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Notation

k a number field.
A an abelian variety defined over k of dimension g ≥ 1.
For a rational prime `, let

T`(A) := lim
←

A[`n](Q) ' Z2g
` , V`(A) := T`(A)⊗Z` Q` .

Let p be a “prime of k" of good reduction for A. We will denote by:
Ap the reduction of A modulo p.
Pp(A,T ) the charpoly of Frobp acting on V`(A) (for p - `).
(It has degree 2g, integral coefficients, and is independent on `).
up(A) the number of roots of Pp(A,T ) in Zp which are p-adic units.
(As αp · αp = Nm(p) for any root αp, we have 0 ≤ up(A) ≤ g.)
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Newton polygons
Let P(T ) = a0T n + a1T n−1 + · · ·+ +an ∈ Qp[T ] with a0,an 6= 0.
Let v denote the extension to Qp of the p-adic valuation.
The Newton polygon of P(T ) is the lower convex hull of the set

{(i , v(ai)) : i = 0, . . . ,n} .

For s ∈ Q, the Newton polygon satisfies:

x-length of the segment of slope s = #roots of P(T ) of valuation s .

Francesc Fité ( MIT) Ordinary primes Around Frobenius distributions 3 / 21



Newton polygons
Let P(T ) = a0T n + a1T n−1 + · · ·+ +an ∈ Qp[T ] with a0,an 6= 0.
Let v denote the extension to Qp of the p-adic valuation.
The Newton polygon of P(T ) is the lower convex hull of the set

{(i , v(ai)) : i = 0, . . . ,n} .

For s ∈ Q, the Newton polygon satisfies:

x-length of the segment of slope s = #roots of P(T ) of valuation s .

Francesc Fité ( MIT) Ordinary primes Around Frobenius distributions 3 / 21



Newton polygons for abelian varieties
Pp(A,T ) = a0T 2g + a1T 2g−1 + · · ·+ a2g−1T + a2g satisfies:

a0 = 1, a2g = Nm(p)g , v(ai) ≥ 0, v(ag+i) = v(ag−iNm(p)i) ≥ i .

(v is normalized so that v(Nm(p)) = 1).

up(A) = number of roots of Pp(A,T ) of valuation 0.
The Newton polygon of Pp(A,T ) looks like:
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Ordinary primes

Definition/Proposition
p is ordinary for A if any of the following equivalent conditions hold:

Ap[p](Fp) has cardinality pg .
up(A) = g.
The central coefficient ag of Pp(A,T ) is not divisible by p.
The Newton polygon of Pp(A,T ) looks like:
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The conjecture
Let Pord(A) denote the set of primes of k which are ordinary for A.

Conjecture (Often attributed to Serre)
For every abelian variety A/k , the set Pord(A) has a nonzero density.

Suppose p is of absolute residue degree 1 (i.e., Nm(p) = p is prime).

If A is an elliptic curve, then |a1| ≤ 2
√

p and thus

p | a1 ⇒ a1 = 0 if p ≥ 5.

If A is an abelian surface, then −2p ≤ a2 < 6p and thus

p | a2 ⇒ a2 = −2p,−p,0,p, . . . ,5p .

The number of values of ag for which p can fail to be ordinary for A:

Stays bounded as p grows if g ≤ 2.
Grows arbitrarily large if g ≥ 3.
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Ordinary primes in context

The notion of ordinary can be defined in much greater generality
(it can essentially be defined for any arithmetico-geometric object).

The notion of “ordinary” appears in:
The construction of p-adic L-functions.
The construction of p-adic families (Hida theory).

The abundance of ordinary primes for an abelian surface is a
technical assumption in an automorphic lifting theorem of
Boxer-Calegari-Gee-Pilloni.
(This ALT leads to the meromorphicity of the Hasse-Weil L-function
of a generic abelian surface defined over a totally real field).
The abundance of ordinary primes can be used to establish the
average running time of modulo p point counting algorithms for
curves C over number fields.
(First compute Pp(Jac(C),T ) (mod p). Then find the lift to Z[T ]).
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Results for g ≤ 2

Theorem (Serre; 1981)
Let A/k be an elliptic curve. Then Pord(A) has density:

1 if AQ does no have CM.
1

[kF :k ] if AQ has CM by an imaginary quadratic field F .

In particular, Pord(A) has density 1 or 1/2.

Theorem (Sawin; 2016)
Let A/k be an abelian surface. Then Pord(A) has density:

1 if no Q-isogeny factor of A has CM.
1

[kF∗:k ] if AQ has CM by a quartic CM field F .

1
[kF1F2:k ]

if AQ ∼ E1 × E2, at least one Ei is CM, and Fi = End(Ei )⊗Q.

