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Local-global principles for isogenies of abelian varieties
K a number field.

A,B/K abelian varieties of dimension g ≥ 1.

Σ the set of primes of bad reduction of A and B.

∀p 6∈ Σ, denote by Ap,Bp/K (p) the reductions of A,B modulo p.

Notation

∀′p = For every prime ideal of OK outside a 0 density set containing Σ.

Faltings isogeny theorem

A and B are isogenous if and only if Ap and Bp are isogenous ∀′p.

Theorem (Khare-Larsen; 2020)

A and B are isogenous if and only if Ap and Bp are isogenous ∀′p.

Here A := A×K K , Ap := Ap ×K (p) K (p).
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Polyquadratic twists

F = K or K (p).

A,B/F abelian varieties.

Category of abelian varieties up to isogeny:

Objects: abelian varieties.

Morphisms: Hom0(A,B) := Hom(A,B)⊗Z Q.

We say that B is a twist of A if there exists an algebraic field extension L/F
and an isogeny

ϕ : BL → AL .

Here AL := A×F L, BL := B ×F L.

We say that A and B are polyquadratic twists (of degree 2r ) if they become
isogenous over the compositum of r quadratic extensions of F .
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Quadratic twists

Let GF := Gal(F/F ) be the absolute Galois group of F .

Weil descent

{Twists of A (up to F -isogeny)}

'

−→ H1(GF ,Aut0(AF ))

(ϕ : BL → AL) 7→ (σ 7→ σϕ ◦ ϕ−1)

{Twists of A (up to F -isogeny)} ' // H1(GF ,Aut0(AF ))

{Quadratic twists of A (up to F -isogeny)}
?�

OO

oo ' // H1(GF , {±1})
?�

OO

For χ ∈ H1(GF , {±1}) = Hom(GF , {±1}), let Aχ be the twist of A assoc. to χ.

We say that B is a quadratic twist of A if B is (isogenous to) Aχ for some χ.
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Quadratic twists

Alternative more explicit description:

Write L := F
ker(χ)

Aχ =

{
complement of A in ResL/F (A) if χ is nontrivial
A if χ is trivial.

Remark

Not every polyquadratic twist of degree 2 is a quadratic twist.

Example

A2 and A× Aχ are polyquadratic twists of degree 2, but in general they will not
be quadratic twists.
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Main results
K a number field and A,B/K abelian varieties of dimension g ≥ 1.

Theorem 1 (F.; 2021)

For g ≤ 3:
A,B are quadratic twists if and only if Ap,Bp are quadratic twists ∀′p.
Moreover the above is false for g = 4.

Theorem 2 (F.-Perucca; 2022)

For g ≤ 2:
A,B are polyquadratic twists if and only if Ap,Bp are polyquadratic twists ∀′p.
Moreover the above is false for g ≥ 3.

Remark

Ramakrishnan, Serre, and Rajan have given proofs of the above for g = 1.

Question

For which dimensions can one extend Theorem 1?
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Counterexamples

Counterexample of dimension 4 (E. Costa). The Jacobians of

y2 = x9 + x/Q , y2 = x9 + 16x/Q

are locally quadratic twists at all odd primes, but they are not quadratic twists.

Costa has found similar counterexamples within the family y2 = x2g+1 + ax for

g ∈ {4,8,10,12,16} .

Counterexample of dimension 6. Let χ, ψ be distinct quadratic characters and
E an elliptic curve without CM. An easy exercise using the character table of
the Klein group shows that

E2 × E2
χ × E2

ψ , E3 × Eχ × Eψ × Eχψ

are locally quadratic twists at almost all primes, but are not quadratic twists.

Counterexample of dimension 5?
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Representation theoretic setting
E a topological field.

G a compact topological group.

%, %′ : G→ GLr (E) semisimple continuous representations.

We say that % and %′ are quadratic twists if %′ ' χ⊗ % holds for some
χ ∈ Hom(G, {±1}).

We say that % and %′ are polyquadratic twists if

% '
t⊕

i=1

%i and %′ '
t⊕

i=1

%′i ,

where %i , %
′
i : G→ GLri (E) are quadratic twists for all i .

Proposition

%, %′ are polyquadratic twists if and only if %|H ' %′|H for some H E G such that
G/H is a finite abelian group of exponent dividing 2.
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Example

K a number field.

