Ordinary primes for some abelian varieties with extra endomorphisms

Francesc Fité¹ (MIT)

Based on the preprint https://arxiv.org/abs/2005.10185

Conference: Around Frobenius distributions and related topics Organizers: Victoria Cantoral and Seoyoung Kim Date: 5/23/2020

¹Funded by the Simons Foundation grant 550033.

Notation

- k a number field.
- A an abelian variety defined over k of dimension $g \ge 1$.
- For a rational prime $\ell,$ let

$$\mathcal{T}_\ell(\mathcal{A}) := \lim_{\leftarrow} \, \mathcal{A}[\ell^n](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_\ell^{2g} \,, \qquad \mathcal{V}_\ell(\mathcal{A}) := \mathcal{T}_\ell(\mathcal{A}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell \,.$$

Notation

- k a number field.
- A an abelian variety defined over k of dimension $g \ge 1$.
- For a rational prime ℓ, let

$$\mathcal{T}_\ell(\mathcal{A}) := \lim_{\leftarrow} \, \mathcal{A}[\ell^n](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_\ell^{2g} \,, \qquad \mathcal{V}_\ell(\mathcal{A}) := \mathcal{T}_\ell(\mathcal{A}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell \,.$$

• Let p be a "prime of k" of good reduction for A. We will denote by:

- A_p the reduction of A modulo p.
- *P*_p(*A*, *T*) the charpoly of Frob_p acting on *V*_ℓ(*A*) (for p ∤ ℓ).
 (It has degree 2*g*, integral coefficients, and is independent on ℓ).
- *u*_p(*A*) the number of roots of *P*_p(*A*, *T*) in ^Z_p which are *p*-adic units. (As α_p · α_p = Nm(p) for any root α_p, we have 0 ≤ *u*_p(*A*) ≤ *g*.)

Newton polygons

- Let $P(T) = a_0 T^n + a_1 T^{n-1} + \dots + a_n \in \mathbb{Q}_p[T]$ with $a_0, a_n \neq 0$.
- Let *v* denote the extension to $\overline{\mathbb{Q}}_p$ of the *p*-adic valuation.
- The Newton polygon of P(T) is the lower convex hull of the set

$$\{(i, v(a_i)) : i = 0, \ldots, n\}.$$

Newton polygons

- Let $P(T) = a_0 T^n + a_1 T^{n-1} + \dots + a_n \in \mathbb{Q}_p[T]$ with $a_0, a_n \neq 0$.
- Let v denote the extension to $\overline{\mathbb{Q}}_p$ of the p-adic valuation.
- The Newton polygon of P(T) is the lower convex hull of the set

$$\{(i, v(a_i)) : i = 0, \ldots, n\}.$$

• For $s \in \mathbb{Q}$, the Newton polygon satisfies:

x-length of the segment of slope s = #roots of P(T) of valuation s.

Francesc Fité (MIT)

Newton polygons for abelian varieties

• $P_{\mathfrak{p}}(A, T) = a_0 T^{2g} + a_1 T^{2g-1} + \dots + a_{2g-1} T + a_{2g}$ satisfies:

$$a_0 = 1$$
, $a_{2g} = \operatorname{Nm}(\mathfrak{p})^g$, $v(a_i) \ge 0$, $v(a_{g+i}) = v(a_{g-i}\operatorname{Nm}(\mathfrak{p})^i) \ge i$.
(*v* is normalized so that $v(\operatorname{Nm}(\mathfrak{p})) = 1$).

- $u_{p}(A) =$ number of roots of $P_{p}(A, T)$ of valuation 0.
- The Newton polygon of $P_{\mathfrak{p}}(A, T)$ looks like:

Francesc Fité (MIT)

Ordinary primes

Ordinary primes

Definition/Proposition

p is ordinary for A if any of the following equivalent conditions hold:

- $A_{\mathfrak{p}}[p](\overline{\mathbb{F}}_{\rho})$ has cardinality p^{g} .
- $u_{\mathfrak{p}}(A) = g$.
- The central coefficient a_g of $P_p(A, T)$ is not divisible by p.
- The Newton polygon of $P_{p}(A, T)$ looks like:

The conjecture

• Let $P_{ord}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A/k, the set $P_{ord}(A)$ has a nonzero density.

The conjecture

• Let $P_{ord}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A/k, the set $P_{ord}(A)$ has a nonzero density.

