Computing Zeta functions of Picard curves

Francesc Fité (MIT)

Joint with S. Asif (MIT), D. Pentland (MIT), and A.V. Sutherland (MIT) Based on the article: https://arxiv.org/abs/2010.07247

4/2/2021

Let *C* be a smooth projective curve defined over \mathbb{Q} of genus *g*. Throughout the talk *p* will be a prime of good reduction for *C*. The zeta function of *C* at *p* is

$$Z_{p}(C,T) = \exp\left(\sum_{n=1}^{\infty} \#C(\mathbb{F}_{p^{n}})\frac{T^{n}}{n}\right) \in \mathbb{Q}[[T]].$$

It is shown to be a rational function

$$Z_{\rho}(C,T) = \frac{L_{\rho}(C,T)}{(1-T)(1-\rho T)} \in \mathbb{Q}(T),$$

where $L_p(C, T) \in \mathbb{Z}[T]$ has degree 2*g*.

Computing $L_p(C, T)$ amounts to computing:

$$#C(\mathbb{F}_{\rho}), #C(\mathbb{F}_{\rho^2}), \ldots, #C(\mathbb{F}_{\rho^g}).$$

A problem and its theoretical answers

Problem

- Compute $L_p(C, T)$ for large p.
- Compute $\{L_{\rho}(C, T)\}_{\rho \leq N}$ for some large bound *N*.

Theorem (Schoof–Pila; 1985-1990)

There is an algorithm¹ that computes $L_p(C, T)$ using $\log(p)^{e(g)+o(1)}$ bit operations.

(Adleman–Huang: e(g) has a polynomial growth in g).

Theorem (Harvey; 2015)

There is an algorithm² that computes $\{L_{\rho}(C, T)\}_{p \le N}$ using $N \log(N)^{3+o(1)}$ bit operations.

(Hence "polynomial on average": $log(N)^{4+o(1)}$ operations per prime).

²In fact, it is much more general: It applies to any scheme of finite type over $\mathbb{Z}!$

¹In this talk all algorithms are deterministic.

The computational challenge

We also seek for practical algorithms, i.e:

"able to produce answers when run by real hardware and p, N are, say, $\approx 2^{30}$ in a reasonable amount of time, say, less than a week."

- Practical algorithms are at disposal when $g \leq 2$ (Sutherland).
- Substantial progress has been made for superelliptic curves:

$$C: y^m = f(x)$$
, where $f \in \mathbb{Q}[x]$ is separable.

Indeed:

Arul–Best–Costa–Magner–Triantafillou (2019) compute ³ $L_p(C, T)$ in time $p^{1/2+o(1)}$. Sutherland (2020) computes $\{L_p(C, T)\}_{p \le N}$ modulo p in time $N \log(N)^{3+o(1)}$.

³In the particular case of a Picard curve an algorithm of the same complexity had been implemented by Bauer, Teske, and Weng (2004).

Goal

A Picard curve defined over \mathbb{Q} is a curve *C* given by an affine model

 $y^3 = f(x)$ where $f(x) \in \mathbb{Q}[x]$ is separable of degree 4.

WLOG we will assume $f(x) = x^4 + f_2 x^2 + f_1 x + f_0$ with $f_i \in \mathbb{Z}$. There is a ring homomorphism

$$\mathbb{Z}[\zeta_3] \hookrightarrow \operatorname{End}(\operatorname{Jac}(\mathcal{C})_{\overline{\mathbb{Q}}}).$$

We will say that *C* is generic if $\operatorname{End}(\operatorname{Jac}(C)_{\overline{\mathbb{O}}}) \simeq \mathbb{Z}[\zeta_3]$.

Goal

Describe a practical algorithm that, given a generic Picard curve, computes $\{L_p(C, T)\}_p$ for *almost* every $p \le N$ in time $N \log(N)^{3+o(1)}$.

The Cartier–Manin matrix

The Cartier–Manin matrix at *p* is the matrix A_p of a certain operator C_p acting on $H^0(C_p, \Omega^1_{C_p/\mathbb{F}_p})$ (in the basis dx/y^2 , xdx/y^2 , dx/y). It has the fundamental property:

$$L_{
ho}(C,T) \equiv \det(1 - TA_{
ho}) \pmod{p}.$$

Key point

For
$$p \equiv 1 \pmod{3}$$
, A_p is of the form $\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}$.

So A_p not only gives $L_p(C, T) \pmod{p}$, but a canonical factorization

$$L_{\rho}(C,T) \equiv g_{\rho}^1(T) \cdot g_{\rho}^2(T) \pmod{\rho}.$$

Sutherland (2020) computes $\{A_{\rho}\}_{\rho \leq N}$ in time $N \log(N)^{3+o(1)}$.

First main result

Set the notations:

 $\mathfrak{I}(C)$ for the set of good primes that are inert in $\mathbb{Q}(\zeta_3)$.

 $\mathfrak{S}(C)$ for the set of good primes that split in $\mathbb{Q}(\zeta_3)$.

 $\mathfrak{S}^{\mathrm{ord}}(\mathcal{C})$ for the set of good *ordinary* primes that split in $\mathbb{Q}(\zeta_3)$.

