Sato–Tate groups: invariants and equidistribution¹

Francesc Fité² (MIT)

Poznań-Szczecin arithmetic algebraic geometry seminar

July 15, 2021

Francesc Fité

¹Based on joint works with K.S. Kedlaya and A.V. Sutherland; with A. Bucur and K.S. Kedlaya; and with E. Costa and A.V. Sutherland.

²I gratefully acknowledge support from the Simons Foundation (via grant 550033), MIT, and IAS (via grant DMS-1638352).

Computation of Sato–Tate group invariants in the genus 3 classification

Arithmetic content in Sato-Tate group invariants

Computation of Sato–Tate group invariants in the genus 3 classification

2) Arithmetic content in Sato-Tate group invariants

Recap from last week: the Sato-Tate group

k a number field.

A/k an abelian variety of dimension $g \ge 1$.

Attached to A, there exists an unconditionally defined compact real Lie subgroup of $US_P(2g)$ that is conjectured to govern the limiting distribution of:

- the number of points of the reductions of A modulo primes of k; or
- the Frobenius classes acting on the cohomology groups of A.

This group is called the Sato–Tate group of A, and is denoted ST(A). Recall:

- It is only well-defined up to conjugacy.
- It is not necessarily connected.
- It is sensitive to base change.

Recap from last week: classification results

Remark

There are 3 conjugacy classes of subgroups of USp(2) which occur as Sato–Tate groups of elliptic curves over number fields.

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

There are 52 conjugacy classes of subgroups of USp(4) which occur as Sato–Tate groups of abelian surfaces over number fields.

Theorem (F.–Kedlaya–Sutherland; 2021)

There are 410 conjugacy classes of subgroups of USp(6) which occur as Sato–Tate groups of abelian threefolds over number fields.

Proposition

ST(*A*) determines $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{R}$, as \mathbb{R} -algebra equipped with an action of G_k . ST(*A*)⁰ determines $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{R}$, as \mathbb{R} -algebra. $\pi_0(\operatorname{ST}(A)) \twoheadrightarrow \operatorname{Gal}(F/k)$, where *F* is the endomorphism field of *A*.

Recap from last week: map for the g = 3 classification

Туре	G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(6)}(G^0)/G^0$	Extensions
Α	USp(6)	\mathbb{R}	<i>C</i> ₁	1
В	U(3)	\mathbb{C}	<i>C</i> ₂	2
С	SU(2) imes USp(4)	$\mathbb{R} \times \mathbb{R}$	C_1	1
D	U(1) imes USp(4)	$\mathbb{C} imes \mathbb{R}$	C_2	2
Ε	$SU(2) \times SU(2) \times SU(2)$	$\mathbb{R}\times\mathbb{R}\times\mathbb{R}$	S_3	4
F	U(1) imes SU(2) imes SU(2)	$\mathbb{C}\times\mathbb{R}\times\mathbb{R}$	$\mathit{C}_{2} imes \mathit{C}_{2}$	5
G	U(1) imes U(1) imes SU(2)	$\mathbb{R}\times\mathbb{C}\times\mathbb{C}$	D_4	5
Н	U(1) imes U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}\times\mathbb{C}$	$(C_2 imes C_2 imes C_2) times S_3$	13
1	$SU(2) imes SU(2)_2$	$\mathbb{R} imes M_2(\mathbb{R})$	O(2)	10
J	$U(1) \times SU(2)_2$	$\mathbb{C} imes M_2(\mathbb{R})$	$C_2 imes { m O}(2)$	31
Κ	$SU(2) imes U(1)_2$	$\mathbb{R} imes M_2(\mathbb{C})$	${ m SO(3)} imes {\it C}_2$	32
L	$U(1) \times U(1)_2$	$\mathbb{C} imes M_2(\mathbb{C})$	$\textit{C}_{2} imes { m SO}(3) imes \textit{C}_{2}$	122
М	SU(2) ₃	$M_3(\mathbb{R})$	SO(3)	11
Ν	$U(1)_{3}$	$M_3(\mathbb{C})$	$PSU(3) \rtimes C_2$	171

https://www.Imfdb.org/SatoTateGroup/

Invariants for Sato-Tate groups: Moments

Let $a_1, a_2, \ldots, a_g : USp(2g) \to \mathbb{R}$ denote the characters computing the coefficients of the characteristic polynomial of a random element in USp(2g), that is,

$$a_1 = \operatorname{Tr}(\mathbb{C}^{2g}), \quad a_2 = \operatorname{Tr}(\wedge^2 \mathbb{C}^{2g}), \quad \dots, \quad a_g = \operatorname{Tr}(\wedge^g \mathbb{C}^{2g}),$$

where \mathbb{C}^{2g} denotes the standard representation of USp(2g).