- Suppose p is of absolute residue degree 1 (i.e., Nm(p) = p is prime).
- If *A* is an elliptic curve, then $|a_1| \le 2\sqrt{p}$ and thus

$$p \mid a_1 \Rightarrow a_1 = 0 \text{ if } p \geq 5.$$

• If A is an abelian surface, then $-2p \le a_2 < 6p$ and thus

$$p \mid a_2 \quad \Rightarrow \quad a_2 = -2p, -p, 0, p, \dots, 5p$$
.

The conjecture

• Let $P_{ord}(A)$ denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)

For every abelian variety A/k, the set $P_{ord}(A)$ has a nonzero density.

- Suppose p is of absolute residue degree 1 (i.e., Nm(p) = p is prime).
- If A is an elliptic curve, then $|a_1| \le 2\sqrt{p}$ and thus

$$p \mid a_1 \quad \Rightarrow \quad a_1 = 0 \quad \text{if } p \geq 5.$$

• If A is an abelian surface, then $-2p \le a_2 < 6p$ and thus

$$p \mid a_2 \quad \Rightarrow \quad a_2 = -2p, -p, 0, p, \dots, 5p$$
.

- The number of values of a_g for which p can fail to be ordinary for A:
 - Stays bounded as p grows if $g \leq 2$.
 - Grows arbitrarily large if $g \ge 3$.

Ordinary primes in context

 The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).

Ordinary primes in context

- The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).
- The notion of "ordinary" appears in:
 - The construction of *p*-adic *L*-functions.
 - The construction of *p*-adic families (Hida theory).

Ordinary primes in context

- The notion of ordinary can be defined in much greater generality (it can essentially be defined for any arithmetico-geometric object).
- The notion of "ordinary" appears in:
 - The construction of *p*-adic *L*-functions.
 - The construction of *p*-adic families (Hida theory).
 - The *abundance* of ordinary primes for an abelian surface is a technical assumption in an automorphic lifting theorem of **Boxer-Calegari-Gee-Pilloni**.

(This ALT leads to the meromorphicity of the Hasse-Weil *L*-function of a generic abelian surface defined over a totally real field).

• The *abundance* of ordinary primes can be used to establish the average running time of modulo *p* point counting algorithms for curves *C* over number fields.

(First compute $P_{\mathfrak{p}}(\operatorname{Jac}(C), T) \pmod{p}$. Then find the lift to $\mathbb{Z}[T]$).

Results for $g \leq 2$

Theorem (Serre; 1981)

Let A/k be an elliptic curve. Then $P_{ord}(A)$ has density:

- 1 if $A_{\overline{\mathbb{O}}}$ does no have CM.
- $\frac{1}{[kF:k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by an imaginary quadratic field F.

In particular, $P_{ord}(A)$ has density 1 or 1/2.

Results for $g \leq 2$

Theorem (Serre; 1981)

Let A/k be an elliptic curve. Then $P_{ord}(A)$ has density:

- 1 if $A_{\overline{\mathbb{O}}}$ does no have CM.
- $\frac{1}{[kF:k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by an imaginary quadratic field *F*.

In particular, $P_{ord}(A)$ has density 1 or 1/2.

Theorem (Sawin; 2016)

Let A/k be an abelian surface. Then $P_{ord}(A)$ has density:

- 1 if no $\overline{\mathbb{Q}}$ -isogeny factor of A has CM.
- $\frac{1}{[kF^*:k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by a quartic CM field *F*.

• $\frac{1}{[kF_1F_2:k]}$ if $A_{\overline{\mathbb{Q}}} \sim E_1 \times E_2$, at least one E_i is CM, and $F_i = \operatorname{End}(E_i) \otimes \mathbb{Q}$.

In particular, $P_{ord}(A)$ has density 1, 1/2, or 1/4.

Idea behind the proof

Theorem (Serre; 1981)

Let A/k be an elliptic curve. Then $P_{ord}(A)$ has density:

- 1 if $A_{\overline{O}}$ does no have CM.
- $\frac{1}{[kF:k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by an imaginary quadratic field *F*.

In particular, $P_{ord}(A)$ has density 1 or 1/2.

