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https://arxiv.org/abs/2010.07247

Let C be a smooth projective curve defined over Q of genus g.
Throughout the talk p will be a prime of good reduction for C.
The zeta function of C at p is

Z(C.T) = exp (Z #C(F) T”) cQT]l.

n=1

It is shown to be a rational function
Lp(C, T)

Zy(C, T) = eqQ(T),
where L,(C, T) € Z[T] has degree 2g.
Computing L,(C, T) amounts to computing:

#C(Fp), #C(Fp), ..., #C(Fp).
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A problem and its theoretical answers

Problem

@ Compute Ly(C, T) for large p.
@ Compute {Ly(C, T)}p<n for some large bound N.

Theorem (Schoof-Pila; 1985-1990)

There is an algorithm' that computes L,(C, T) using log(p)é9)+o(1)
bit operations.

(Adleman—Huang: e(g) has a polynomial growth in g).

Theorem (Harvey; 2015)

There is an algorithm? that computes {L,(C, T)},<n using N log(N)3+°()
bit operations.

(Hence “polynomial on average": log(N)*+°(') operations per prime).

'In this talk all algorithms are deterministic.
2|n fact, it is much more general: It applies to any scheme of finite type over Z!
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The computational challenge
We also seek for practical algorithms, i.e:

“able to produce answers when run by real hardware and p, N are, say,
~ 230 in a reasonable amount of time, say, less than a week."

@ Practical algorithms are at disposal when g < 2 (Sutherland).
@ Substantial progress has been made for superelliptic curves:

C:y™=1f(x), where f € Q[x] is separable.

Indeed:

Arul-Best—Costa—Magner—Triantafillou (2019)
compute 2 Lp(C, T) in time p!/2+o(1),

Sutherland (2020)
computes {Lp(C, T)}p<n modulo p in time Nlog(N)3+o(1),

3In the particular case of a Picard curve an algorithm of the same complexity had
been implemented by Bauer, Teske, and Weng (2004).
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Goal

A Picard curve defined over Q is a curve C given by an affine model
y3=1f(x)  where f(x) € Q[x] is separable of degree 4.
WLOG we will assume f(x) = x* + Hhx? + fix + fo with f; € Z.
There is a ring homomorphism
Z[¢3] — End(Jac(C)g) -

We will say that C is generic if End(Jac(C)g) ~ Z[(g].
Goal

Describe a practical algorithm that, given a generic Picard curve,
computes {Lp(C, T)}, for almost every p < N in time N log(N)3+o(1).
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The Cartier—Manin matrix

The Cartier—Manin matrix at p is the matrix A, of a certain operator C,
acting on HO(Cp,pr/Fp) (in the basis dx/y?, xdx/y?, dx/y).
It has the fundamental property:

Lp(C, T) =det(1 — TAp) (mod p).
Key point
x % 0
Forp=1 (mod 3), Apisofthe form [« « 0.
0 0 =

So A, not only gives L,(C, T) (mod p), but a canonical factorization

Lp(C, T) = gp(T) - g5(T) (mod p).

Sutherland (2020) computes {Ap}p<n in time Nlog(N)3+o(1),
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First main result

Set the notations:

J(C) for the set of good primes that are inert in Q(¢3).

S(C) for the set of good primes that split in Q((3).

G&°4(C) for the set of good ordinary primes that split in Q(¢3).

(p is called ordinary if p does not divide the central coefficient of L,(C, T)).
Theorem 1

Let C be a Picard curve over Q. Then:

For every p in &°4(C) at least 53, A, uniquely determines L,(C, T).
If C is generic, then &™(C) := &(C) — &°9(C) has zero density.
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Second main result
Attached to y3 = f(x), with f(x) = x* + Lx? 4 f; + fy, define

Y(x) = x% + 24fx" — 168£ x5 4 (10801, — 78£2)x° + 336 fox*
+ (17281, — 63612 + 80£3)x3 + (—864fyf; — 168f12)x?
+ (—432f2 4 21667 — 120f2f — 27f)x — 8.

Key property

The splitting field of v¢(x3/2) is the 2-torsion field of Jac(C).

Theorem 2

Let C be a Picard curve over Q. For every pin 3(C), the knowledge of:
@ f having or not a root modulo p;
@ v¢(x) being irreducible or not modulo p;
@ the matrix Ap;

uniquely determine Ly(C, T).
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A practical algorithm

Corollary

The constructive proofs of the theorems yield a practical algorithm that
computes {Lp(C, T)} p<n pgemn(cy in time Nlog(N)3+o().

Remarks

One can speed up the ABCMT algorithm by a factor of 8 (for p ¢ G").
In practice for p € &"(C) one can use the ABCMT algorithm.

For C generic, it is conceivable that &"(C) is so small that this does
not affect the complexity of the algorithm

(we were unable to prove that).

N 220 224 228

Algorithm [ABCMT] | [SI+IAFPS] | [ABCMT] | [SI+IAFPS] | [ABCMT] | [SI+[AFPS]
Vo =xF +x+1 215.1 0.57+0.12 1152.7 1.3740.13 5051.4 4.63+0.14
yr=x*+3%+2x+1 | 2135 0.59+0.12 1152.9 1.41+0.13 5053.9 4.74+0.14

Running time to compute Lp(C, T) in ms for p ~ N for the various algorithms.
The timings were taken on a 3.40GHz Intel(R) Xeon(R) E5-2687W CPU.
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Sketch of proof of Theorem 1
Recall the factorization

Lp(C,T) = gp(T) - g5(T) (mod p).
The injection Z[(3] — End(Jac(C)g) induces a compatible factorization
Lp(C,T) = L}(T)- L5(T) over Z[(3][T] -
It suffices to determine Ly(T) =1—aT +bT? — cT°.
@ Since |a| < 3/p, ais determined by g;(T) (for p > 53).
Note that g;,(T) only provides b (mod 7) and ¢ (mod 7).
@ One shows pb = ca. So it suffices to determine c.
@ One shows ¢ = (pr, with ¢® = 1. So it suffices to determine .
@ Note that
b b
(=—==—

—=—(mod ) This makes sense only if p ordinary!
am am
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Sketch of proof of Theorem 2

Exercise: Show that if p is in 3(C), then

Lo(C, T)=(1+pT?)(1 -T2+ p?T*)  where |t| < 2p.
Hint: Use that #C(Fp) = p+ 1 and #C(Fs) = p° + 1.
The theorem follows from the facts that:

@ A, determines L,(C, T) modulo p.

@ the splitting behavior of f modulo p determines L,(C, T) (mod 3).
(f is related to the 3-torison field of Jac(C)).

@ the splitting behavior of 1)y modulo p determines L,(C, T) (mod 2).
(¢ is related to the 2-torsion field of Jac(C)).
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