Let G be a closed subgroup of USp(2g).

For nonnegative integers e_1, \ldots, e_g , the moment M_{e_1,\ldots,e_g} of *G* is defined as:

- the expected value $\int_G a_1^{e_1} \cdots a_g^{e_g}$; or equivalently
- the multiplicity $\langle (\mathbb{C}^{2g})^{\otimes e_1} \otimes \cdots \otimes (\wedge^g \mathbb{C}^{2g})^{\otimes e_g}, 1 \rangle$.

For a nonnegative integer *m*, the *m*-simplex of moments is the collection of $M_{e_1,...,e_g}$ for all tuples $(e_1,...,e_g)$ with $w := e_1 + 2e_2 + \cdots + ge_g \le m$.

LMFDB contains the 12-simplex of moments for all 410 groups in the genus 3 classification.

Examples

1) Suppose $-1 \in G$.

If *w* is odd, then $M_{e_1,...,e_g} = 0$. Indeed:

$$\int_{\gamma \in G} a_1(\gamma)^{e_1} \dots a_g(\gamma)^{e_g} = \int_{\gamma \in G} a_1(-\gamma)^{e_1} \dots a_g(-\gamma)^{e_g} = (-1)^w \int_{\gamma \in G} a_1(\gamma)^{e_1} \dots a_g(\gamma)^{e_g}.$$

2) Let g = 1 and G = SU(2).

Character χ of $G \quad \rightsquigarrow \quad$ Laurent polynomial $\tilde{\chi} \in \mathbb{Z}[\alpha^{\pm 1}]$.

(Think of α, α^{-1} as random eigenvalues of the standard representation).

Then $\langle \chi, \mathbf{1} \rangle = [\alpha^0] \tilde{\chi} - [\alpha^2] \tilde{\chi}$, where $[\alpha^k]$ is the coefficient of α^k in $\tilde{\chi}$.

(Use that the irreducible representations of SU(2) are $\operatorname{Sym}^{n} \mathbb{C}^{2}$ for $n \geq 0$, with eigenvalues $\alpha^{n}, \alpha^{n-2}, \ldots, \alpha^{2-n}, \alpha^{-n}$).

Hence M_{2e}(SU(2)) is

$$\langle \operatorname{Tr}((\mathbb{C}^2)^{2e}), 1 \rangle = ([\alpha^0] - [\alpha^2])(\alpha + \alpha^{-1})^{2e} = \binom{2e}{e} - \binom{2e}{e-1} = \frac{1}{e+1} \binom{2e}{e}.$$

Invariants for Sato–Tate groups: character norms

Let G be a closed subgroup of USp(2g).

Dominant weights of $USp(2g) \iff partitions$ of integers ≥ 0 of length g.

For a partition $\lambda : \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_g$, let χ_{λ} denote the irreducible character of USp(2g) with highest weight λ .

For a partition λ , the character norm N_{λ} of *G* is:

- the expected value $\int_G (\chi_\lambda|_G)^2$; or equivalently
- the multiplicity of the trivial representation in $(\chi_{\lambda}|_G)^2$.

For a nonnegative integer *m*, the *m*-diagonal of character norms is the collection of N_{λ} for all subpartitions λ of the rectangular partition $m \leq .. \leq m$.

LMFDB contains the 3-diagonal of character norms for all 410 groups in the genus 3 classification.

The *m*-diagonal of character norms was introduced by Kohel–Shieh. They suggested it should distinguish Sato–Tate groups more efficiently (and verified it for g = 2).

Invariants for Sato-Tate groups: point densities

Lemma

Let G be a closed subgroup of USp(6). Suppose that:

- G satisfies the rationality condition and contains -1.
- For some *i* ∈ {1, 2, 3} and some connected component *C*, the function *a_i* : *G* → ℝ is identically equal to the constant function *t* ∈ ℝ.

Then t = 0 if $i \in \{1, 3\}$, and $t \in \{-1, 0, 1, 2, 3\}$ if i = 2.