- Consider the ℓ -adic representation $\varrho_{A,\ell}$: $G_k \rightarrow \operatorname{Aut}(V_\ell(A))$.
- Let G_{ℓ} be the Zariski closure of the image of $\rho_{A,\ell}$.
- Then Serre shows:

$$Dens(P_{ord}(A)) = 1 - \frac{\#conn. \ comp. \ of \ G_{\ell} \ on \ which \ Tr(\varrho_{A,\ell}) \equiv 0}{\#conn. \ comp. \ of \ G_{\ell}}$$

Idea behind the proof

Theorem (Sawin; 2016)

Let A/k be an abelian surface. Then $P_{ord}(A)$ has density:

- 1 if no $\overline{\mathbb{Q}}$ -isogeny factor of A has CM.
- $\frac{1}{[kF^*:k]}$ if $A_{\overline{\mathbb{Q}}}$ has CM by a quartic CM field *F*.

• $\frac{1}{[kF_1F_2:k]}$ if $A_{\overline{\mathbb{Q}}} \sim E_1 \times E_2$, one of the E_i is CM, and $F_i = \text{End}(E_i) \otimes \mathbb{Q}$. In particular, $P_{\text{ord}}(A)$ has density 1, 1/2, or 1/4.

• Let $\chi_{\ell} \colon G_k \to \mathbb{Q}_{\ell}^{\times}$ be the ℓ -adic cyclotomic character.

• Sawin shows:

 $\text{Dens}(P_{\text{ord}}(A)) = 1 - \frac{\#\text{conn. comp. of } G_{\ell} \text{ on which } \text{Tr}(\wedge^2 \varrho_{A,\ell} \otimes \chi_{\ell}^{-1}) \equiv \text{const.}}{\#\text{conn. comp. of } G_{\ell}}$

In fact, here "const." means -2,-1,0,1,2.

Francesc Fité (MIT)

- E a number field.
- λ a prime of *E* lying above ℓ .
- S a finite set of places of k.
- Let $\rho: G_k \rightarrow \operatorname{Aut}(E_{\lambda}^d)$ a *d*-dim. cont. rep. unramified outside *S*.

- E a number field.
- λ a prime of *E* lying above ℓ .
- S a finite set of places of k.
- Let $\rho: G_k \rightarrow \operatorname{Aut}(E_{\lambda}^d)$ a *d*-dim. cont. rep. unramified outside *S*.
- We say that ϱ is:
 - \mathcal{O}_E -integral if $\operatorname{CharPoly}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ lies in $E[T] \subseteq E_{\lambda}[T]$ for all $\mathfrak{p} \notin S$.
 - of weight *w* if it is integral and every root of CharPoly(*ρ*(Frob_p)) is a Nm(p)^w-Weil number for all p ∉ S.

(Recall: $\alpha \in \overline{\mathbb{Q}}$ is a *q*-Weil number if $|\iota(\alpha)| = \sqrt{q}$ for all $\iota: \mathbb{Q}(\alpha) \hookrightarrow \mathbb{C}$).

Proposition (Katz)

Suppose that ρ is \mathcal{O}_E -integral of weight 1. There exists a finite extension k'/k and a set *R* of primes of k' such that:

- Every \mathfrak{p} in *R* is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = \rho$).
- $p \nmid \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ for every \mathfrak{p} in R.
- R has density 1.

Proposition (Katz)

Suppose that ρ is \mathcal{O}_E -integral of weight 1. There exists a finite extension k'/k and a set *R* of primes of k' such that:

- Every \mathfrak{p} in *R* is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = \rho$).
- $p \nmid \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ for every \mathfrak{p} in R.
- R has density 1.

Proposition (Ogus+ ε)

Suppose that ρ is \mathcal{O}_E -integral of weight 1 and $d = \dim(\rho) \ge 3$. There exists a finite extension k'/k and a set *R* of primes of k' such that:

- Every \mathfrak{p} in R is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = p$).
- $p \nmid \operatorname{Tr}(\wedge^2 \varrho(\operatorname{Frob}_p))$ for every \mathfrak{p} in *R*.
- R has density 1.

The conjecture for elliptic curves and abelian surfaces

Corollary

<u>Dens</u>($P_{ord}(A)$) > 0 if A/k is an elliptic curve.

Corollary

 $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ if A/k is an abelian surface.

The conjecture for elliptic curves and abelian surfaces

Corollary

 $\underline{\text{Dens}}(\mathbf{P}_{\text{ord}}(A)) > 0$ if A/k is an elliptic curve.

