Sato-Tate groups of abelian threefolds

Francesc Fité (MIT), Kiran S. Kedlaya (UCSD), A.V. Sutherland (MIT)

Harvard Number Theory Seminar. 25th March 2020.

A preview of the classification: https://arxiv.org/abs/1911.02071

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results

4 Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results
(4) Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Sato-Tate groups of elliptic curves

- k a number field.
- E / k an elliptic curve.
- The Sato-Tate group $\mathrm{ST}(E)$ is defined as:
- $\operatorname{SU}(2)$ if E does not have CM.
- $U(1)=\left\{\left(\begin{array}{ll}u & 0 \\ 0 & \bar{u}\end{array}\right): u \in \mathbb{C},|u|=1\right\}$ if E has $C M$ by $M \subseteq k$.
- $N_{\mathrm{SU}(2)}(\mathrm{U}(1))$ if E has CM by $M \nsubseteq k$.
- Note that $\operatorname{Tr}: \operatorname{ST}(E) \rightarrow[-2,2]$. Denote $\mu=\operatorname{Tr}_{*}\left(\mu_{\text {Haar }}\right)$.

The Sato-Tate conjecture for elliptic curves

- For a prime \mathfrak{p} of good reduction for E, set

$$
a_{\mathfrak{p}}:=N(\mathfrak{p})+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)=\operatorname{Tr}\left(\operatorname{Frob}_{\mathfrak{p}} \mid V_{\ell}(E)\right) . \quad(\text { for } \mathfrak{p} \nmid \ell)
$$

- The normalized Frobenius trace satisfies

$$
\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{\sqrt{N(\mathfrak{p})}} \in[-2,2] .
$$

Sato-Tate conjecture

The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $[-2,2]$ w.r.t μ.

- If $\mathrm{ST}(E)=\mathrm{U}(1)$ or $N(\mathrm{U}(1))$: Known in full generality
(Hecke, Deuring).
- Known if $\mathrm{ST}(E)=\mathrm{SU}(2)$ and k is totally real.
(Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, Taylor);
- Known if $\operatorname{ST}(E)=S U(2)$ and k is a CM field
(Allen,Calegari,Caraiani,Gee,Helm,LeHung,Newton,Scholze,Taylor,Thorne).

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results

4 Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Toward the Sato-Tate group: the ℓ-adic image

- Let A / k be an abelian variety of dimension $g \geq 1$.
- Consider the ℓ-adic representation attached to A

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right) .
$$

- Serre defines $\operatorname{ST}(A)$ in terms of $\mathcal{G}_{\ell}=\varrho_{A, \ell}\left(G_{k}\right)^{\mathrm{Zar}} \subseteq \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$.
- For $g \leq 3$, Banaszak and Kedlaya describe $\mathrm{ST}(A)$ in terms of endomorphisms.
- Recall there is a G_{k}-equivariant monomorphism

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow \operatorname{End}_{\mathcal{G}_{\ell}^{0}}\left(V_{\ell}(A)\right)
$$

(by Faltings, in fact an isomorphism).

- More conveniently

$$
\mathcal{G}_{\ell}^{0} \hookrightarrow\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

The twisted Lefschetz group

- More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\}
$$

- For $g=4$, Mumford has constructed A / k such that

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \simeq \mathbb{Z} \quad \text { and } \quad \mathcal{G}_{\ell} \subsetneq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

- For $g \leq 3$, one has

$$
\mathcal{G}_{\ell} \simeq \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

Definition

The Twisted Lefschetz group is defined as

$$
\operatorname{TL}(A)=\bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{Sp}_{2 g} / \mathbb{Q} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

The Sato-Tate group when $g \leq 3$

- From now on, assume $g \leq 3$.

Definition

$\operatorname{ST}(A) \subseteq \operatorname{USp}(2 g)$ is a maximal compact subgroup of $\operatorname{TL}(A)(\mathbb{C})$.

- Note that

$$
\mathrm{ST}(A) / \mathrm{ST}(A)^{0} \simeq \operatorname{TL}(A) / \operatorname{TL}(A)^{0} \simeq \operatorname{Gal}(F / k) .
$$

where F / k is the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$.
We call F the endomorphism field of A.

- To each prime \mathfrak{p} of good reduction for A, one can attach an element

$$
x_{\mathfrak{p}}=" \operatorname{Conj}\left(\frac{\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)}{\sqrt{N(\mathfrak{p})}}\right) " \in \operatorname{Conj}(\operatorname{ST}(A))
$$

Sato-Tate conjecture for abelian varieties
The sequence $\left\{x_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $\operatorname{Conj}(\mathrm{ST}(A))$ w.r.t the push forward of the Haar measure of $\mathrm{ST}(A)$.

