Computing Zeta functions of Picard curves

Francesc Fité (MIT)
Joint with S. Asif (MIT), D. Pentland (MIT), and A.V. Sutherland (MIT) Based on the article: https://arxiv.org/abs/2010.07247

4/2/2021

Let C be a smooth projective curve defined over \mathbb{Q} of genus g. Throughout the talk p will be a prime of good reduction for C. The zeta function of C at p is

$$
Z_{p}(C, T)=\exp \left(\sum_{n=1}^{\infty} \# C\left(\mathbb{F}_{p^{n}}\right) \frac{T^{n}}{n}\right) \in \mathbb{Q}[[T]] .
$$

It is shown to be a rational function

$$
Z_{p}(C, T)=\frac{L_{p}(C, T)}{(1-T)(1-p T)} \in \mathbb{Q}(T)
$$

where $L_{p}(C, T) \in \mathbb{Z}[T]$ has degree $2 g$.
Computing $L_{p}(C, T)$ amounts to computing:

$$
\# C\left(\mathbb{F}_{p}\right), \quad \# C\left(\mathbb{F}_{p^{2}}\right), \quad \cdots, \quad \# C\left(\mathbb{F}_{p^{g}}\right)
$$

A problem and its theoretical answers

Problem

- Compute $L_{p}(C, T)$ for large p.
- Compute $\left\{L_{p}(C, T)\right\}_{p \leq N}$ for some large bound N.

Theorem (Schoof-Pila; 1985-1990)
There is an algorithm ${ }^{1}$ that computes $L_{p}(C, T)$ using $\log (p)^{e(g)+o(1)}$ bit operations.
(Adleman-Huang: $e(g)$ has a polynomial growth in g).
Theorem (Harvey; 2015)
There is an algorithm ${ }^{2}$ that computes $\left\{L_{p}(C, T)\right\}_{p \leq N}$ using $N \log (N)^{3+o(1)}$ bit operations.
(Hence "polynomial on average": $\log (N)^{4+o(1)}$ operations per prime).
${ }^{1}$ In this talk all algorithms are deterministic.
${ }^{2}$ In fact, it is much more general: It applies to any scheme of finite type over \mathbb{Z} !

The computational challenge

We also seek for practical algorithms, i.e:
"able to produce answers when run by real hardware and p, N are, say, $\approx 2^{30}$ in a reasonable amount of time, say, less than a week."

- Practical algorithms are at disposal when $g \leq 2$ (Sutherland).
- Substantial progress has been made for superelliptic curves:

$$
C: y^{m}=f(x), \quad \text { where } f \in \mathbb{Q}[x] \text { is separable. }
$$

Indeed:
Arul-Best-Costa-Magner-Triantafillou (2019)
compute ${ }^{3} L_{p}(C, T)$ in time $p^{1 / 2+o(1)}$.
Sutherland (2020)
computes $\left\{L_{p}(C, T)\right\}_{p \leq N}$ modulo p in time $N \log (N)^{3+o(1)}$.

[^0]
Goal

A Picard curve defined over \mathbb{Q} is a curve C given by an affine model

$$
y^{3}=f(x) \quad \text { where } f(x) \in \mathbb{Q}[x] \text { is separable of degree } 4 .
$$

WLOG we will assume $f(x)=x^{4}+f_{2} x^{2}+f_{1} x+f_{0}$ with $f_{i} \in \mathbb{Z}$.
There is a ring homomorphism

$$
\mathbb{Z}\left[\zeta_{3}\right] \hookrightarrow \operatorname{End}\left(\operatorname{Jac}(C)_{\overline{\mathbb{Q}}}\right) .
$$

We will say that C is generic if $\operatorname{End}\left(\operatorname{Jac}(C)_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z}\left[\zeta_{3}\right]$.
Goal
Describe a practical algorithm that, given a generic Picard curve, computes $\left\{L_{p}(C, T)\right\}_{p}$ for almost every $p \leq N$ in time $N \log (N)^{3+o(1)}$.

The Cartier-Manin matrix

The Cartier-Manin matrix at p is the matrix A_{p} of a certain operator \mathcal{C}_{p} acting on $H^{0}\left(C_{p}, \Omega_{C_{p} / \mathbb{F}_{p}}^{1}\right)$ (in the basis $d x / y^{2}, x d x / y^{2}, d x / y$).
It has the fundamental property:

$$
L_{p}(C, T) \equiv \operatorname{det}\left(1-T A_{p}\right) \quad(\bmod p)
$$

Key point
For $p \equiv 1(\bmod 3), A_{p}$ is of the form $\left(\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right)$.
So A_{p} not only gives $L_{p}(C, T)(\bmod p)$, but a canonical factorization

$$
L_{p}(C, T) \equiv g_{p}^{1}(T) \cdot g_{p}^{2}(T) \quad(\bmod p)
$$

Sutherland (2020) computes $\left\{A_{p}\right\}_{p \leq N}$ in time $N \log (N)^{3+o(1)}$.

First main result

Set the notations:
$\Im(C)$ for the set of good primes that are inert in $\mathbb{Q}\left(\zeta_{3}\right)$.
$\mathfrak{S}(C)$ for the set of good primes that split in $\mathbb{Q}\left(\zeta_{3}\right)$.
$\mathfrak{S}^{\text {ord }}(C)$ for the set of good ordinary primes that split in $\mathbb{Q}\left(\zeta_{3}\right)$.
(p is called ordinary if p does not divide the central coefficient of $L_{p}(C, T)$).
Theorem 1
Let C be a Picard curve over \mathbb{Q}. Then:
For every p in $\mathfrak{S}^{\text {ord }}(C)$ at least $53, A_{p}$ uniquely determines $L_{p}(C, T)$.
If C is generic, then $\mathfrak{S}^{\text {nord }}(C):=\mathfrak{S}(C)-\mathfrak{S}^{\text {ord }}(C)$ has zero density.