In particular, Pord(A) has density 1, 1/2, or 1/4.
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Idea behind the proof

Theorem (Serre; 1981)
Let A/k be an elliptic curve. Then Pord(A) has density:

1 if AQ does no have CM.
1

[kF :k ] if AQ has CM by an imaginary quadratic field F .

In particular, Pord(A) has density 1 or 1/2.

Consider the `-adic representation %A,` : Gk→Aut(V`(A)) .
Let G` be the Zariski closure of the image of %A,`.
Then Serre shows:

Dens(Pord(A)) = 1−
#conn. comp. of G` on which Tr(%A,`) ≡ 0

#conn. comp. of G`
.
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1 if no Q-isogeny factor of A has CM.
1

[kF∗:k ] if AQ has CM by a quartic CM field F .

1
[kF1F2:k ]

if AQ ∼ E1×E2, one of the Ei is CM, and Fi = End(Ei)⊗Q.

In particular, Pord(A) has density 1, 1/2, or 1/4.

Let χ` : Gk→Q×` be the `-adic cyclotomic character.
Sawin shows:

Dens(Pord(A)) = 1−#conn. comp. of G` on which Tr(∧2%A,` ⊗ χ−1
` ) ≡ const.

#conn. comp. of G`
.

In fact, here “const." means -2,-1,0,1,2.
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The `-adic method of Katz, Ogus, and Serre

E a number field.
λ a prime of E lying above `.
S a finite set of places of k .
Let % : Gk→Aut(Ed

λ ) a d-dim. cont. rep. unramified outside S.

We say that % is:
OE -integral if CharPoly(%(Frobp)) lies in E [T ] ⊆ Eλ[T ] for all p 6∈ S.
of weight w if it is integral and every root of CharPoly(%(Frobp)) is a
Nm(p)w -Weil number for all p 6∈ S.

(Recall: α ∈ Q is a q-Weil number if |ι(α)| =
√

q for all ι : Q(α) ↪→ C).
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The `-adic method of Katz, Ogus, and Serre

Proposition (Katz)
Suppose that % is OE -integral of weight 1. There exists a finite
extension k ′/k and a set R of primes of k ′ such that:

Every p in R is of absolute residue degree 1 (write Nm(p) = p).
p - Tr(%(Frobp)) for every p in R.
R has density 1.

Proposition (Ogus+ε)
Suppose that % is OE -integral of weight 1 and d = dim(%) ≥ 3. There
exists a finite extension k ′/k and a set R of primes of k ′ such that:

Every p in R is of absolute residue degree 1 (write Nm(p) = p).
p - Tr(∧2%(Frobp)) for every p in R.
R has density 1.
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The conjecture for elliptic curves and abelian surfaces
Corollary
Dens(Pord(A)) > 0 if A/k is an elliptic curve.

Katz’ proposition applied to % = %A,` ⇒ Dens(Pord(Ak ′)) = 1 for some
finite k ′/k ⇒ Dens(Pord(A)) > 0.

Corollary
Dens(Pord(A)) > 0 if A/k is an abelian surface.

Apply Ogus’ proposition to % = %A,`, which has dimension ≥ 3.

Remark
What is known about Dens(Pord(A)) > 0 in higher dimension?

Partial results by Suh when A is a Hilbert-Blumenthal ab. var.
Known when End(AQ) = Z and MT(A) is “small", by Pink.
Known if A has potential CM.
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Proposition (Katz)
If % is of weight 1, then there is a finite k ′/k and a set R of primes of k ′ s.t.:

1 Every p in R is of absolute residue degree 1 (write Nm(p) = p).
2 p - Tr(%(Frobp)) for every p in R.
3 R has density 1.

May assume % : Gk→Aut(Od
Eλ

).
Let n be such that λn - d and let % be the reduction of % (mod λn).
Choose k ′/k finite such that %|Gk′

= 1.
R = primes of k ′ of abs. res. degree 1, of good red for A, not
above `, and > d2. Claim: Any p in R satisfies (2).
Then ap := Tr(%(Frobp)) ≡ d (mod λn) and in particular ap 6= 0.
If ap = pbp for some bp ∈ OE , then

|NmE/Q(bp)| =
|NmE/Q(ap)|

p[E :Q]
=

(
d
√

p

)[E :Q]

< 1 .
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λ-adic representations attached to abelian varieties
Suppose that A/k is such that:

E ↪→ End(A)⊗Q .

We will consider

Vλ(A) := V`(A)⊗E⊗Q` Eλ w.r.t E ⊗Q` '
∏
λ′|`

Eλ′ → Eλ .

