Ordinary primes for some abelian varieties with extra endomorphisms

Francesc Fité ${ }^{1}$ (MIT)

Based on the preprint https://arxiv.org/abs/2005.10185
Conference: Around Frobenius distributions and related topics Organizers: Victoria Cantoral and Seoyoung Kim

Date: 5/23/2020

[^0]
Notation

- k a number field.
- A an abelian variety defined over k of dimension $g \geq 1$.
- For a rational prime ℓ, let

$$
T_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_{\ell}^{2 g}, \quad V_{\ell}(A):=T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}
$$

Notation

- k a number field.
- A an abelian variety defined over k of dimension $g \geq 1$.
- For a rational prime ℓ, let

$$
T_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_{\ell}^{2 g}, \quad V_{\ell}(A):=T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} .
$$

- Let \mathfrak{p} be a "prime of k " of good reduction for A. We will denote by:
- $A_{\mathfrak{p}}$ the reduction of A modulo \mathfrak{p}.
- $P_{\mathfrak{p}}(A, T)$ the charpoly of Frob $_{\mathfrak{p}}$ acting on $V_{\ell}(A)$ (for $\mathfrak{p} \nmid \ell$).
(It has degree $2 g$, integral coefficients, and is independent on ℓ).
- $u_{p}(A)$ the number of roots of $P_{p}(A, T)$ in $\overline{\mathbb{Z}}_{p}$ which are p-adic units.
(As $\alpha_{\mathfrak{p}} \cdot \bar{\alpha}_{\mathfrak{p}}=\operatorname{Nm}(\mathfrak{p})$ for any root $\alpha_{\mathfrak{p}}$, we have $0 \leq u_{\mathfrak{p}}(A) \leq g$.)

Newton polygons

- Let $P(T)=a_{0} T^{n}+a_{1} T^{n-1}+\cdots++a_{n} \in \mathbb{Q}_{p}[T]$ with $a_{0}, a_{n} \neq 0$.
- Let v denote the extension to $\overline{\mathbb{Q}}_{p}$ of the p-adic valuation.
- The Newton polygon of $P(T)$ is the lower convex hull of the set

$$
\left\{\left(i, v\left(a_{i}\right)\right): i=0, \ldots, n\right\} .
$$

Newton polygons

- Let $P(T)=a_{0} T^{n}+a_{1} T^{n-1}+\cdots++a_{n} \in \mathbb{Q}_{p}[T]$ with $a_{0}, a_{n} \neq 0$.
- Let v denote the extension to $\overline{\mathbb{Q}}_{p}$ of the p-adic valuation.
- The Newton polygon of $P(T)$ is the lower convex hull of the set

$$
\left\{\left(i, v\left(a_{i}\right)\right): i=0, \ldots, n\right\}
$$

- For $s \in \mathbb{Q}$, the Newton polygon satisfies:
x-length of the segment of slope $s=$ \#roots of $P(T)$ of valuation s.

Newton polygons for abelian varieties

- $P_{\mathfrak{p}}(A, T)=a_{0} T^{2 g}+a_{1} T^{2 g-1}+\cdots+a_{2 g-1} T+a_{2 g}$ satisfies:

$$
a_{0}=1, \quad a_{2 g}=\mathrm{Nm}(\mathfrak{p})^{g}, \quad v\left(a_{i}\right) \geq 0, \quad v\left(a_{g+i}\right)=v\left(a_{g-i} \operatorname{Nm}(\mathfrak{p})^{i}\right) \geq i
$$

(v is normalized so that $v(\operatorname{Nm}(\mathfrak{p}))=1)$.