The matrix of point densities associated to G is

$$Z(G) = \begin{bmatrix} 1 & z_2 & z_2^{-1} & z_2^0 & z_1^1 & z_2^2 & z_2^3 \\ z_1 & z_{12} & z_{12}^{-1} & z_{12}^0 & z_{12}^1 & z_{12}^2 & z_{12}^3 \\ z_3 & z_{23} & z_{23}^{-1} & z_{23}^0 & z_{13}^1 & z_{23}^2 & z_{23}^3 \\ z_{13} & z_{123} & z_{123}^{-1} & z_{123}^0 & z_{123}^1 & z_{123}^2 & z_{123}^3 \end{bmatrix}$$

where, for example, the proportion of connected components of G on which:

- a₁ and a₂ are constant is denoted by z₁₂.
- a₁ is constant and a₂ is constant and equal to 2 is denoted by z²₁₂.

The result of a computation

Theorem (F.–Kedlaya–Sutherland)

i) The 410 groups in the genus 3 classification give rise to 409 distinct distributions of charpolys.

The groups J(C(3,3)), $J_s(C(3,3))$ share the same distribution of charpolys, but have nonisomorphic component groups.

ii) The 409 distinct distributions are distinguished by either:

- the 3-diagonal of character norms (20 terms of size at most 10⁵); or
- the 14-simplex of moments (147 terms of size sometimes exceeding 10⁸).

iii) The 410 groups are distinguished by the data including:

- the group of connected components;
- the matrix of point densities; and
- the character norms $N_{(1,1,0)}, N_{(1,1,1)}, N_{(2,0,0)}$.

Computation of averages: the connected case I

Let $G \subseteq USp(6)$ be one of the 14 connected Sato–Tate groups.

USp(6)	$U(1) \times SU(2) \times SU(2)$	$SU(2) imes U(1)_2$
U(3)	U(1) imes U(1) imes SU(2)	$U(1) imes U(1)_2$
SU(2) imes USp(4)	U(1) imes U(1) imes U(1)	SU(2) ₃
U(1) imes USp(4)	$SU(2) imes SU(2)_2$	U(1) ₃
$SU(2) \times SU(2) \times SU(2)$	$U(1) \times SU(2)_2$	

Goal: Compute $\langle \chi, 1 \rangle$ for χ a character of *G*.

For later convenience: we allow χ be a virtual character of *G*, that is, a linear combination of irreducible characters of *G* with *complex* coefficients.

Let *r* be the rank of *G*.

Let $u_1, \overline{u}_1, \ldots, u_r, \overline{u}_r$ be independent eigenvalues of a random element in *G*. Then χ gives rise to:

$$\tilde{\chi} \in \mathbb{C}[u_1^{\pm 1},\ldots,u_r^{\pm 1}].$$

Computation of averages: the connected case II

Suppose that $G = G_1 \times G_2$, where:

- $G_1 = U(1)$ or SU(2).
- We assume the eigenvalues of G_1 are u_1, \overline{u}_1 .

 $\langle \chi, 1 \rangle = \langle \psi, 1 \rangle$, where $\psi : G_2 \to \mathbb{C}$ is assoc. to $\begin{cases} [u_1^0] \tilde{\chi} & \text{if } G_1 = U(1) \\ [u_1^0] \tilde{\chi} - [u_1^2] \tilde{\chi} & \text{if } G_1 = SU(2) \end{cases}$

This reduces the problem to consider $G \in {USp(4), SU(3), USp(6)}$.

These groups being *connected* and *semisimple*, we can use Weyl's theory of highest weights. To recover $\langle \chi, 1 \rangle$, successively apply:

- Identify the highest dominant weight λ in χ .
- Compute the irreducible character χ_{λ} associated to λ .
- If $\chi_{\lambda} = 1$, then return dim (χ) . Otherwise, start over with $\chi \chi_{\lambda}$.

Computation of averages: the Weyl character formula

Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be a dominant weight.

 χ_{λ} can be computed via the Weyl character formula.

Let *W* denote the Weyl group of *G*. Set:

$$D_{\lambda} := \sum_{w \in W} \operatorname{sign}(w) u_1^{w(\lambda)_1} \cdots u_r^{w(\lambda)_r} \in \mathbb{Z}[u_1^{\pm 1}, \dots, u_r^{\pm 1}].$$

Then the Weyl character formula establishes

$$\widetilde{\chi}_{\lambda} = \frac{D_{\lambda+\rho}}{D_{\rho}} \in \mathbb{Z}[u_1^{\pm 1}, \dots, u_r^{\pm 1}].$$

Here ρ is the half-sum of the positive roots of *G*.