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results

4 Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Sato-Tate axioms for $g \leq 3$

The Sato-Tate axioms for a closed subgroup $G \subseteq U S p(2 g)$ for $g \leq 3$ are:

Hodge condition (ST1)

There is a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and \bar{u} each with multiplicity g. The image of such a θ is called a Hodge circle. Moreover, the Hodge circles generate a dense subgroup of G^{0}.

Rationality condition (ST2)

For every connected component $H \subseteq G$ and for every irreducible character $\chi: \mathrm{GL}_{2 g}(\mathbb{C}) \rightarrow \mathbb{C}$:

$$
\int_{H} \chi(h) \mu_{\text {Haar }} \in \mathbb{Z}
$$

where $\mu_{\text {Haar }}$ is normalized so that $\mu_{\text {Haar }}\left(G^{0}\right)=1$.
Lefschetz condition (ST3)

$$
\left\{\gamma \in \operatorname{USp}(2 g) \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \text { End }_{G^{0}}\left(\mathbb{C}^{2 g}\right)\right\}=G^{0}
$$

General remarks and dimension $g=1$

Proposition

If $G=S T(A)$ for some A / k with $g \leq 3$, then G satisfies the $S T$ axioms.

$$
\begin{aligned}
\text { Mumford-Tate conjecture } & \rightsquigarrow \text { (ST1) } \\
\text { "Rationality" of } \mathcal{G}_{\ell} & \rightsquigarrow \text { (ST2) } \\
\text { Bicommutant property of } \mathcal{G}_{\ell}^{0} & \rightsquigarrow \text { (ST3) }
\end{aligned}
$$

- Axioms (ST1), (ST2) are expected for general g. But not (ST3)!

Remark ($g=1$)

- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
- All 3 occur as ST groups of elliptic curves defined over number fields.
- Only 2 of them occur as ST groups of elliptic curves defined over \mathbb{Q}.

Sato-Tate groups for $g=2$

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.
- 52 of them occur as ST groups of abelian surfaces over number fields.
- 34 of them occur as ST groups of abelian surfaces over \mathbb{Q}.

Corollary

The degree of the endomorphism field of an abelian surface over a number field divides 48.
(this refines previous results by Silverberg).
Theorem (Johansson, N. Taylor; 2014-19)
For $g=2$ and $k=\mathbb{Q}$, the ST conjecture holds for 33 of the 34 possible ST groups.

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.
- Only 410 of them occur as Sato-Tate groups of abelian threefolds over number fields.

Corollary

The degree of the endomorphism field $[F: \mathbb{Q}]$ of an abelian threefold over a number field divides 192, 336, or 432.

- This refines a previous result of Guralnick and Kedlaya, which asserts

$$
[F: \mathbb{Q}] \mid 2^{6} \cdot 3^{3} \cdot 7=\operatorname{Lcm}(192,336,432) .
$$

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results

4 Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Classification: identity components

(ST1) and (ST3) allow 14 possibilities for $G^{0} \subseteq \mathrm{USp}(6)$:

```
USp(6)
U(3)
\(S U(2) \times \operatorname{USp}(4)\)
\(\mathrm{U}(1) \times \mathrm{USp}(4)\)
\(U(1) \times S U(2) \times S U(2)\)
\(S U(2) \times U(1) \times U(1)\)
\(\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{U}(1)_{2}\)
\(\mathrm{U}(1) \times \mathrm{SU}(2)_{2}\)
\(\mathrm{U}(1) \times \mathrm{U}(1)_{2}\)
\(\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)\)
\(\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)\)
\(\mathrm{SU}(2)_{3}\)
\(\mathrm{U}(1)_{3}\)
```

Notations:

- For $d \in\{1,3\}$:

$$
\mathrm{U}(d)=\left(\begin{array}{cc}
\mathrm{U}(d)^{\mathrm{St}} & 0 \\
0 & \overline{\mathrm{U}(d)} \mathrm{St}
\end{array}\right) \subseteq \mathrm{USp}(2 d)
$$

- For $d \in\{2,3\}$ and $H \in\{S U(2), \mathrm{U}(1)\}$:

$$
H_{d}=\{\operatorname{diag}(u,, u) \mid u \in H\}
$$

- Note in particular that

$$
\mathrm{SU}(2) \times \mathrm{U}(1)_{2} \simeq \mathrm{U}(1) \times \mathrm{SU}(2)_{2} .
$$

