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Let C be a smooth projective curve defined over Q of genus g.
Throughout the talk p will be a prime of good reduction for C.
The zeta function of C at p is

Zp(C,T ) = exp

( ∞∑
n=1

#C(Fpn )
T n

n

)
∈ Q[[T ]] .

It is shown to be a rational function

Zp(C,T ) =
Lp(C,T )

(1− T )(1− pT )
∈ Q(T ) ,

where Lp(C,T ) ∈ Z[T ] has degree 2g.

Computing Lp(C,T ) amounts to computing:

#C(Fp), #C(Fp2), . . . , #C(Fpg ) .
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A problem and its theoretical answers

Problem

Compute Lp(C,T ) for large p.
Compute {Lp(C,T )}p≤N for some large bound N.

Theorem (Schoof–Pila; 1985-1990)
There is an algorithm1 that computes Lp(C,T ) using log(p)e(g)+o(1)

bit operations.
(Adleman–Huang: e(g) has a polynomial growth in g).

Theorem (Harvey; 2015)
There is an algorithm2 that computes {Lp(C,T )}p≤N using N log(N)3+o(1)

bit operations.

(Hence “polynomial on average": log(N)4+o(1) operations per prime).

1In this talk all algorithms are deterministic.
2In fact, it is much more general: It applies to any scheme of finite type over Z!
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The computational challenge
We also seek for practical algorithms, i.e:
“able to produce answers when run by real hardware and p,N are, say,
≈ 230 in a reasonable amount of time, say, less than a week."

Practical algorithms are at disposal when g ≤ 2 (Sutherland).
Substantial progress has been made for superelliptic curves:

C : ym = f (x) , where f ∈ Q[x ] is separable.

Indeed:

Arul–Best–Costa–Magner–Triantafillou (2019)
compute 3 Lp(C,T ) in time p1/2+o(1).

Sutherland (2020)
computes {Lp(C,T )}p≤N modulo p in time N log(N)3+o(1).

3In the particular case of a Picard curve an algorithm of the same complexity had
been implemented by Bauer, Teske, and Weng (2004).
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Goal

A Picard curve defined over Q is a curve C given by an affine model

y3 = f (x) where f (x) ∈ Q[x ] is separable of degree 4.

WLOG we will assume f (x) = x4 + f2x2 + f1x + f0 with fi ∈ Z.

There is a ring homomorphism

Z[ζ3] ↪→ End(Jac(C)Q) .

We will say that C is generic if End(Jac(C)Q) ' Z[ζ3].

Goal
Describe a practical algorithm that, given a generic Picard curve,
computes {Lp(C,T )}p for almost every p ≤ N in time N log(N)3+o(1).
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The Cartier–Manin matrix
The Cartier–Manin matrix at p is the matrix Ap of a certain operator Cp
acting on H0(Cp,Ω

1
Cp/Fp

) (in the basis dx/y2, xdx/y2, dx/y ).

It has the fundamental property:

Lp(C,T ) ≡ det(1− TAp) (mod p) .

Key point

For p ≡ 1 (mod 3), Ap is of the form

∗ ∗ 0
∗ ∗ 0
0 0 ∗

.

So Ap not only gives Lp(C,T ) (mod p), but a canonical factorization

Lp(C,T ) ≡ g1
p(T ) · g2

p(T ) (mod p) .

Sutherland (2020) computes {Ap}p≤N in time N log(N)3+o(1).
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First main result

Set the notations:

I(C) for the set of good primes that are inert in Q(ζ3).
S(C) for the set of good primes that split in Q(ζ3).
Sord(C) for the set of good ordinary primes that split in Q(ζ3).

(p is called ordinary if p does not divide the central coefficient of Lp(C,T )).

Theorem 1
Let C be a Picard curve over Q. Then:
For every p in Sord(C) at least 53, Ap uniquely determines Lp(C,T ).
If C is generic, then Snord(C) := S(C)−Sord(C) has zero density.
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Second main result

Attached to y3 = f (x), with f (x) = x4 + f2x2 + f1 + f0, define

ψf (x) := x9 + 24f2x7 − 168f1x6 + (1080f0 − 78f 2
2 )x5 + 336f1f2x4

+ (1728f0f2 − 636f 2
1 + 80f 3

2 )x3 + (−864f0f1 − 168f1f 2
2 )x2

+ (−432f 2
0 + 216f0f 2

2 − 120f 2
1 f2 − 27f 4

2 )x − 8f 3
1 .

Key property
The splitting field of ψf (x3/2) is the 2-torsion field of Jac(C).

Theorem 2
Let C be a Picard curve over Q. For every p in I(C), the knowledge of:

f having or not a root modulo p;
ψf (x) being irreducible or not modulo p;
the matrix Ap;

uniquely determine Lp(C,T ).
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A practical algorithm

Corollary
The constructive proofs of the theorems yield a practical algorithm that
computes {Lp(C,T )}p≤N,p 6∈Snord(C) in time N log(N)3+o(1).

Remarks
One can speed up the ABCMT algorithm by a factor of 8 (for p 6∈ Snord).
In practice for p ∈ Snord(C) one can use the ABCMT algorithm.
For C generic, it is conceivable that Snord(C) is so small that this does
not affect the complexity of the algorithm
(we were unable to prove that).

N 220 224 228

Algorithm [ABCMT] [S]+[AFPS] [ABCMT] [S]+[AFPS] [ABCMT] [S]+[AFPS]
y3 = x4 + x + 1 215.1 0.57+0.12 1152.7 1.37+0.13 5051.4 4.63+0.14
y3 = x4 + 3x2 + 2x + 1 213.5 0.59+0.12 1152.9 1.41+0.13 5053.9 4.74+0.14

Running time to compute Lp(C, T ) in ms for p ≈ N for the various algorithms.
The timings were taken on a 3.40GHz Intel(R) Xeon(R) E5-2687W CPU.
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Sketch of proof of Theorem 1
Recall the factorization

Lp(C,T ) ≡ g1
p(T ) · g2

p(T ) (mod p) .

The injection Z[ζ3] ↪→ End(Jac(C)Q) induces a compatible factorization

Lp(C,T ) = L1
p(T ) · L2

p(T ) over Z[ζ3][T ] .

It suffices to determine L1
p(T ) = 1− aT + bT 2 − cT 3.

Since |a| ≤ 3
√

p, a is determined by g1
p(T ) (for p ≥ 53).

Note that g1
p(T ) only provides b (mod π) and c (mod π).

One shows pb = ca. So it suffices to determine c.

One shows c = ζpπ, with ζ6 = 1. So it suffices to determine ζ.

Note that

ζ =
b

aπ
≡ b

aπ
(mod π) This makes sense only if p ordinary!
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Sketch of proof of Theorem 2

Exercise: Show that if p is in I(C), then

Lp(C,T ) = (1 + pT 2)(1− tT 2 + p2T 4) where |t | ≤ 2p.

Hint: Use that #C(Fp) = p + 1 and #C(Fp3) = p3 + 1.

The theorem follows from the facts that:

Ap determines Lp(C,T ) modulo p.

the splitting behavior of f modulo p determines Lp(C,T ) (mod 3).
(f is related to the 3-torison field of Jac(C)).

the splitting behavior of ψf modulo p determines Lp(C,T ) (mod 2).
(ψf is related to the 2-torsion field of Jac(C)).
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