- $u_{\mathfrak{p}}(A)=$ number of roots of $P_{\mathfrak{p}}(A, T)$ of valuation 0 .
- The Newton polygon of $P_{\mathfrak{p}}(A, T)$ looks like:

Ordinary primes

Definition/Proposition

\mathfrak{p} is ordinary for A if any of the following equivalent conditions hold:

- $A_{p}[p]\left(\bar{F}_{p}\right)$ has cardinality p^{g}.
- $u_{p}(A)=g$.
- The central coefficient a_{g} of $P_{\mathfrak{p}}(A, T)$ is not divisible by p.
- The Newton polygon of $P_{\mathfrak{p}}(A, T)$ looks like:

The conjecture

- Let $\mathrm{P}_{\text {ord }}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A / k, the set $\mathrm{P}_{\text {ord }}(A)$ has a nonzero density.

The conjecture

- Let $\mathrm{P}_{\text {ord }}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A / k, the set $\mathrm{P}_{\text {ord }}(A)$ has a nonzero density.

- Suppose \mathfrak{p} is of absolute residue degree 1 (i.e., $\operatorname{Nm}(\mathfrak{p})=p$ is prime).
- If A is an elliptic curve, then $\left|a_{1}\right| \leq 2 \sqrt{p}$ and thus

$$
p \mid a_{1} \Rightarrow a_{1}=0 \quad \text { if } p \geq 5
$$

- If A is an abelian surface, then $-2 p \leq a_{2}<6 p$ and thus

$$
p \mid a_{2} \Rightarrow a_{2}=-2 p,-p, 0, p, \ldots, 5 p
$$

The conjecture

- Let $\mathrm{P}_{\text {ord }}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A / k, the set $\mathrm{P}_{\text {ord }}(A)$ has a nonzero density.

- Suppose \mathfrak{p} is of absolute residue degree 1 (i.e., $\operatorname{Nm}(\mathfrak{p})=p$ is prime).
- If A is an elliptic curve, then $\left|a_{1}\right| \leq 2 \sqrt{p}$ and thus

$$
p \mid a_{1} \Rightarrow a_{1}=0 \quad \text { if } p \geq 5
$$

- If A is an abelian surface, then $-2 p \leq a_{2}<6 p$ and thus

$$
p \mid a_{2} \Rightarrow a_{2}=-2 p,-p, 0, p, \ldots, 5 p
$$

- The number of values of a_{g} for which \mathfrak{p} can fail to be ordinary for A :
- Stays bounded as p grows if $g \leq 2$.
- Grows arbitrarily large if $g \geq 3$.

Ordinary primes in context

- The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).

Ordinary primes in context

- The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).
- The notion of "ordinary" appears in:
- The construction of p-adic L-functions.
- The construction of p-adic families (Hida theory).

Ordinary primes in context

- The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).
- The notion of "ordinary" appears in:
- The construction of p-adic L-functions.
- The construction of p-adic families (Hida theory).
- The abundance of ordinary primes for an abelian surface is a technical assumption in an automorphic lifting theorem of Boxer-Calegari-Gee-Pilloni.
(This ALT leads to the meromorphicity of the Hasse-Weil L-function of a generic abelian surface defined over a totally real field).
- The abundance of ordinary primes can be used to establish the average running time of modulo p point counting algorithms for curves C over number fields.
(First compute $P_{\mathfrak{p}}(\operatorname{Jac}(C), T)(\bmod p)$. Then find the lift to $\left.\mathbb{Z}[T]\right)$.

Results for $g \leq 2$

Theorem (Serre; 1981)
Let A / k be an elliptic curve. Then $\mathrm{P}_{\text {ord }}(A)$ has density:

- 1 if $A_{\mathbb{Q}}$ does no have CM.
- $\frac{1}{[k F: k]}$ if $A_{\bar{Q}}$ has CM by an imaginary quadratic field F.

In particular, $\mathrm{P}_{\text {ord }}(A)$ has density 1 or $1 / 2$.

Results for $g \leq 2$

Theorem (Serre; 1981)

Let A / k be an elliptic curve. Then $\mathrm{P}_{\text {ord }}(A)$ has density:

- 1 if $A_{\mathbb{Q}}$ does no have CM.
- $\frac{1}{[k F: k]}$ if $A_{\bar{Q}}$ has CM by an imaginary quadratic field F.