(*p* is called ordinary if *p* does not divide the central coefficient of $L_p(C, T)$).

Theorem 1

Let *C* be a Picard curve over \mathbb{Q} . Then:

For every *p* in $\mathfrak{S}^{\text{ord}}(C)$ at least 53, A_p uniquely determines $L_p(C, T)$. If *C* is generic, then $\mathfrak{S}^{\text{nord}}(C) := \mathfrak{S}(C) - \mathfrak{S}^{\text{ord}}(C)$ has zero density.

Second main result

Attached to $y^3 = f(x)$, with $f(x) = x^4 + f_2 x^2 + f_1 + f_0$, define $\psi_f(x) := x^9 + 24f_2 x^7 - 168f_1 x^6 + (1080f_0 - 78f_2^2)x^5 + 336f_1 f_2 x^4$ $+ (1728f_0 f_2 - 636f_1^2 + 80f_2^3)x^3 + (-864f_0 f_1 - 168f_1 f_2^2)x^2$ $+ (-432f_0^2 + 216f_0 f_2^2 - 120f_1^2 f_2 - 27f_2^4)x - 8f_1^3$.

Key property

The splitting field of $\psi_f(x^3/2)$ is the 2-torsion field of Jac(C).

Theorem 2

Let *C* be a Picard curve over \mathbb{Q} . For every *p* in $\mathfrak{I}(C)$, the knowledge of:

- f having or not a root modulo p;
- $\psi_f(x)$ being irreducible or not modulo p;
- the matrix A_p;

```
uniquely determine L_{\rho}(C, T).
```

A practical algorithm

Corollary

The constructive proofs of the theorems yield a practical algorithm that computes $\{L_p(C, T)\}_{p \leq N, p \notin \mathfrak{S}^{nord}(C)}$ in time $N \log(N)^{3+o(1)}$.

Remarks

One can speed up the ABCMT algorithm by a factor of 8 (for $p \notin \mathfrak{S}^{\text{nord}}$). In practice for $p \in \mathfrak{S}^{\text{nord}}(C)$ one can use the ABCMT algorithm.

For *C* generic, it is conceivable that $\mathfrak{S}^{\text{nord}}(C)$ is so small that this does not affect the complexity of the algorithm

(we were unable to prove that).

Ν	2 ²⁰		2 ²⁴		2 ²⁸	
Algorithm	[ABCMT]	[S]+[AFPS]	[ABCMT]	[S]+[AFPS]	[ABCMT]	[S]+[AFPS]
$y^3 = x^4 + x + 1$	215.1	0.57+ 0.12	1152.7	1.37+ 0.13	5051.4	4.63+ 0.14
$y^3 = x^4 + 3x^2 + 2x + 1$	213.5	0.59+ 0.12	1152.9	1.41+ 0.13	5053.9	4.74+ 0.14

Running time to compute $L_p(C, T)$ in ms for $p \approx N$ for the various algorithms. The timings were taken on a 3.40GHz Intel(R) Xeon(R) E5-2687W CPU.

Sketch of proof of Theorem 1

Recall the factorization

$$L_{\rho}(C,T) \equiv g_{\rho}^{1}(T) \cdot g_{\rho}^{2}(T) \pmod{\rho}.$$

The injection $\mathbb{Z}[\zeta_3] \hookrightarrow \operatorname{End}(\operatorname{Jac}(\mathcal{C})_{\overline{\mathbb{Q}}})$ induces a *compatible* factorization

$$L_p(C,T) = L_p^1(T) \cdot L_p^2(T)$$
 over $\mathbb{Z}[\zeta_3][T]$.

It suffices to determine $L_p^1(T) = 1 - aT + bT^2 - cT^3$.

- Since |a| ≤ 3√p, a is determined by g¹_p(T) (for p ≥ 53).
 Note that g¹_p(T) only provides b (mod π) and c (mod π).
- One shows $pb = c\overline{a}$. So it suffices to determine *c*.
- One shows $c = \zeta p \pi$, with $\zeta^6 = 1$. So it suffices to determine ζ .

Note that

$$\zeta = \frac{b}{\overline{a}\overline{\pi}} \equiv \frac{b}{\overline{a}\overline{\pi}} \pmod{\pi}$$
 (mod π) This makes sense only if *p* ordinary!

Sketch of proof of Theorem 2

Exercise: Show that if p is in $\Im(C)$, then

$$L_{\rho}(C,T) = (1 + \rho T^2)(1 - tT^2 + \rho^2 T^4)$$
 where $|t| \le 2\rho$.

Hint: Use that $\#C(\mathbb{F}_p) = p + 1$ and $\#C(\mathbb{F}_{p^3}) = p^3 + 1$.

The theorem follows from the facts that:

- A_p determines $L_p(C, T)$ modulo p.
- the splitting behavior of f modulo p determines L_p(C, T) (mod 3).
 (f is related to the 3-torison field of Jac(C)).
- the splitting behavior of ψ_f modulo p determines L_p(C, T) (mod 2).
 (ψ_f is related to the 2-torsion field of Jac(C)).