Computation of averages: groups of central type Let $G \subseteq USp(6)$ be a Sato–Tate group (not necessarily connected).

Let χ be a character of USp(6) (like for example $a_1^{e_1} a_2^{e_2} a_3^{e_3}$).

In order to compute $\int_{G} \chi$, it suffices to compute:

Goal: Compute $\int_{C} \chi$ for every connected component *C* of *G*.

We say that *G* is of central type if *G* can be written as $\langle G^0, H \rangle$ for some finite group *H* such that, for each $h \in H$, the map

$$G^0 o \mathbb{R}[T], \qquad \gamma \mapsto \det(1 - \gamma hT)$$

is a class function. If G is of central type, then for all $h \in H$, the map

$$G^0 \to \mathbb{C}, \qquad \gamma \mapsto \chi(\gamma h)$$

is a virtual character of G^0 . If $C = G^0 h$, then

$$\int_{\gamma \in \mathcal{C}} \chi(\gamma) = \int_{\gamma \in \mathcal{G}^0} \chi(\gamma) = \int_{\gamma \in \mathcal{G}^0} \chi(\gamma h)$$

can be computed as in the connected case.

Francesc Fité

Computation of averages: exceptional groups

Proposition

If G is distinct from N(U(3)), E_t , E_s , $E_{s,t}$, F_t , F_{at} , $F_{a,t}$, then G is of central type.

Remark

The computation of the averages $\int_C \chi$ for the 6 exceptional groups of type *E* or *F* can be done via elementary adhoc methods.

When *G* is N(U(3)), then use first that in order to compute $\langle 1, \chi |_G \rangle$ it suffices to compute $\langle 1, \chi_\lambda |_G \rangle$ for all irreducible characters χ_λ . Then apply the following

Lemma Let λ denote the partition $a \ge b \ge c$. Then:

i) $\langle 1, \chi_{\lambda}|_{U(3)} \rangle = 1$ if *a*, *b*, *c* are all even, and it is 0 otherwise.

ii) $\langle 1, \chi_{\lambda}|_{N(U(3))} \rangle = 1$ if a, b, c are all even and $a + b + c \equiv 0 \pmod{4}$, and it is 0 otherwise.

Remark

In principle, it should be possible to compute $\int_G \chi$ via the Kostant character formula, which extends the Weyl character formula to disconnected groups.

Arithmetic content in Sato-Tate group invariants

Arithmetic-geometric information from moments

Let A be an abelian variety defined over k.

Proposition (Costa-F.-Sutherland, Zywina)

Suppose that the Mumford–Tate conjecture holds for A. Then:

i)
$$\int_{ST(A)} a_1^2 = \operatorname{rk}_{\mathbb{Z}}(\operatorname{End}(A))$$
,
ii) $\int_{ST(A)} a_2 = \operatorname{rk}_{\mathbb{Z}}(\operatorname{NS}(A))$,
iii) $\int_{ST(A)^0} a_{2r} = \dim_{\mathbb{Q}}(\mathcal{H}^r(A))$,

where $\mathcal{H}^{r}(A)$ are the Hodge classes of A in degree $1 \leq r \leq g$, that is,

$$\mathcal{H}^{r}(A) = H^{2r}(A(\mathbb{C}), \mathbb{Q}) \cap H^{r,r}(A)$$
.

Here $H^{r,r}(A)$ is the space appearing in the Hodge decomposition

$$H^{2r}(A(\mathbb{C}), C) = \bigoplus_{p+q=2r} H^{p,q}(A).$$

Choose a prime ℓ . Let

$$\varrho_{\ell}: G_k \to \operatorname{Aut}(V_{\ell}(A))$$

be the ℓ -adic representation attached to A

Let G_{ℓ} denote the Zariski closure of the image of ϱ_{ℓ} .

By work of Banaszak–Kedlaya and Cantoral Farfán–Commelin, the assumption of the Mumford–Tate conjecture exhibits ST(A) as a compact form of $G_{\ell} \times_{\iota} \mathbb{C}$ independent of the choice of ℓ and $\iota : \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$.

Let V denote the standard representation of ST(A).