In particular, $\mathrm{P}_{\text {ord }}(A)$ has density 1 or $1 / 2$.

Theorem (Sawin; 2016)

Let A / k be an abelian surface. Then $\mathrm{P}_{\text {ord }}(A)$ has density:

- 1 if no $\overline{\mathbb{Q}}$-isogeny factor of A has CM.
- $\frac{1}{\left[K F^{*}: k\right]}$ if $A_{\mathbb{Q}}$ has CM by a quartic CM field F.
- $\frac{1}{\left[k F_{1} F_{2}: k\right]}$ if $A_{\bar{Q}} \sim E_{1} \times E_{2}$, at least one E_{i} is $C M$, and $F_{i}=\operatorname{End}\left(E_{i}\right) \otimes \mathbb{Q}$.

In particular, $\mathrm{P}_{\text {ord }}(A)$ has density $1,1 / 2$, or $1 / 4$.

Idea behind the proof

Theorem (Serre; 1981)

Let A / k be an elliptic curve. Then $\mathrm{P}_{\text {ord }}(A)$ has density:

- 1 if $A_{\overline{\mathbb{Q}}}$ does no have CM.
- $\frac{1}{[k F: k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by an imaginary quadratic field F.

In particular, $\mathrm{P}_{\text {ord }}(A)$ has density 1 or $1 / 2$.

- Consider the ℓ-adic representation $\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right)$.
- Let G_{ℓ} be the Zariski closure of the image of $\varrho_{A, \ell}$.
- Then Serre shows:
$\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)=1-\frac{\text { \#conn. comp. of } G_{\ell} \text { on which } \operatorname{Tr}\left(\varrho_{A, \ell}\right) \equiv 0}{\# \text { conn. comp. of } G_{\ell}}$.

Idea behind the proof

Theorem (Sawin; 2016)

Let A / k be an abelian surface. Then $\mathrm{P}_{\text {ord }}(A)$ has density:

- 1 if no $\overline{\mathbb{Q}}$-isogeny factor of A has CM.
- $\frac{1}{\left[k F^{*}: k\right]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by a quartic CM field F.
- $\frac{1}{\left[k F_{1} F_{2}: k\right]}$ if $A_{\overline{\mathbb{Q}}} \sim E_{1} \times E_{2}$, one of the E_{i} is CM , and $F_{i}=\operatorname{End}\left(E_{i}\right) \otimes \mathbb{Q}$. In particular, $\mathrm{P}_{\text {ord }}(A)$ has density $1,1 / 2$, or $1 / 4$.
- Let $\chi_{\ell}: G_{k} \rightarrow \mathbb{Q}_{\ell}^{\times}$be the ℓ-adic cyclotomic character.
- Sawin shows:
$\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)=1-\frac{\text { \#conn. comp. of } G_{\ell} \text { on which } \operatorname{Tr}\left(\wedge^{2} \varrho_{A, \ell} \otimes \chi_{\ell}^{-1}\right) \equiv \text { const. }}{\# \text { conn. comp. of } G_{\ell}}$. In fact, here "const." means -2,-1,0,1,2.

The ℓ-adic method of Katz, Ogus, and Serre

- E a number field.
- λ a prime of E lying above ℓ.
- S a finite set of places of k.
- Let $\varrho: G_{k} \rightarrow \operatorname{Aut}\left(E_{\lambda}^{d}\right)$ a d-dim. cont. rep. unramified outside S.

The ℓ-adic method of Katz, Ogus, and Serre

- E a number field.
- λ a prime of E lying above ℓ.
- S a finite set of places of k.
- Let $\varrho: G_{k} \rightarrow \operatorname{Aut}\left(E_{\lambda}^{d}\right)$ a d-dim. cont. rep. unramified outside S.
- We say that ϱ is:
- \mathcal{O}_{E}-integral if CharPoly $\left(\varrho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$ lies in $E[T] \subseteq E_{\lambda}[T]$ for all $\mathfrak{p} \notin S$.
- of weight w if it is integral and every root of $\operatorname{CharPoly}\left(\varrho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$ is a $\operatorname{Nm}(\mathfrak{p})^{w}$-Weil number for all $\mathfrak{p} \notin S$.
(Recall: $\alpha \in \overline{\mathbb{Q}}$ is a q-Weil number if $|\iota(\alpha)|=\sqrt{q}$ for all $\iota: \mathbb{Q}(\alpha) \hookrightarrow \mathbb{C})$.