Second main result

Attached to $y^{3}=f(x)$, with $f(x)=x^{4}+f_{2} x^{2}+f_{1}+f_{0}$, define

$$
\begin{aligned}
\psi_{f}(x):=x^{9} & +24 f_{2} x^{7}-168 f_{1} x^{6}+\left(1080 f_{0}-78 f_{2}^{2}\right) x^{5}+336 f_{1} f_{2} x^{4} \\
& +\left(1728 f_{0} f_{2}-636 f_{1}^{2}+80 f_{2}^{3}\right) x^{3}+\left(-864 f_{0} f_{1}-168 f_{1} f_{2}^{2}\right) x^{2} \\
& +\left(-432 f_{0}^{2}+216 f_{0} f_{2}^{2}-120 f_{1}^{2} f_{2}-27 f_{2}^{4}\right) x-8 f_{1}^{3} .
\end{aligned}
$$

Key property
The splitting field of $\psi_{f}\left(x^{3} / 2\right)$ is the 2-torsion field of $\operatorname{Jac}(C)$.
Theorem 2
Let C be a Picard curve over \mathbb{Q}. For every p in $\mathfrak{I}(C)$, the knowledge of:

- f having or not a root modulo p;
- $\psi_{f}(x)$ being irreducible or not modulo p;
- the matrix A_{p};
uniquely determine $L_{p}(C, T)$.

A practical algorithm

Corollary

The constructive proofs of the theorems yield a practical algorithm that computes $\left\{L_{p}(C, T)\right\}_{p \leq N, p \notin \mathcal{E}^{\text {nord }}(C)}$ in time $N \log (N)^{3+o(1)}$.
Remarks
One can speed up the ABCMT algorithm by a factor of 8 (for $p \notin \mathfrak{S}^{\text {nord }}$). In practice for $p \in \mathfrak{S}^{\text {nord }}(C)$ one can use the ABCMT algorithm. For C generic, it is conceivable that $\mathfrak{S}^{\text {nord }}(C)$ is so small that this does not affect the complexity of the algorithm (we were unable to prove that).

N	2^{20}		2^{24}		2^{28}	
Algorithm	$[A B C M T]$	$[$ S]+[AFPS]	$[A B C M T]$	$[S]+[A F P S]$	$[A B C M T]$	$[S]+[A F P S]$
$y^{3}=x^{4}+x+1$	215.1	$0.57+\mathbf{0 . 1 2}$	1152.7	$1.37+\mathbf{0 . 1 3}$	5051.4	$4.63+\mathbf{0 . 1 4}$
$y^{3}=x^{4}+3 x^{2}+2 x+1$	213.5	$0.59+\mathbf{0 . 1 2}$	1152.9	$1.41+\mathbf{0 . 1 3}$	5053.9	$4.74+\mathbf{0 . 1 4}$

Running time to compute $L_{p}(C, T)$ in ms for $p \approx N$ for the various algorithms.
The timings were taken on a $3.40 \mathrm{GHz} \operatorname{Intel}(\mathrm{R})$ Xeon(R) E5-2687W CPU.

Sketch of proof of Theorem 1

Recall the factorization

$$
L_{p}(C, T) \equiv g_{p}^{1}(T) \cdot g_{p}^{2}(T) \quad(\bmod p) .
$$

The injection $\mathbb{Z}\left[\zeta_{3}\right] \hookrightarrow \operatorname{End}\left(\operatorname{Jac}(C)_{\overline{\mathbb{Q}}}\right)$ induces a compatible factorization

$$
L_{p}(C, T)=L_{p}^{1}(T) \cdot L_{p}^{2}(T) \quad \text { over } \mathbb{Z}\left[\zeta_{3}\right][T] .
$$

It suffices to determine $L_{p}^{1}(T)=1-a T+b T^{2}-c T^{3}$.

- Since $|a| \leq 3 \sqrt{p}$, a is determined by $g_{p}^{1}(T)$ (for $p \geq 53$). Note that $g_{p}^{1}(T)$ only provides $b(\bmod \pi)$ and $c(\bmod \pi)$.
- One shows $p b=c \bar{a}$. So it suffices to determine c.
- One shows $c=\zeta p \pi$, with $\zeta^{6}=1$. So it suffices to determine ζ.
- Note that

$$
\zeta=\frac{b}{\bar{a} \bar{\pi}} \equiv \frac{b}{\bar{a} \bar{\pi}} \quad(\bmod \pi) \quad \text { This makes sense only if } p \text { ordinary! }
$$

Sketch of proof of Theorem 2

Exercise: Show that if p is in $\mathfrak{I}(C)$, then

$$
L_{p}(C, T)=\left(1+p T^{2}\right)\left(1-t T^{2}+p^{2} T^{4}\right) \quad \text { where }|t| \leq 2 p
$$

Hint: Use that $\# C\left(\mathbb{F}_{p}\right)=p+1$ and $\# C\left(\mathbb{F}_{p^{3}}\right)=p^{3}+1$.
The theorem follows from the facts that:

- A_{p} determines $L_{p}(C, T)$ modulo p.
- the splitting behavior of f modulo p determines $L_{p}(C, T)(\bmod 3)$. (f is related to the 3-torison field of $\operatorname{Jac}(C)$).
- the splitting behavior of ψ_{f} modulo p determines $L_{p}(C, T)(\bmod 2)$. (ψ_{f} is related to the 2-torsion field of $\operatorname{Jac}(C)$).

[^0]: ${ }^{3}$ In the particular case of a Picard curve an algorithm of the same complexity had been implemented by Bauer, Teske, and Weng (2004).

