Effective Sato-Tate conjecture for abelian varieties with applications

Alina Bucur (UCSD), Francesc Fité ${ }^{1}$ (MIT), Kiran S. Kedlaya (UCSD)

Joint Mathematics Meetings 2020 (Denver)

$$
01 / 15 / 2020
$$

[^0]
Notations

Throughout the talk:

- k is a number field.
- A / k is an abelian variety of dimension $g \geq 1$.
- N denotes the absolute conductor of A.
- For a prime ℓ,

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right)
$$

the ℓ-adic representation attached to A, where

$$
T_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_{\ell}^{2 g}, \quad V_{\ell}(A):=T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}
$$

- For a prime \mathfrak{p} of k not dividing $N \ell$, let
- $a_{\mathfrak{p}}:=a_{\mathfrak{p}}(A):=\operatorname{Tr}\left(\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$ denote the Frobenius trace at \mathfrak{p}.
- $\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{\operatorname{Nm}(\mathfrak{p})^{1 / 2}} \in[-2 g, 2 g]$ be the normalized Frobenius trace at \mathfrak{p}.

Sato-Tate group and Sato-Tate measure

- From now on, we will assume the following conjecture.

Conjecture (Banaszak-Kedlaya)

Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$. Then there exists an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$ such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} .
$$

Sato-Tate group and Sato-Tate measure

- From now on, we will assume the following conjecture.

Conjecture (Banaszak-Kedlaya)

Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $G p_{2 g} / \mathbb{Q}_{\ell}$. Then there exists an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$ such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} .
$$

- Known in many cases: it is implied by the Mumford-Tate conjecture.
\square

Sato-Tate group and Sato-Tate measure

- From now on, we will assume the following conjecture.

Conjecture (Banaszak-Kedlaya)

Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$. Then there exists an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$ such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} .
$$

- Known in many cases: it is implied by the Mumford-Tate conjecture.
- The Sato-Tate group of A, denoted $\mathrm{ST}(A)$, is a maximal compact subgroup of $\left(G \cap S p_{2 g}\right)(\mathbb{C})$. It is thus a subgroup of $\operatorname{USp}(2 g)$.
- Let μ denote the push forward of the Haar measure of ST(A) via

$$
\operatorname{Tr}: \mathrm{ST}(A) \rightarrow[-2 g, 2 g]
$$

Sato-Tate group and Sato-Tate measure

- From now on, we will assume the following conjecture.

Conjecture (Banaszak-Kedlaya)

Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$. Then there exists an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$ such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} .
$$

- Known in many cases: it is implied by the Mumford-Tate conjecture.
- The Sato-Tate group of A, denoted $\mathrm{ST}(A)$, is a maximal compact subgroup of $\left(G \cap \mathrm{Sp}_{2 g}\right)(\mathbb{C})$. It is thus a subgroup of $\operatorname{USp}(2 g)$.
- Let μ denote the push forward of the Haar measure of $\operatorname{ST}(A)$ via

$$
\operatorname{Tr}: \mathrm{ST}(A) \rightarrow[-2 g, 2 g]
$$

We call μ the Sato-Tate measure of A.

The Sato-Tate conjecture

Sato-Tate conjecture for abelian varieties
For any subinterval I of $[-2 g, 2 g]$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}=\mu(I)
$$

Equivalently,

where

The Sato-Tate conjecture

Sato-Tate conjecture for abelian varieties

For any subinterval I of $[-2 g, 2 g]$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}=\mu(I)
$$

Equivalently,

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{I}\left(\bar{a}_{\mathfrak{p}}\right)=\mu(I) \operatorname{Li}(x)+o\left(\frac{x}{\log (x)}\right)
$$

where

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log (t)} \quad \text { and } \quad \delta_{l} \text { is the characteristic function of } I
$$

The effective Sato-Tate conjecture

Effective Sato-Tate conjecture for abelian varieties

There exists $\varepsilon>0$ depending exclusively on $\mathrm{ST}(A)$ (and therefore, in fact, only on g) such that, for every subinterval $/$ of $[-2 g, 2 g]$, we have

$$
\sum_{N \mathrm{~m}(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right)=\mu(I) \operatorname{Li}(x)+O\left(x^{1-\varepsilon}\right) \quad \text { for } x \gg 10,
$$

where the implicit constant in the O-notation depends exclusively on the field k, the dimension g, and the absolute conductor N.