The ℓ-adic method of Katz, Ogus, and Serre

Proposition (Katz)

Suppose that ϱ is \mathcal{O}_{E}-integral of weight 1 . There exists a finite extension k^{\prime} / k and a set R of primes of k^{\prime} such that:

- Every \mathfrak{p} in R is of absolute residue degree $1($ write $\operatorname{Nm}(\mathfrak{p})=p)$.
- $p \nmid \operatorname{Tr}\left(\varrho\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
- R has density 1 .

The ℓ-adic method of Katz, Ogus, and Serre

Proposition (Katz)

Suppose that ϱ is \mathcal{O}_{E}-integral of weight 1 . There exists a finite extension k^{\prime} / k and a set R of primes of k^{\prime} such that:

- Every \mathfrak{p} in R is of absolute residue degree $1($ write $\operatorname{Nm}(\mathfrak{p})=p)$.
- $p \nmid \operatorname{Tr}\left(\varrho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
- R has density 1 .

Proposition (Ogus $+\varepsilon$)

Suppose that ϱ is \mathcal{O}_{E}-integral of weight 1 and $d=\operatorname{dim}(\varrho) \geq 3$. There exists a finite extension k^{\prime} / k and a set R of primes of k^{\prime} such that:

- Every \mathfrak{p} in R is of absolute residue degree 1 (write $\operatorname{Nm}(\mathfrak{p})=p$).
- $p \nmid \operatorname{Tr}\left(\wedge^{2} \varrho\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
- R has density 1 .

The conjecture for elliptic curves and abelian surfaces

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an elliptic curve.

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an abelian surface.

The conjecture for elliptic curves and abelian surfaces

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an elliptic curve.
Katz' proposition applied to $\varrho=\varrho_{A, \ell} \Rightarrow \operatorname{Dens}\left(\mathrm{P}_{\text {ord }}\left(A_{K^{\prime}}\right)\right)=1$ for some finite $k^{\prime} / k \Rightarrow \underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an abelian surface.
Apply Ogus' proposition to $\varrho=\varrho_{A, \ell}$, which has dimension ≥ 3.

The conjecture for elliptic curves and abelian surfaces

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an elliptic curve.
Katz' proposition applied to $\varrho=\varrho_{A, \ell} \Rightarrow \operatorname{Dens}\left(\mathrm{P}_{\text {ord }}\left(A_{K^{\prime}}\right)\right)=1$ for some finite $k^{\prime} / k \Rightarrow \underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

Corollary

Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A / k is an abelian surface.
Apply Ogus' proposition to $\varrho=\varrho_{A, \ell}$, which has dimension ≥ 3.

Remark

What is known about $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ in higher dimension?

- Partial results by Suh when A is a Hilbert-Blumenthal ab. var.
- Known when $\operatorname{End}\left(A_{\bar{Q}}\right)=\mathbb{Z}$ and $\operatorname{MT}(A)$ is "small", by Pink.
- Known if A has potential CM.

Proposition (Katz)

If ϱ is of weight 1 , then there is a finite k^{\prime} / k and a set R of primes of k^{\prime} s.t.:
(1) Every \mathfrak{p} in R is of absolute residue degree 1 (write $\operatorname{Nm}(\mathfrak{p})=p$).
(2) $p \nmid \operatorname{Tr}\left(\varrho\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
(3) R has density 1 .