Determining the possibilities for G for fixed G^{0}

- Compute $N=N_{U S p(6)}\left(G^{0}\right)$ and N / G^{0}.
- Use

$$
\left\{\begin{array}{c}
\mathcal{G} \subseteq \\
\text { USp(6) with } \mathcal{G}^{0}=G^{0} \\
\text { satisfying (ST2) }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
\text { finite } H \subseteq N / G^{0} \text { s.t. } \\
H G^{0} \text { satisfies (ST2) }
\end{array}\right\} / \sim
$$

- Consider 3 cases:
- Genuine of dimension 3: $G^{0} \subseteq \operatorname{USp}(6)$ cannot be written as

$$
\begin{equation*}
G^{0}=G^{0,1} \times G^{0,2} \text { with } G^{0,1} \subseteq \operatorname{SU}(2) \text { and } G^{0,2} \subseteq U S p(4) \tag{*}
\end{equation*}
$$

- Split case: G^{0} can be written as in $\left(^{*}\right)$ and

$$
N \simeq N_{1} \times N_{2}, \quad \text { where } N_{i}=N_{\mathrm{USp}(2 i)}\left(G^{0, i}\right) .
$$

- Non-split case: G^{0} can be written as in $\left(^{*}\right)$ and

$$
N_{1} \times N_{2} \subsetneq N .
$$

Classification: cases depending on G^{0}

$$
\begin{aligned}
\text { Genuine dim. } 3 \text { cases } & \left\{\begin{array}{l}
\mathrm{USp}(6) \\
\mathrm{U}(3)
\end{array}\right. \\
\text { Split cases } & \left\{\begin{array}{l}
\mathrm{SU}(2) \times \mathrm{USp}(4) \\
\mathrm{U}(1) \times \mathrm{USp}(4) \\
\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \\
\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1) \\
\mathrm{SU}(2) \times \mathrm{SU}(2)_{2} \\
\mathrm{SU}(2) \times \mathrm{U}(1)_{2} \\
\mathrm{U}(1) \times \mathrm{SU}(2)_{2} \\
\mathrm{U}(1) \times \mathrm{U}(1)_{2}
\end{array}\right. \\
\text { Non-split cases } & \left\{\begin{array}{l}
\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \\
\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1) \\
\mathrm{SU}(2)_{3} \\
\mathrm{U}(1)_{3}
\end{array}\right.
\end{aligned}
$$

Classification: From G^{0} to G

- Genuine cases: $\operatorname{USp}(6), U(3), N(U(3))$.
- Split cases. The determination of

$$
\mathcal{A}=\left\{\begin{array}{c}
H \subseteq N / G^{0} \text { finite s.t. } \\
H G^{0} \text { satisfies }(\mathrm{ST} 2)
\end{array}\right\} / \sim
$$

is facilitated by fact that $N \simeq N_{1} \times N_{2}$: H must be a fiber product of finite groups encountered in the classifications in dimensions 1 and 2.
This accounts for 211 groups.

- Non-split cases:

G^{0}	N / G^{0}	$\# \mathcal{A}$
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	S_{3}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes S_{3}$	33
$\mathrm{SU}(2)_{3}$	$\mathrm{SO}(3)$	11
$\mathrm{U}(1)_{3}$	$\mathrm{PSU}(3) \rtimes C_{2}$	171

$G^{0}=U(1)_{3}$: Ingredients of the proof

- The finite $\mu_{3} \subseteq H \subseteq \operatorname{SU}(3)$ were classified by Blichfeldt, Miller, and Dickson (1916). They are:
- Abelian groups
- C_{2}-extensions of abelian groups.
- C_{3}-extenions of abelian groups.
- S_{3}-extensions of abelian groups.
- cyclic extensions of exceptional subgroups of $\operatorname{SU}(2)(2 T, 2 O, 2 l)$.
- Exceptional subgroups of SU(3) (projected in PSU(3) are $E(36), E(72), E(216), A_{5}, A_{6}, E(168)$).
- Determining the possible orders of $h \in H$:
- (ST2) implies that $|\operatorname{Tr}(h)|^{2} \in \mathbb{Z}$.
- If $z_{1}, z_{2}, z_{3} \in \mu_{\infty}$ are the eigenvalues of h, then:

$$
\left|z_{1}+z_{2}+z_{3}\right|^{2} \in \mathbb{Z} \text { and } z_{1} z_{2} z_{3}=1
$$

- One deduces that ord $(h) \mid 21,24,36$.
- Assemble elements to build groups of the shape described by the BMD classification.
- Build C_{2}-extensions of H .