Proof of i)

$$\begin{split} \int_{\mathsf{ST}(\mathcal{A})} a_1^2 &= \dim_{\mathbb{C}} (V^{\otimes 2})^{\mathsf{ST}(\mathcal{A})} = \dim_{\mathbb{Q}_\ell} (V_\ell(\mathcal{A}) \otimes V_\ell(\mathcal{A})(1))^{G_\ell} = \\ &= \dim_{\mathbb{Q}_\ell} (V_\ell(\mathcal{A}) \otimes V_\ell(\mathcal{A})^{\vee})^{G_\ell} = \dim_{\mathbb{Q}_\ell} \operatorname{End}_{G_k} (V_\ell(\mathcal{A})) = \operatorname{rk}_{\mathbb{Z}} \operatorname{End}(\mathcal{A}) \,. \end{split}$$
Proof of iii)

$$\int_{\mathsf{ST}(A)^0} a_{2r} = \dim_{\mathbb{C}}(\wedge^{2r} V)^{\mathsf{ST}(A)^0} = \dim_{\mathbb{Q}}(\wedge^{2r} H^1(A(\mathbb{C}),\mathbb{Q}))^{\mathrm{MT}(A)} =$$

$$= \dim_{\mathbb{Q}}(H^{2r}(A(\mathbb{C}),\mathbb{Q}))^{\mathrm{MT}(A)} = \dim_{\mathbb{Q}}\mathcal{H}^{r}(A) \,.$$

Equidistibution

Generalized Sato-Tate conjecture

For every prime p of good reduction for A, there exists a conjugacy class x_p of ST(A), with the property that

$$\det(1 - x_{\mathfrak{p}}T) = \det(1 - \varrho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})\operatorname{Nm}(\mathfrak{p})^{-1/2}T),$$

such that the sequence $\{x_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on the set of conjugacy classes of ST(A) with respect to the Haar measure.

A proof paradigm via *L*-functions

For an irreducible representation ρ of ST(A), define

$$L(A, \varrho, s) = \prod_{\mathfrak{p}} \det(1 - \varrho(x_{\mathfrak{p}}) \operatorname{Nm}(\mathfrak{p})^{-s})^{-1}, \quad \text{for } \Re(s) > 1$$

Serre shows that, if for every nontrivial ρ , the *L*-function $L(A, \rho, s)$ extends to a neighborhood of $\Re(s) \ge 1$ and does not vanish on $\Re(s) = 1$, then the Sato-Tate conjecture holds.

Trace equidistribution

Set

$$a_{\mathfrak{p}} := \mathsf{Tr}(arrho_{\ell}(\mathsf{Frob}_{\mathfrak{p}}))\,, \qquad \overline{a}_{\mathfrak{p}} := a_{\mathfrak{p}}/\operatorname{Nm}(\mathfrak{p})^{1/2}\,.$$

Let μ denote the push forward of the Haar measure of ST(A) on the interval [-2g, 2g] via the trace map.

Trace Sato-Tate conjecture

The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on [-2g, 2g] wrt to μ . Equivalently, for every $I \subseteq [-2g, 2g]$, we have

$$\#\{\mathfrak{p}:\mathsf{Nm}(\mathfrak{p})\leq x,\overline{a}_{\mathfrak{p}}\in I\}=\mu(I)\mathrm{Li}(x)+o\left(\frac{x}{\log(x)}\right)\qquad\text{as $x\to\infty$}.$$

Effective trace Sato-Tate conjecture

There exists $\epsilon > 0$ such that, for every $I \subseteq [-2g, 2g]$, we have

$$\#\{\mathfrak{p}:\mathsf{Nm}(\mathfrak{p})\leq x,\overline{a}_{\mathfrak{p}}\in I\}=\mu(I)\mathrm{Li}(x)+O\left(x^{1-\epsilon+o(1)}\right)\qquad\text{as $x\to\infty$}.$$

An efective version

Theorem (Bucur-F.-Kedlaya)

Suppose that $L(A, \varrho, s)$ extends to a meromorphic function on \mathbb{C} , with only simple poles at s = 1 and s = 0 if ϱ is trivial, and analytic otherwise.

Suppose that if $L(A, \varrho, s) = 0$, with $0 \le \Re(s) \le 1$, then $\Re(s) = 1/2$.

Then, for every $I \subseteq [-2g, 2g]$, we have

$$\#\{\mathfrak{p}: \mathsf{Nm}(\mathfrak{p}) \leq x, \overline{a}_{\mathfrak{p}} \in I\} = \mu(I)\mathsf{Li}(x) + O\left(x^{1-\epsilon+o(1)}\right) \qquad \text{as } x \to \infty,$$

with

$$\epsilon = rac{1}{2(q+arphi)}\,,$$

where q is the rank of ST(A) and φ is the number of positive roots of the semisimple part of ST(A).