A,B/K abelian varieties of dimension g ≥ 1.

` a prime. The `-adic Tate module of A is

T`(A) := lim←−
r

A[`r ](K ) ' Z2g
` , V`(A) = T`(A)⊗Z`

Q` .

We denote by %A,` the representation of GK afforded by V`(A).

Faltings isogeny thm. (as on slide 1) with the Brauer-Nesbitt thm. imply:

Proposition

A,B are isogenous if and only if %A,` ' %B,`.

A,B are quadratic twists if and only if %A,` , %B,` are quadratic twists.

A,B are polyquadratic twists if and only if %A,` , %B,` are polyquadratic twists.
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Local versions
E a topological field & G a compact topological group.

%, %′ : G→ GLr (E) semisimple continuous representations.

We say that % and %′ are locally quadratic twists if any of the following
equivalent conditions hold:

For every s ∈ G, det(1− %(s)T ) = det(1− εs%′(s)T ) for some εs ∈ {±1}.

%⊗2 ' %′⊗2 , ∧2i% ' ∧2i%′ , %⊗ ∧2i+1% ' %′ ⊗ ∧2i+1%′ for all i .

We say that % and %′ are locally polyquadratic twists if any of the following
equivalent conditions hold:

For every s ∈ G, det(1− %(s2)T ) = det(1− %′(s2)T ).

Sym2 %− ∧2% ' Sym2 %′ − ∧2%′.

Remark

Ap,Bp (poly)quadratic twists ∀′p⇐⇒ %A,`, %B,` locally (poly)quadratic twists.
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Question
Are the below implications in fact equivalences?

1) % and %′ quadratic twists =⇒ % and %′ locally quadratic twists.

The converse implication is true if deg(%) = 2 (Ramakrishnan) or odd;
False for deg(%) = 4 (Chidambaran) or 6.

2) % and %′ polyquadratic twists =⇒ % and %′ locally polyquadratic twists.

With Perucca, we show that the converse implication is true if deg(%) ≤ 2, but
false for deg(%) ≥ 3.

Corollary

Suppose that g = 1.
A and B are quadratic twists if and only if Ap,Bp are quadratic twists ∀′p.

Remark

The %, %′ in the above counterexamples in degrees 4 and 6 do not correspond
to `-adic representations of abelian surfaces or threefolds.
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Rajan’s theorem (Locally quadratic twist ⇒ Twist)

Theorem (Rajan)

Let %, % : GK → GLr (Q`) be semisimple. Suppose:

%(GK )Zar is connected.

Dens
(
{p | Tr(%(Frobp)) = Tr(%′(Frobp))}

)
> 0.

Then there exists a finite L/K such that %|GL ' %′|GL .

Corollary

If A and B are locally quadratic twists, then A and B are twists.
In particular, End(AQ)⊗Q ' End(BQ)⊗Q.
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Faltings Isogeny theorem (Loc. quad. twist ⇒ same end. field)

Let KA denote the minimal extension such that End(AKA ) = End(AQ).

Proposition

If A and B are locally quadratic twists, then KA = KB.

Proof

Indeed, if A and B are locally quadratic twists, then

(Tr %A(Frobp))2 = (Tr %B(Frobp))2 ∀′p .

By Chebotarev
%A ⊗ %A ' %B ⊗ %B

Then for any extension L/K

End(AL)⊗Q` ' (%A ⊗ %∨A )GL ' (%B ⊗ %∨B )GL ' End(BL)⊗Q` .

Francesc Fité Local-global principles 26/01/2023 13 / 18



Faltings Isogeny theorem (Loc. quad. twist ⇒ same end. field)

Let KA denote the minimal extension such that End(AKA ) = End(AQ).

Proposition

If A and B are locally quadratic twists, then KA = KB.

Proof

Indeed, if A and B are locally quadratic twists, then

(Tr %A(Frobp))2 = (Tr %B(Frobp))2 ∀′p .

By Chebotarev
%A ⊗ %A ' %B ⊗ %B

Then for any extension L/K

End(AL)⊗Q` ' (%A ⊗ %∨A )GL ' (%B ⊗ %∨B )GL ' End(BL)⊗Q` .