Katz' proposition applied to $\rho = \rho_{A,\ell} \Rightarrow \text{Dens}(P_{\text{ord}}(A_{k'})) = 1$ for some finite $k'/k \Rightarrow \underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

Corollary

 $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ if A/k is an abelian surface.

Apply **Ogus**' proposition to $\varrho = \varrho_{A,\ell}$, which has dimension \geq 3.

The conjecture for elliptic curves and abelian surfaces

Corollary

 $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ if A/k is an elliptic curve.

Katz' proposition applied to $\rho = \rho_{A,\ell} \Rightarrow \text{Dens}(P_{\text{ord}}(A_{k'})) = 1$ for some finite $k'/k \Rightarrow \underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

Corollary

 $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ if A/k is an abelian surface.

Apply **Ogus**' proposition to $\rho = \rho_{A,\ell}$, which has dimension \geq 3.

Remark

What is known about $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ in higher dimension?

- Partial results by **Suh** when *A* is a Hilbert-Blumenthal ab. var.
- Known when $\operatorname{End}(A_{\overline{\mathbb{O}}}) = \mathbb{Z}$ and $\operatorname{MT}(A)$ is "small", by **Pink**.
- Known if A has potential CM.

Proposition (Katz)

If ρ is of weight 1, then there is a finite k'/k and a set *R* of primes of k' s.t.:

- Every \mathfrak{p} in *R* is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = p$).
- 2 $p \nmid \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ for every \mathfrak{p} in *R*.
- R has density 1.

Proposition (Katz)

If ρ is of weight 1, then there is a finite k'/k and a set *R* of primes of k' s.t.:

- Every \mathfrak{p} in *R* is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = \rho$).
- 2 $p \nmid \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ for every \mathfrak{p} in R.
- In the second second
 - May assume $\varrho : G_k \rightarrow \operatorname{Aut}(\mathcal{O}_{E_\lambda}^d)$.
 - Let *n* be such that $\lambda^n \nmid d$ and let $\overline{\varrho}$ be the reduction of $\varrho \pmod{\lambda^n}$.
 - Choose k'/k finite such that $\overline{\varrho}|_{G_{k'}} = 1$.
 - *R* = primes of *k*′ of abs. res. degree 1, of good red for *A*, not above ℓ, and > *d*². Claim: Any p in *R* satisfies (2).

Proposition (Katz)

If ρ is of weight 1, then there is a finite k'/k and a set R of primes of k' s.t.:

- Every \mathfrak{p} in *R* is of absolute residue degree 1 (write $Nm(\mathfrak{p}) = \rho$).
- 2 $p \nmid \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}}))$ for every \mathfrak{p} in R.
- In the second second
 - May assume $\varrho : G_k \rightarrow \operatorname{Aut}(\mathcal{O}_{E_\lambda}^d)$.
 - Let *n* be such that $\lambda^n \nmid d$ and let $\overline{\varrho}$ be the reduction of $\varrho \pmod{\lambda^n}$.
 - Choose k'/k finite such that $\overline{\varrho}|_{G_{k'}} = 1$.
 - *R* = primes of *k*′ of abs. res. degree 1, of good red for *A*, not above ℓ, and > *d*². Claim: Any p in *R* satisfies (2).
 - Then $a_{\mathfrak{p}} := \operatorname{Tr}(\varrho(\operatorname{Frob}_{\mathfrak{p}})) \equiv d \pmod{\lambda^n}$ and in particular $a_{\mathfrak{p}} \neq 0$.
 - If $a_{\mathfrak{p}} = pb_{\mathfrak{p}}$ for some $b_{\mathfrak{p}} \in \mathcal{O}_{E}$, then

$$|\mathrm{Nm}_{E/\mathbb{Q}}(b_\mathfrak{p})| = rac{|\mathrm{Nm}_{E/\mathbb{Q}}(a_\mathfrak{p})|}{p^{[E:\mathbb{Q}]}} = \left(rac{d}{\sqrt{p}}
ight)^{[E:\mathbb{Q}]} < 1$$
 .

 λ -adic representations attached to abelian varieties

• Suppose that A/k is such that:

 $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$.

We will consider

$$V_{\lambda}(A) := V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text{w.r.t} \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda' \mid \ell} E_{\lambda'} \to E_{\lambda} \,.$$

• $V_{\lambda}(A)$ has dimension $2g/[E : \mathbb{Q}]$ over E_{λ} .