Vλ(A) has dimension 2g/[E : Q] over Eλ.

This gives rise to the λ-adic representation attached to A

%A,λ : Gk → Aut(Vλ(A)) .

It is OE -integral, of weight 1, and V`(A) '
⊕

λ|` Vλ(A).
S = finite set containing the primes of bad reduction for A.
For p outside S`, set Pp(Vλ(A),T ) := CharPoly(%A,λ(Frobp)).
Pp(A,T ) =

∏
λ|` Pp(Vλ(A),T ).
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Corollary
If A has potential CM, then Dens(Pord(A)) > 0.

There exists E with [E : Q] = 2g such that

E ↪→ End(AQ)⊗Q .

WLOG, we may assume that E ↪→ End(A)⊗Q.
Let p be of abs. deg. 1 and totally split in E . Claim: it is ordinary.
Choose ` totally split in E , so that Vλ(A) has dimension 1 over Q`.
The roots of Pp(A,T ) are aλ,p = %A,λ(Frobp) ∈ OE for λ | `.
By Weil’s theorem:

aλ,p · aλ,p = p = Nm(p) .

As aλ,p,aλ,p ∈ OE , we have {v(aλ,p), v(aλ,p)} = {0,1}.
(v an extension to Z of the P-adic valuation for some P | p of E).
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New results in dimension 3
Theorem 1 (F.)
Let A/k be an abelian threefold such that End(AQ)⊗Q contains an
imaginary quadratic field. Then Dens(Pord(A)) > 0.

It applies to the Jacobian of a Picard curve:

y3 = f (x) , for some separable f (x) ∈ k [x ] of degree 4.

Theorem 2 (F.)
Let A/k be an abelian threefold for which there exists F/k such that:

End(AF )⊗Q contains a totally real cubic field E .
F does not contain E .

Then Dens(Pord(A)) > 0.

Let f be a classical newform of weight 2 and cubic coefficient field.
The Thm. applies to the Af/Q attached to f by Eichler–Shimura.
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Theorem 3 (F.)
Let A/k be an abelian fourfold such that:

End(AQ)⊗Q contains an imaginary quadratic field E .
The pair (E ,A) has signature (2,2).

Then Dens(Pord(A)) > 0.

The signature of (E ,A) is the tuple (rτ )τ : E ↪→C defined by:

rτ = dimC(H0(AC,Ω
1
AC/C)⊗E⊗C,τ C) ,

“the multiplicity of the action of E on H0(AC,Ω
1
AC/C) via τ ”.

The theorem applies when:
End(AQ)⊗Q = E and the signature is (2,2) (A is of Albert type IV).
End(AQ)⊗Q is a quaternion algebra (i.e. A has Albert type II or III).
That is, A is a so-called “fake abelian surface”.
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Proof of Theorem 1
Theorem 1 (F.)
Let A/k be an abelian threefold such that End(AQ)⊗Q contains an
imaginary quadratic field. Then Dens(Pord(A)) > 0.

WLOG, we may assume E ↪→ End(A)⊗Q and E ⊆ k .
Choose ` split in E , so that V`(A) ' Vλ(A)⊕ Vλ(A).
By Ogus’ proposition, there exist k ′/k and a set of primes R s.t.:

p := Nm(p) - bp,λ := Tr(∧2%A,λ(Frobp)), ∀p ∈ R and Dens(R) = 1 .

WLOG, we may assume k = k ′. Claim: Every p in R is ordinary.
Let v be an ext. to Zp of the P-adic valuation for some P | p of E .
One among v(bp,λ) and v(bp,λ) must be 0.
Let α, β, γ be the roots of Pp(Vλ(A),T ).
We may assume that v(α), v(β), v(γ) is 0,0,1.
Note that the roots of Pp(Vλ(A),T ) are p/α, p/β, p/γ.
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A mild generalization
Let A/k be such that End(AQ)⊗Q contains a simple Q-algebra D.
Let K denote the center of D and t the Schur index of D.

Corollary (F.)
Let A/k be as above. If K is imaginary quadratic and either:

1 t = g/2 and g | 4; or
2 t = g/3 and g | 9; or
3 t = g/4 and g | 16 and (A,K ) has signature (g/2,g/2);

Then Dens(Pord(A)) > 0.

Even if A may be absolutely simple, after enlarging k , one has:
Pp(A,T ) = (Q(T ) ·Q(T ))t , where Q(T ) ∈ OK [T ].

The proof then reduces to


the case of abelian surfaces (1).

the situation of Theorem 1 (2).

the situation of Theorem 3 (3).

Alternative proof that Dens(Pord(A)) > 0 if A is a “fake abelian surface".
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Thank you for your attention!
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