Francesc Fité Local-global principles 26/01/2023 13 / 18



Faltings Isogeny theorem (Loc. quad. twist ⇒ same end. field)

Let KA denote the minimal extension such that End(AKA ) = End(AQ).

Proposition

If A and B are locally quadratic twists, then KA = KB.

Proof

Indeed, if A and B are locally quadratic twists, then

(Tr %A(Frobp))2 = (Tr %B(Frobp))2 ∀′p .

By Chebotarev
%A ⊗ %A ' %B ⊗ %B

Then for any extension L/K

End(AL)⊗Q` ' (%A ⊗ %∨A )GL ' (%B ⊗ %∨B )GL ' End(BL)⊗Q` .

Francesc Fité Local-global principles 26/01/2023 13 / 18



Faltings Isogeny theorem (Loc. quad. twist ⇒ same end. field)

Let KA denote the minimal extension such that End(AKA ) = End(AQ).

Proposition

If A and B are locally quadratic twists, then KA = KB.

Proof

Indeed, if A and B are locally quadratic twists, then

(Tr %A(Frobp))2 = (Tr %B(Frobp))2 ∀′p .

By Chebotarev
%A ⊗ %A ' %B ⊗ %B

Then for any extension L/K

End(AL)⊗Q` ' (%A ⊗ %∨A )GL ' (%B ⊗ %∨B )GL ' End(BL)⊗Q` .

Francesc Fité Local-global principles 26/01/2023 13 / 18



The case End(AQ) ' Z

The proof of Theorem 1 is by cases on the possibilities for End(AQ)⊗Q.

The case End(AQ) ' Z

By Rajan’s Theorem, there is a finite extension L/K such that

Q` ' Hom(AL,BL)⊗Q` ' HomGL (%A,`, %B,`) ' (%∨A,` ⊗ %B,`)
GL .

(%∨A,` ⊗ %B,`)
GL affords a character χ of Gal(L/K ), which in fact is quadratic.

It will suffice to see that

HomGK (%B,`, χ⊗ %A,`) 6= 0 .

Note that

HomGK (%B,`, χ⊗ %A,`) ' HomGK (%∨A,` ⊗ %B,`, χ) 6= 0 .
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The case AQ ∼ E2

Suppose we are in the almost antagonic case:

AQ ∼ E2, where E/Q is an elliptic curve without CM.

Theorem (F.-Guitart)

There exists a finite Galois extension L/K , a number field M, and

An Artin representation θ : Gal(L/K )→ GL2(M).

For every ` totally split in M, a strongly absolutely irreducible M-rational
`-adic representation % : GK → GL2(Q`)

such that %A,` ' θ ⊗Q`
%.
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Using the previous theorem, we can write

%A,` ' θ ⊗ % , %B,` ' θ′ ⊗ %′ .

After enlarging L/K , we can assume that

θ, θ′ : Gal(L/K )→ GL2(M) and %A,`|GL ' %B,`|GL .

In particular %|GL ' %′|GL . Hence there exists a character χ of Gal(L/K ) such
that %′ ' χ⊗ %.

That A and B are locally quadratic twists means that

det(1− θ′ ⊗ χ⊗ %(Frobp)T ) = det(1± θ ⊗ %(Frobp)T ) ∀′p .

Let α1,p, α2,p be the eigenvalues of %(Frobp). One can show that

α1,p

α2,p
6∈ µ∞ ∀′p .
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2∏
i=1

det(1− θ′ ⊗ χ(Frobp)αi,pT ) =
2∏

i=1

det(1± θ(Frobp)αi,pT ) ∀′p .

One deduces

det(1− θ′ ⊗ χ(Frobp)T ) = det(1± θ(Frobp)T ) ∀′p .

By Chebotarev, this means that θ′ ⊗ χ and θ are locally quadratic twists.

By Ramakrishnan’s theorem, there exists a quadratic character ψ such that

θ′ ⊗ χ ' ψ ⊗ θ .

Hence
%B,` ' θ′ ⊗ χ⊗ % ' ψ ⊗ θ ⊗ % ' ψ ⊗ %A,` .
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Gràcies per la vostra atenció!

Gracias por vuestra atención!

Danke für Ihre Aufmerksamkeit!

Merci pour votre attention!

Grazie della vostra attenzione!
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