The Sato-Tate conjecture and L-functions

- To every irreducible representation 「 of $\mathrm{ST}(A)$, one attaches à la Artin an Euler product:

$$
L(\Gamma(A), s):=\prod_{\mathfrak{p}} L_{\mathfrak{p}}\left(\Gamma(A), N m(\mathfrak{p})^{-s}\right)^{-1}
$$

which is absolutely convergent for $\Re(s)>1$.

> Theorem (Serre '68)
> Suppose that $L(\Gamma(A)$, s) extends to a holomorphic function on an open neighborhood of $\Re(s) \geq 1$ and that does not vanish at $\Re(s)=1$ for every irreducible nontrivial representation 「 of $\mathrm{ST}(A)$.
> Then the Sato-Tate conjecture holds for A.

The Sato-Tate conjecture and L-functions

- To every irreducible representation 「 of $\mathrm{ST}(A)$, one attaches à la Artin an Euler product:

$$
L(\Gamma(A), s):=\prod_{\mathfrak{p}} L_{\mathfrak{p}}\left(\Gamma(A), N m(\mathfrak{p})^{-s}\right)^{-1}
$$

which is absolutely convergent for $\Re(s)>1$.

Theorem (Serre '68)

Suppose that $L(\Gamma(A), s)$ extends to a holomorphic function on an open neighborhood of $\Re(s) \geq 1$ and that does not vanish at $\Re(s)=1$ for every irreducible nontrivial representation Γ of $\mathrm{ST}(A)$.
Then the Sato-Tate conjecture holds for A.

The effective Sato-Tate conjecture and L-functions

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s) .
$$

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
- $\wedge(\Gamma(A), s)=\varepsilon \cdot \wedge\left(\Gamma^{\vee}(A), 1-s\right)$ for some $\varepsilon \in \mathbb{C}$ with $|\varepsilon|=1$
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

The effective Sato-Tate conjecture and L-functions

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s)
$$

Conjecture (Generalized Riemann hypothesis (GRH) for $\Lambda(\Gamma(A), s)$)

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
- $\Lambda(\Gamma(A), s)=\varepsilon \cdot \Lambda\left(\Gamma^{\vee}(A), 1-s\right)$ for some $\varepsilon \in \mathbb{C}$ with $|\varepsilon|=1$.
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

Suppose that A / \mathbb{Q} is an elliptic curve without CM and that GRH holds for $\Lambda\left(\operatorname{Sym}^{\prime}(A), s\right)$ for every $I \geq 0$. For every subinterval $I \subseteq[-2,2]$, we have

The effective Sato-Tate conjecture and L-functions

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s) .
$$

Conjecture (Generalized Riemann hypothesis (GRH) for $\Lambda(\Gamma(A), s)$)

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
- $\Lambda(\Gamma(A), s)=\varepsilon \cdot \Lambda\left(\Gamma^{\vee}(A), 1-s\right)$ for some $\varepsilon \in \mathbb{C}$ with $|\varepsilon|=1$.
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

Theorem (Murty '83)
Suppose that A / \mathbb{Q} is an elliptic curve without CM and that GRH holds for $\Lambda\left(\operatorname{Sym}^{\prime}(A), s\right)$ for every $I \geq 0$. For every subinterval $I \subseteq[-2,2]$, we have

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{p}\right)=\mu(I) \operatorname{Li}(x)+O\left(x^{3 / 4}(\log (N x))^{1 / 2}\right) \quad \text { for } x \gg 10 .
$$

Main result

Theorem (Bucur-F.-Kedlaya)
Suppose that $\operatorname{ST}(A)$ is connected and that GRH for $\Lambda(\Gamma(A)$, s) holds for every irreducible representation Γ of $\mathrm{ST}(A)$.

where q denotes the rank of the Lie algebra of $\mathrm{ST}(A)$ and φ denotes the number of positive roots of its semisimple part. Then, for every subinterval I of $[-2 g, 2 g]$, we have