 λ -adic representations attached to abelian varieties

• Suppose that A/k is such that:

 $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$.

We will consider

$$V_{\lambda}(A) := V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text{w.r.t} \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda' \mid \ell} E_{\lambda'} \to E_{\lambda} \,.$$

- $V_{\lambda}(A)$ has dimension $2g/[E : \mathbb{Q}]$ over E_{λ} .
- This gives rise to the λ-adic representation attached to A

$$\varrho_{\boldsymbol{A},\lambda}\colon \boldsymbol{G}_{\boldsymbol{k}}\to \operatorname{Aut}(\boldsymbol{V}_{\lambda}(\boldsymbol{A})).$$

• It is \mathcal{O}_E -integral, of weight 1, and $V_\ell(A) \simeq \bigoplus_{\lambda \mid \ell} V_\lambda(A)$.

 λ -adic representations attached to abelian varieties

• Suppose that A/k is such that:

 $E \hookrightarrow \operatorname{End}(A) \otimes \mathbb{Q}$.

We will consider

$$V_{\lambda}(A) := V_{\ell}(A) \otimes_{E \otimes \mathbb{Q}_{\ell}} E_{\lambda} \quad \text{w.r.t} \quad E \otimes \mathbb{Q}_{\ell} \simeq \prod_{\lambda' \mid \ell} E_{\lambda'} \to E_{\lambda} \,.$$

- $V_{\lambda}(A)$ has dimension $2g/[E : \mathbb{Q}]$ over E_{λ} .
- This gives rise to the λ -adic representation attached to A

$$\varrho_{\boldsymbol{A},\lambda}\colon \boldsymbol{G}_{\boldsymbol{k}} \to \operatorname{Aut}(\boldsymbol{V}_{\lambda}(\boldsymbol{A})).$$

- It is \mathcal{O}_E -integral, of weight 1, and $V_\ell(A) \simeq \bigoplus_{\lambda \mid \ell} V_\lambda(A)$.
- S = finite set containing the primes of bad reduction for A.
- For \mathfrak{p} outside S_{ℓ} , set $P_{\mathfrak{p}}(V_{\lambda}(A), T) := \operatorname{CharPoly}(\varrho_{A,\lambda}(\operatorname{Frob}_{\mathfrak{p}}))$.
- $P_{\mathfrak{p}}(A, T) = \prod_{\lambda \mid \ell} P_{\mathfrak{p}}(V_{\lambda}(A), T).$

Corollary

If A has potential CM, then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

Corollary

If A has potential CM, then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

• There exists *E* with $[E : \mathbb{Q}] = 2g$ such that

$$E \hookrightarrow \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$$
.

- WLOG, we may assume that $E \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$.
- Let p be of abs. deg. 1 and totally split in E. Claim: it is ordinary.

Corollary

If A has potential CM, then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

• There exists *E* with $[E : \mathbb{Q}] = 2g$ such that

$$E \hookrightarrow \operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$$
.

- WLOG, we may assume that $E \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$.
- Let p be of abs. deg. 1 and totally split in E. Claim: it is ordinary.
- Choose ℓ totally split in *E*, so that $V_{\lambda}(A)$ has dimension 1 over \mathbb{Q}_{ℓ} .
- The roots of $P_{\mathfrak{p}}(A, T)$ are $a_{\lambda,\mathfrak{p}} = \varrho_{A,\lambda}(\operatorname{Frob}_{\mathfrak{p}}) \in \mathcal{O}_E$ for $\lambda \mid \ell$.
- By Weil's theorem:

$$a_{\lambda,\mathfrak{p}} \cdot a_{\overline{\lambda},\mathfrak{p}} = p = \operatorname{Nm}(\mathfrak{p}).$$

As a_{λ,p}, a_{λ,p} ∈ O_E, we have {v(a_{λ,p}), v(a_{λ,p})} = {0, 1}.
 (v an extension to Z of the 𝔅-adic valuation for some 𝔅 | p of E).

New results in dimension 3

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

Theorem 2 (F.)

Let A/k be an abelian threefold for which there exists F/k such that:

- $\operatorname{End}(A_F) \otimes \mathbb{Q}$ contains a totally real cubic field *E*.
- F does not contain E.