Proposition (Katz)

If ϱ is of weight 1 , then there is a finite k^{\prime} / k and a set R of primes of k^{\prime} s.t.:
(1) Every \mathfrak{p} in R is of absolute residue degree 1 (write $\operatorname{Nm}(\mathfrak{p})=p$).
(2) $p \nmid \operatorname{Tr}\left(\varrho\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
(3) R has density 1 .

- May assume $\varrho: G_{k} \rightarrow \operatorname{Aut}\left(\mathcal{O}_{E_{\lambda}}^{d}\right)$.
- Let n be such that $\lambda^{n} \nmid d$ and let ϱ be the reduction of $\varrho\left(\bmod \lambda^{n}\right)$.
- Choose k^{\prime} / k finite such that $\left.\bar{\varrho}\right|_{k_{k^{\prime}}}=1$.
- $R=$ primes of k^{\prime} of abs. res. degree 1 , of good red for A, not above ℓ, and $>d^{2}$. Claim: Any \mathfrak{p} in R satisfies (2).

Proposition (Katz)

If ϱ is of weight 1 , then there is a finite k^{\prime} / k and a set R of primes of k^{\prime} s.t.:
(1) Every \mathfrak{p} in R is of absolute residue degree 1 (write $\operatorname{Nm}(\mathfrak{p})=p$).
(2) $p \nmid \operatorname{Tr}\left(\varrho\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ for every \mathfrak{p} in R.
(3) R has density 1 .

- May assume $\varrho: G_{k} \rightarrow \operatorname{Aut}\left(\mathcal{O}_{E_{\lambda}}^{d}\right)$.
- Let n be such that $\lambda^{n} \nmid d$ and let ϱ be the reduction of $\varrho\left(\bmod \lambda^{n}\right)$.
- Choose k^{\prime} / k finite such that $\left.\bar{\varrho}\right|_{G_{k^{\prime}}}=1$.
- $R=$ primes of k^{\prime} of abs. res. degree 1 , of good red for A, not above ℓ, and $>d^{2}$. Claim: Any \mathfrak{p} in R satisfies (2).
- Then $a_{\mathfrak{p}}:=\operatorname{Tr}\left(\varrho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right) \equiv d\left(\bmod \lambda^{n}\right)$ and in particular $a_{\mathfrak{p}} \neq 0$.
- If $a_{\mathfrak{p}}=p b_{\mathfrak{p}}$ for some $b_{\mathfrak{p}} \in \mathcal{O}_{E}$, then

$$
\left|\operatorname{Nm}_{E / \mathbb{Q}}\left(b_{\mathfrak{p}}\right)\right|=\frac{\left|\operatorname{Nm}_{E / \mathbb{Q}}\left(a_{\mathfrak{p}}\right)\right|}{p^{[E: \mathbb{Q}]}}=\left(\frac{d}{\sqrt{p}}\right)^{[E: \mathbb{Q}]}<1
$$

λ-adic representations attached to abelian varieties

- Suppose that A / k is such that:

$$
E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

- We will consider

$$
V_{\lambda}(A):=V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text { w.r.t } \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda^{\prime} \mid \ell} E_{\lambda^{\prime}} \rightarrow E_{\lambda}
$$

- $V_{\lambda}(A)$ has dimension $2 g /[E: \mathbb{Q}]$ over E_{λ}.

λ-adic representations attached to abelian varieties

- Suppose that A / k is such that:

$$
E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

- We will consider

$$
V_{\lambda}(A):=V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text { w.r.t } \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda^{\prime} \mid \ell} E_{\lambda^{\prime}} \rightarrow E_{\lambda} .
$$

- $V_{\lambda}(A)$ has dimension $2 g /[E: \mathbb{Q}]$ over E_{λ}.
- This gives rise to the λ-adic representation attached to A

$$
\varrho_{A, \lambda}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\lambda}(A)\right) .
$$

- It is \mathcal{O}_{E}-integral, of weight 1 , and $V_{\ell}(A) \simeq \bigoplus_{\lambda \mid \ell} V_{\lambda}(A)$.