Classification: Invariants

- Only 210 distinct pairs $\left(G^{0}, G / G^{0}\right)$.
- Define the (i, j, k)-th moment, for $i, j, k \geq 0$, as

$$
M_{i, j, k}(G):=\operatorname{dim}_{\mathbb{C}}\left(\left(\wedge^{1} \mathbb{C}^{6}\right)^{\otimes i} \otimes\left(\wedge^{2} \mathbb{C}^{6}\right)^{\otimes j} \otimes\left(\wedge^{3} \mathbb{C}^{6}\right)^{\otimes k}\right)^{G} \in \mathbb{Z}_{\geq 0}
$$

- The sequence $\left\{\mathrm{M}_{i, j, k}(G)\right\}_{i, j, k}$ attains 432 values. It only conflates a pair of groups G_{1}, G_{2}, for which however

$$
G_{1} / G_{1}^{0} \simeq\langle 54,5\rangle \nsimeq\langle 54,8\rangle \simeq G_{2} / G_{2}^{0} .
$$

- In total, the 433 groups have 10988 connected components (4 for $g=1$ and 414 for $g=2$).
- Any possible order of G / G^{0} divides 192, 336, or 432.

Layout

(1) Sato-Tate groups of elliptic curves
(2) Sato-Tate groups of abelian varieties of dimension ≤ 3
(3) Statement of the main results

4 Abelian threefolds: The classification problem
(5) Abelian threefolds: The realization problem

Realization: upper bound

- For $G^{0}=\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$, we have found 33 subgroups in $N / G^{0} \simeq\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes S_{3}$ (all satisfying (ST2)).
- However, if G is realizable by A, then
- A is isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k) \simeq \prod \mathrm{Gal}\left(k M_{i}^{*} / k\right) \subseteq C_{2} \times C_{2} \times C_{2}, C_{2} \times C_{4}, C_{6}$.
- This rules out 20 of the 33 subgroups of N / G^{0}.
- For $G^{0}=\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$, a similar logic rules out 3 of the subgroups in $N / G^{0} \simeq D_{4}$ (all satisfying (ST2)). These correspond to the 3 subgroups which satisfy the ST axioms in dimension 2, but do not arise as ST groups.
- This leaves 433-20-3=410 groups.
- It suffices to realize the 33 maximal groups (for prescribed identity component). Finite index subgroups are realized by base change.

Realization of the maximal groups

- Genuine cases (2 max. groups):
- $\operatorname{USp}(6)$: generic case. Eg.: $y^{2}=x^{7}-x+1 / \mathbb{Q}$.
- $N(U(3))$: Picard curves. Eg.: $y^{3}=x^{4}+x+1 / \mathbb{Q}$.
- Split cases (13 max. groups):

Maximality ensures the triviality of the fiber product, i.e.

$$
G \simeq G_{1} \times G_{2},
$$

where G_{1} and G_{2} are realizable in dimensions 1 and 2 .

- Triple products (4 max. groups):
- $G^{0}=\operatorname{SU}(2) \times \operatorname{SU}(2) \times \operatorname{SU}(2)$ (1. max. group): $\operatorname{Res}_{\mathbb{Q}}^{L}(E)$, where L / \mathbb{Q} a non-normal cubic and E / L e.c. which is not a \mathbb{Q}-curve.
- $G^{0}=\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$ (3 max. groups):

Products of CM abelian varieties.

Realization of the maximal groups

- $G^{0}=\operatorname{SU}(2)_{3}$ (2 max. groups: S_{4}, D_{6}): Twists of cubes of non CM elliptic curves.
- Take a non CM elliptic curve E.
- Consider a faithful representation

$$
\xi: \operatorname{Gal}(L / \mathbb{Q}) \simeq S_{4} \rightarrow \operatorname{GL}_{3}(\mathbb{Z})
$$

- Let $A=E^{3}$ and $A_{\tilde{\xi}}$ be the twist of A by

$$
\tilde{\xi}: \operatorname{Gal}(L / \mathbb{Q}) \simeq S_{4} \rightarrow \operatorname{Aut}(A)
$$

- $G^{0}=U(1)_{3}$ (12 max. groups): Twists of cubes of CM elliptic curves.