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

New results in dimension 3

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

• It applies to the Jacobian of a Picard curve:

 $y^3 = f(x)$, for some separable $f(x) \in k[x]$ of degree 4.

Theorem 2 (F.)

Let A/k be an abelian threefold for which there exists F/k such that:

- $\operatorname{End}(A_F) \otimes \mathbb{Q}$ contains a totally real cubic field *E*.
- F does not contain E.

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

 Let *f* be a classical newform of weight 2 and cubic coefficient field. The Thm. applies to the A_f/Q attached to *f* by Eichler–Shimura.

Francesc Fité (MIT)

Theorem 3 (F.)

Let A/k be an abelian fourfold such that:

- $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field *E*.
- The pair (E, A) has signature (2, 2).

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

Theorem 3 (F.)

Let A/k be an abelian fourfold such that:

- $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field *E*.
- The pair (E, A) has signature (2, 2).

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

• The signature of (E, A) is the tuple $(r_{\tau})_{\tau: E \hookrightarrow \mathbb{C}}$ defined by:

$$r_{\tau} = \dim_{\mathbb{C}}(H^0(\mathcal{A}_{\mathbb{C}}, \Omega^1_{\mathcal{A}_{\mathbb{C}}/\mathbb{C}}) \otimes_{\mathcal{E} \otimes \mathbb{C}, \tau} \mathbb{C}),$$

"the multiplicity of the action of *E* on $H^0(A_{\mathbb{C}}, \Omega^1_{A_{\mathbb{C}}/\mathbb{C}})$ via τ ".

Theorem 3 (F.)

Let A/k be an abelian fourfold such that:

- $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field *E*.
- The pair (E, A) has signature (2, 2).

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

• The signature of (E, A) is the tuple $(r_{\tau})_{\tau: E \hookrightarrow \mathbb{C}}$ defined by:

$$r_{ au} = \dim_{\mathbb{C}}(H^0(A_{\mathbb{C}}, \Omega^1_{A_{\mathbb{C}}/\mathbb{C}}) \otimes_{\mathcal{E} \otimes \mathbb{C}, \tau} \mathbb{C}),$$

"the multiplicity of the action of *E* on $H^0(A_{\mathbb{C}}, \Omega^1_{A_{\mathbb{C}}/\mathbb{C}})$ via τ ".

- The theorem applies when:
 - $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}=E$ and the signature is (2,2) (A is of Albert type IV).
 - End(A_Q) ⊗ Q is a quaternion algebra (i.e. A has Albert type II or III). That is, A is a so-called "fake abelian surface".

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

- WLOG, we may assume $E \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\overline{\lambda}}(A)$.
- By **Ogus**' proposition, there exist k'/k and a set of primes *R* s.t.:

 $p := \operatorname{Nm}(\mathfrak{p}) \nmid b_{\mathfrak{p},\lambda} := \operatorname{Tr}(\wedge^2 \varrho_{\mathcal{A},\lambda}(\operatorname{Frob}_\mathfrak{p})), \ \forall \mathfrak{p} \in \mathcal{R} \quad \text{and} \quad \operatorname{Dens}(\mathcal{R}) = 1 \ .$

• WLOG, we may assume k = k'. Claim: Every p in R is ordinary.

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

- WLOG, we may assume $E \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\overline{\lambda}}(A)$.
- By **Ogus**' proposition, there exist k'/k and a set of primes *R* s.t.:

$$\mathfrak{p} := \operatorname{Nm}(\mathfrak{p}) \nmid b_{\mathfrak{p},\lambda} := \operatorname{Tr}(\wedge^2 \varrho_{\mathcal{A},\lambda}(\operatorname{Frob}_\mathfrak{p})), \ \forall \mathfrak{p} \in \mathcal{R} \quad \text{and} \quad \operatorname{Dens}(\mathcal{R}) = 1$$

- WLOG, we may assume k = k'. Claim: Every p in R is ordinary.
- Let *v* be an ext. to $\overline{\mathbb{Z}}_p$ of the \mathfrak{P} -adic valuation for some $\mathfrak{P} \mid p$ of *E*.
- One among $v(b_{\mathfrak{p},\lambda})$ and $v(b_{\mathfrak{p},\overline{\lambda}})$ must be 0.
- Let α, β, γ be the roots of $P_{\mathfrak{p}}(V_{\lambda}(A), T)$.
- We may assume that $v(\alpha), v(\beta), v(\gamma)$ is 0, 0, 1.