λ-adic representations attached to abelian varieties

- Suppose that A / k is such that:

$$
E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

- We will consider

$$
V_{\lambda}(A):=V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text { w.r.t } \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda^{\prime} \mid \ell} E_{\lambda^{\prime}} \rightarrow E_{\lambda}
$$

- $V_{\lambda}(A)$ has dimension $2 g /[E: \mathbb{Q}]$ over E_{λ}.
- This gives rise to the λ-adic representation attached to A

$$
\varrho_{A, \lambda}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\lambda}(A)\right) .
$$

- It is \mathcal{O}_{E}-integral, of weight 1 , and $V_{\ell}(A) \simeq \bigoplus_{\lambda \mid \ell} V_{\lambda}(A)$.
- $S=$ finite set containing the primes of bad reduction for A.
- For \mathfrak{p} outside S_{ℓ}, set $P_{\mathfrak{p}}\left(V_{\lambda}(A), T\right):=\operatorname{CharPoly}\left(\varrho_{A, \lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$.
- $P_{\mathfrak{p}}(A, T)=\prod_{\lambda \mid \ell} P_{\mathfrak{p}}\left(V_{\lambda}(A), T\right)$.

Corollary

If A has potential CM, then $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

Corollary

If A has potential CM, then $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- There exists E with $[E: \mathbb{Q}]=2 g$ such that

$$
E \hookrightarrow \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} .
$$

- WLOG, we may assume that $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$.
- Let \mathfrak{p} be of abs. deg. 1 and totally split in E. Claim: it is ordinary.

Corollary

If A has potential CM, then $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- There exists E with $[E: \mathbb{Q}]=2 g$ such that

$$
E \hookrightarrow \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} .
$$

- WLOG, we may assume that $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$.
- Let \mathfrak{p} be of abs. deg. 1 and totally split in E. Claim: it is ordinary.
- Choose ℓ totally split in E, so that $V_{\lambda}(A)$ has dimension 1 over \mathbb{Q}_{ℓ}.
- The roots of $P_{\mathfrak{p}}(A, T)$ are $a_{\lambda, \mathfrak{p}}=\varrho_{A, \lambda}\left(\right.$ Frob $\left._{\mathfrak{p}}\right) \in \mathcal{O}_{E}$ for $\lambda \mid \ell$.
- By Weil's theorem:

$$
a_{\lambda, \mathfrak{p}} \cdot a_{\lambda, \mathfrak{p}}=p=\operatorname{Nm}(\mathfrak{p})
$$

- As $a_{\lambda, \mathfrak{p}}, a_{\bar{\lambda}, \mathfrak{p}} \in \mathcal{O}_{E}$, we have $\left\{v\left(a_{\lambda, \mathfrak{p}}\right), v\left(a_{\bar{\lambda}, \mathfrak{p}}\right)\right\}=\{0,1\}$. (v an extension to $\overline{\mathbb{Z}}$ of the \mathfrak{P}-adic valuation for some $\mathfrak{P} \mid p$ of E).

New results in dimension 3

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{\Phi}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

Theorem 2 (F.)

Let A / k be an abelian threefold for which there exists F / k such that:

- $\operatorname{End}\left(A_{F}\right) \otimes \mathbb{Q}$ contains a totally real cubic field E.
- F does not contain E.

Then $\underline{\operatorname{Dens}(}(\operatorname{Pord}(A))>0$.

New results in dimension 3

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\operatorname{Dens}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- It applies to the Jacobian of a Picard curve:

$$
y^{3}=f(x), \quad \text { for some separable } f(x) \in k[x] \text { of degree } 4 .
$$

Theorem 2 (F.)

Let A / k be an abelian threefold for which there exists F / k such that:

- $\operatorname{End}\left(A_{F}\right) \otimes \mathbb{Q}$ contains a totally real cubic field E.
- F does not contain E.

Then $\underline{\operatorname{Dens}(}(\operatorname{Pord}(A))>0$.

