∈ Fp[x], then #E(Fp) = p+ 1.

(3) Let n ∈ Z≥1. Show that the elliptic curve E : y2 = x(x2 − n2) defined over
Q has complex multiplication and that ap(E) = 0 for every prime p in a set
of density 1/2.

Hint: Recall that for x ∈ Fp, the Legendre symbol is defined as

(
x

p

)
=


0 if x = 0,

1 if x ∈ (F×p )2,

−1 otherwise.

For (2), use that if p ≡ 3 (mod 4), then
(
−1
p

)
= −1, and for (3) apply Dirich-

let’s density theorem.

Exercise 2. Let E be the elliptic curve y2 = x3 + x + 2 defined over F5.
Determine #E(F55).

Hint: Deduce from Exercise 3 of PS 4 that a5(E) = 2. From the existence of
α ∈ Q such that

#E(F5n) = 1 + 5n − αn − αn

find a recurrence relation between a5n+1 , a5n , and a5n−1 .

Exercise 3. Let Fq be a finite field of characteristic p. Let F ∈ Fq[X1, . . . , Xn]
be a homogeneous polynomial of degree d and let

V := {a = (a1, . . . , an) ∈ Fnq : F (a) = 0} .

For a ∈ Fnq , define G(a) := F (a)q−1. Show that:

(1) #(Fnq \ V ) ≡
∑

a∈Fn
q
G(a) (mod p).



(2) For α ∈ Z≥0, one has ∑
a∈Fq

aα ≡ 0 (mod p)

unless α is a nonzero multiple of q − 1.

(3) For α = (α1, . . . , αn) ∈ (Z≥0)n, write aα = aα1
1 · · · aαn

n . One has∑
a∈Fn

q

aα ≡ 0 (mod p)

unless α1 + · · ·+ αn ≥ n(q − 1).

(4) If n > d, then∑
a∈Fn

q

G(a) ≡ 0 (mod p) , #(Fnq \V ) ≡ 0 (mod p) , #V ≡ 0 (mod p) .

(5) #C(Fq) = q + 1 for every smooth conic C defined over Fq.

Hint: For (2), express the sum in terms of a generator of F×q . For (3), observe
that ∑

a∈Fn
q

aα =

 ∑
a1∈Fq

aα1
1

 · · ·
 ∑
an∈Fq

aαn
n


and apply (2). For (5), use (4) to deduce that C(Fq) 6= ∅ and apply the bijection
between C(Fq) and P1(Fq) that we have seen in this case in the lectures.

Exercise 4. Show that every smooth plane cubic Q over a finite field Fq is an
elliptic curve. Deduce that

|#Q(Fq)− q − 1| ≤ 2
√
q .

Hint: A priori Q(Fq) may be empty, so we can not take for granted that Q is
an elliltic curve defined over Fq. Argue, however, that there exists n ∈ Z≥1
such that Q(Fqn) 6= ∅. Choose an arbitrary O ∈ Q(Fqn) and consider the
group structure (Q(Fq),+) induced by the elliptic curve (Q,O) defined over Fqn .
Consider the map

φ : Q(Fq)→ Q(Fq) , φ(P ) := φq(P )− P ,

where φq is the Frobenius endomorphism. Justify that φ is either constant or
surjective. Show that the map cannot be constant, and that the first statement
of the exercise follows from the surjectivity of φ. Deduce the second statement
of the exercise from the Hasse–Weil theorem.

Comment: With Exercises 3 and 4, we have completed the proof of the Weil
Conjectures for curves of genus 0 and 1.
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Submit the solutions of Exercises 1, 2 at Campus Virtual by Sunday 22/5/2022
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Exercise 1. We say that n ∈ Z≥1 is a congruent number if there is a right
triangle of rational sides and area n.

i) Show that n is a congruent number if and only if there exist a, b, c ∈ Q>0

such that (
a+ b

2

)2

=
( c

2

)2

+ n ,

(
a− b

2

)2

=
( c

2

)2

− n .

ii) Let En : y2 = x(x2−n2) be the elliptic curve defined over Q. Show that n is
a congurent number if and only if there exists an affine point (x, y) ∈ En(Q)
with y 6= 0.

iii) Show that En(Q)tors = {O, (0, 0), (n, 0), (−n, 0)}.

iv) Show that if n is a congruent number, then there exist infinitely many
nonsimilar triangles of rational sides and area n.

Hint: For the ‘if ’ implication of part (2), show that there exist there exist a, b, c ∈
Q>0 satisfying the relations of (1). To this aim, using the duplication formula,
show that if u denotes the x-coordinate of 2 · (x, y), then u−n, u, u+n ∈ (Q×)2.
Determine a, b, c by imposing the square roots of u− n, u, u+ n to be (a− b)/2,
c/2, and (a + b)/2, respectively. As for (3), use Exercise 1 of PS 6 to show
that #E(Q)tors | p + 1 for all but finitely many primes p ≡ 3 (mod 4). Use
Dirichlet’s density theorem to deduce that #E(Q)tors = 4

Exercise 2. Show that:

i) The elliptic curve y2 = x3 − x has rank 0.

ii) The elliptic curve E : y2 = x3 − 5x has rank 1.

Hint: Given elliptic curves

E : y2 = x3 + ax2 + bx , E : y2 = x3 + ax2 + bx ,

where a, b ∈ Z, a = −2a and b = a2 − 4b, we have defined maps

α : E(Q)→ Q×/(Q×)2 , α : E(Q)→ Q×/(Q×)2 .

By the class of Monday 16/5/2022, we have

2rE+2 = #α(E(Q)) ·#α(E(Q)) ,



as well as we have the following method to compute α(E(Q)) (for the compu-
tation of α(E(Q)) simply replace a, b by a, b). For b1 a divisor (positive or
negative) of b, consider the equation

N2 = b1M
4 + aM2e2 +

b

b1
e4 . (1)

In the above equation, consider a, b, b1 as given coefficients and M, e,N as the
variables. Then

α(Γ) = {b (mod (Q×)2)}∪{b1 (mod (Q×)2) : b1 | b and (1) has a solution with M 6= 0} .