Theorem 1 (F.)

Let A/k be an abelian threefold such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains an imaginary quadratic field. Then $\underline{\operatorname{Dens}}(\operatorname{P}_{\operatorname{ord}}(A)) > 0$.

- WLOG, we may assume $E \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$ and $E \subseteq k$.
- Choose ℓ split in E, so that $V_{\ell}(A) \simeq V_{\lambda}(A) \oplus V_{\overline{\lambda}}(A)$.
- By **Ogus**' proposition, there exist k'/k and a set of primes *R* s.t.:

$$\mathfrak{p} := \operatorname{Nm}(\mathfrak{p}) \nmid b_{\mathfrak{p},\lambda} := \operatorname{Tr}(\wedge^2 \varrho_{\mathcal{A},\lambda}(\operatorname{Frob}_\mathfrak{p})), \ \forall \mathfrak{p} \in \mathcal{R} \quad \text{and} \quad \operatorname{Dens}(\mathcal{R}) = 1$$

- WLOG, we may assume k = k'. Claim: Every p in R is ordinary.
- Let *v* be an ext. to $\overline{\mathbb{Z}}_p$ of the \mathfrak{P} -adic valuation for some $\mathfrak{P} \mid p$ of *E*.
- One among $v(b_{\mathfrak{p},\lambda})$ and $v(b_{\mathfrak{p},\overline{\lambda}})$ must be 0.
- Let α, β, γ be the roots of $P_{\mathfrak{p}}(V_{\lambda}(A), T)$.
- We may assume that $v(\alpha), v(\beta), v(\gamma)$ is 0, 0, 1.
- Note that the roots of $P_{\mathfrak{p}}(V_{\overline{\lambda}}(A), T)$ are $p/\alpha, p/\beta, p/\gamma$.

A mild generalization

Let A/k be such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains a simple \mathbb{Q} -algebra D.

Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A/k be as above. If K is imaginary quadratic and either:

1
$$t = g/2$$
 and $g \mid 4$; or

- 2 t = g/3 and g | 9; or
- 3 t = g/4 and $g \mid 16$ and (A, K) has signature (g/2, g/2);

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

A mild generalization

Let A/k be such that $\operatorname{End}(A_{\overline{\Omega}}) \otimes \mathbb{Q}$ contains a simple \mathbb{Q} -algebra D.

Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A/k be as above. If K is imaginary quadratic and either:

1
$$t = g/2$$
 and $g \mid 4$; or

- **2** t = q/3 and q | 9; or
- $figure{1}{0}$ t = g/4 and $g \mid 16$ and (A, K) has signature (g/2, g/2);

Then $Dens(P_{ord}(A)) > 0$.

Even if A may be absolutely simple, after enlarging k, one has: $P_{\mathfrak{v}}(A,T) = (Q(T) \cdot \overline{Q(T)})^t$, where $Q(T) \in \mathcal{O}_{\mathcal{K}}[T]$. • The proof then reduces to $\begin{cases} the case of abelian surfaces (1). \\ the situation of Theorem 1 (2). \\ the situation of Theorem 3 (3). \end{cases}$

A mild generalization

Let A/k be such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q}$ contains a simple \mathbb{Q} -algebra D.

Let K denote the center of D and t the Schur index of D.

Corollary (F.)

Let A/k be as above. If K is imaginary quadratic and either:

1
$$t = g/2$$
 and $g \mid 4$; or

- 2 t = g/3 and g | 9; or
- 3 t = g/4 and $g \mid 16$ and (A, K) has signature (g/2, g/2);

Then $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$.

• Even if A may be absolutely simple, after enlarging k, one has: $P_{\mathfrak{p}}(A, T) = (Q(T) \cdot \overline{Q(T)})^t$, where $Q(T) \in \mathcal{O}_{\mathcal{K}}[T]$. (the case of abelian surfaces (1).

- The proof then reduces to $\begin{cases} the case of abelian surfaces (1). \\ the situation of Theorem 1 (2). \\ the situation of Theorem 3 (3). \end{cases}$
- Alternative proof that $\underline{\text{Dens}}(P_{\text{ord}}(A)) > 0$ if A is a "fake abelian surface".

Francesc Fité (MIT)

Thank you for your attention!

Francesc Fité (MIT)

Ordinary primes