- Let f be a classical newform of weight 2 and cubic coefficient field. The Thm. applies to the A_{f} / \mathbb{Q} attached to f by Eichler-Shimura.

Theorem 3 (F.)

Let A / k be an abelian fourfold such that:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field E.
- The pair (E, A) has signature $(2,2)$.

Then Dens $(\operatorname{Pord}(A))>0$.

Theorem 3 (F.)

Let A / k be an abelian fourfold such that:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field E.
- The pair (E, A) has signature $(2,2)$.

Then Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- The signature of (E, A) is the tuple $\left(r_{\tau}\right)_{\tau: E \hookrightarrow \mathbb{C}}$ defined by:

$$
r_{\tau}=\operatorname{dim}_{\mathbb{C}}\left(H^{0}\left(A_{\mathbb{C}}, \Omega_{A_{\mathbb{C}} / \mathbb{C}}^{1}\right) \otimes_{E \otimes \mathbb{C}, \tau} \mathbb{C}\right),
$$

"the multiplicity of the action of E on $H^{0}\left(A_{\mathbb{C}}, \Omega_{A_{\mathrm{C}} / \mathbb{C}}^{1}\right)$ via τ ".

Theorem 3 (F.)

Let A / k be an abelian fourfold such that:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field E.
- The pair (E, A) has signature $(2,2)$.

Then $\operatorname{Dens}(\operatorname{Pordr}(A))>0$.

- The signature of (E, A) is the tuple $\left(r_{\tau}\right)_{\tau: E \hookrightarrow \mathbb{C}}$ defined by:

$$
r_{\tau}=\operatorname{dim}_{\mathbb{C}}\left(H^{0}\left(A_{\mathbb{C}}, \Omega_{A_{\mathbb{C}} / \mathbb{C}}^{1}\right) \otimes_{E \otimes \mathbb{C}, \tau} \mathbb{C}\right),
$$

"the multiplicity of the action of E on $H^{0}\left(A_{\mathbb{C}}, \Omega_{A_{C} / \mathbb{C}}^{1}\right)$ via τ ".

- The theorem applies when:
- $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}=E$ and the signature is $(2,2)(A$ is of Albert type IV).
- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is a quaternion algebra (i.e. A has Albert type II or III). That is, A is a so-called "fake abelian surface".

Proof of Theorem 1

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

Proof of Theorem 1

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{\varnothing}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- WLOG, we may assume $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\bar{\lambda}}(A)$.
- By Ogus' proposition, there exist k^{\prime} / k and a set of primes R s.t.:

$$
p:=\operatorname{Nm}(\mathfrak{p}) \nmid b_{p, \lambda}:=\operatorname{Tr}\left(\wedge^{2} \varrho_{A, \lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right), \forall \mathfrak{p} \in R \quad \text { and } \quad \operatorname{Dens}(R)=1 .
$$

- WLOG, we may assume $k=k^{\prime}$. Claim: Every \mathfrak{p} in R is ordinary.

Proof of Theorem 1

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- WLOG, we may assume $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\lambda}(A)$.
- By Ogus' proposition, there exist k^{\prime} / k and a set of primes R s.t.:

$$
p:=\operatorname{Nm}(\mathfrak{p}) \nmid b_{p, \lambda}:=\operatorname{Tr}\left(\wedge^{2} \varrho_{A, \lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right), \forall \mathfrak{p} \in R \quad \text { and } \quad \operatorname{Dens}(R)=1 .
$$

- WLOG, we may assume $k=k^{\prime}$. Claim: Every \mathfrak{p} in R is ordinary.
- Let v be an ext. to $\overline{\mathbb{Z}}_{p}$ of the \mathfrak{P}-adic valuation for some $\mathfrak{P} \mid p$ of E.
- One among $v\left(b_{p, \lambda}\right)$ and $v\left(b_{p, \lambda}\right)$ must be 0 .
- Let α, β, γ be the roots of $P_{p}\left(V_{\lambda}(A), T\right)$.
- We may assume that $v(\alpha), v(\beta), v(\gamma)$ is $0,0,1$.

Proof of Theorem 1

Theorem 1 (F.)

Let A / k be an abelian threefold such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then Dens $\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- WLOG, we may assume $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\bar{\lambda}}(A)$.
- By Ogus' proposition, there exist k^{\prime} / k and a set of primes R s.t.:

$$
p:=\operatorname{Nm}(\mathfrak{p}) \nmid b_{p, \lambda}:=\operatorname{Tr}\left(\wedge^{2} \varrho_{A, \lambda}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right), \forall \mathfrak{p} \in R \quad \text { and } \quad \operatorname{Dens}(R)=1 .
$$

- WLOG, we may assume $k=k^{\prime}$. Claim: Every \mathfrak{p} in R is ordinary.
- Let v be an ext. to $\overline{\mathbb{Z}}_{p}$ of the \mathfrak{P}-adic valuation for some $\mathfrak{P} \mid p$ of E.
- One among $v\left(b_{p, \lambda}\right)$ and $v\left(b_{\mathrm{p}, \bar{\lambda}}\right)$ must be 0 .
- Let α, β, γ be the roots of $P_{p}\left(V_{\lambda}(A), T\right)$.
- We may assume that $v(\alpha), v(\beta), v(\gamma)$ is $0,0,1$.
- Note that the roots of $P_{p}\left(V_{\bar{\lambda}}(A), T\right)$ are $p / \alpha, p / \beta, p / \gamma$.

A mild generalization

Let A / k be such that $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ contains a simple \mathbb{Q}-algebra D.
Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A / k be as above. If K is imaginary quadratic and either:
(1) $t=g / 2$ and $g \mid 4$; or
(2) $t=g / 3$ and $g \mid 9$; or
(3) $t=g / 4$ and $g \mid 16$ and (A, K) has signature $(g / 2, g / 2)$;

Then $\underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

A mild generalization

Let A / k be such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains a simple \mathbb{Q}-algebra D.
Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A / k be as above. If K is imaginary quadratic and either:
(1) $t=g / 2$ and $g \mid 4$; or
(2) $t=g / 3$ and $g \mid 9$; or
(3) $t=g / 4$ and $g \mid 16$ and (A, K) has signature $(g / 2, g / 2)$;

Then $\underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- Even if A may be absolutely simple, after enlarging k, one has:

$$
P_{\mathfrak{p}}(A, T)=(Q(T) \cdot \overline{Q(T)})^{t}, \quad \text { where } Q(T) \in \mathcal{O}_{K}[T]
$$

- The proof then reduces to $\left\{\begin{array}{l}\text { the case of abelian surfaces } \\ \text { the situation of Theorem } 1 \\ \text { the situation of Theorem } 3\end{array}\right.$
(1).
(2).
(3).

A mild generalization

Let A / k be such that $\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{Q}$ contains a simple \mathbb{Q}-algebra D.
Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A / k be as above. If K is imaginary quadratic and either:
(1) $t=g / 2$ and $g \mid 4$; or
(2) $t=g / 3$ and $g \mid 9$; or
(3) $t=g / 4$ and $g \mid 16$ and (A, K) has signature $(g / 2, g / 2)$;

Then $\underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$.

- Even if A may be absolutely simple, after enlarging k, one has:

$$
P_{\mathfrak{p}}(A, T)=(Q(T) \cdot \overline{Q(T)})^{t}, \quad \text { where } Q(T) \in \mathcal{O}_{K}[T]
$$

$\{$ the case of abelian surfaces (1).

- The proof then reduces to $\{$ the situation of Theorem 1 (2). the situation of Theorem 3 (3).
- Alternative proof that $\underline{\operatorname{Dens}}\left(\mathrm{P}_{\text {ord }}(A)\right)>0$ if A is a "fake abelian surface".

Thank you for your attention!

[^0]: ${ }^{1}$ Funded by the Simons Foundation grant 550033.