Main result

Theorem (Bucur-F.-Kedlaya)
Suppose that $\operatorname{ST}(A)$ is connected and that $G R H$ for $\Lambda(\Gamma(A), s)$ holds for every irreducible representation Γ of $\mathrm{ST}(A)$. Set

$$
\varepsilon:=\frac{1}{2(q+\varphi)},
$$

where q denotes the rank of the Lie algebra of $\operatorname{ST}(A)$ and φ denotes the number of positive roots of its semisimple part.
I of $[-2 g, 2 g]$, we have

where the implicit constant in the O-notation depends exclusively on k and g

Main result

Theorem (Bucur-F.-Kedlaya)

Suppose that $\mathrm{ST}(A)$ is connected and that GRH for $\Lambda(\Gamma(A), s)$ holds for every irreducible representation Γ of $\mathrm{ST}(A)$. Set

$$
\varepsilon:=\frac{1}{2(q+\varphi)},
$$

where q denotes the rank of the Lie algebra of $\operatorname{ST}(A)$ and φ denotes the number of positive roots of its semisimple part. Then, for every subinterval I of $[-2 g, 2 g]$, we have

$$
\sum_{N \mathrm{~m}(\mathrm{p}) \leq x} \delta_{l}\left(\bar{a}_{p}\right)=\mu(I) \mathrm{Li}(x)+O\left(\frac{x^{1-\varepsilon}(\log (N x))^{2 \varepsilon}}{\log (x)^{1-4 \varepsilon}}\right) \quad \text { for } x \gg 10 \text {, }
$$

where the implicit constant in the O-notation depends exclusively on k and g.

Predictions for dimensions $g=1$ and $g=2$

- This extends Murty's result and previous work by Bucur and Kedlaya, who considered the case $A=E \times E^{\prime}$, where E and E^{\prime} are nonisogenous elliptic curves without CM.

Predictions for dimensions $g=1$ and $g=2$

- This extends Murty's result and previous work by Bucur and Kedlaya, who considered the case $A=E \times E^{\prime}$, where E and E^{\prime} are nonisogenous elliptic curves without CM.

g	Splitting of A	$\mathrm{ST}(A)$	ε	Error term
1	E	$\mathrm{SU}(2)$	$1 / 4$	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
1	$E_{C M}$	$\mathrm{U}(1)$	$1 / 2$	$O\left(x^{1 / 2} \log (N x) \log (x)\right)$
2	S	$\mathrm{USp}(4)$	$1 / 12$	$O\left(x^{11 / 12} \log (N x)^{1 / 6} \log (x)^{-2 / 3}\right)$
2	$S_{R M}$ $E \times E^{\prime}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$	$1 / 8$	$O\left(x^{7 / 8} \log (N x)^{1 / 4} \log (x)^{-1 / 2}\right)$
2	$E \times E_{C M}^{\prime}$	$\mathrm{SU}(2) \times \mathrm{U}(1)$	$1 / 6$	$O\left(x^{5 / 6} \log (N x)^{1 / 3} \log (x)^{-1 / 3}\right)$
2	$E_{C M} \times E_{C M}^{\prime}$ $S_{C M}$	$\mathrm{U}(1) \times \mathrm{U}(1)$	$1 / 4$	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
2	E^{2} $S_{Q M}$	$\mathrm{SU}(2)$	$1 / 4$	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
2	$E_{C M}^{2}$	$\mathrm{U}(1)$	$1 / 2$	$O\left(x^{1 / 2} \log (N x) \log (x)\right)$

Predictions for dimensions $g=1$ and $g=2$

- This extends Murty's result and previous work by Bucur and Kedlaya, who considered the case $A=E \times E^{\prime}$, where E and E^{\prime} are nonisogenous elliptic curves without CM.

g	Splitting of A	ST(A)	ε	Error term
1	E	SU(2)	1/4	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
1	$E_{C M}$	U(1)	1/2	$O\left(x^{1 / 2} \log (N x) \log (x)\right)$
2	S	USp(4)	1/12	$O\left(x^{11 / 12} \log (N x)^{1 / 6} \log (x)^{-2 / 3}\right)$
2	$\begin{gathered} S_{R M} \\ E \times E^{\prime} \end{gathered}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$	1/8	$O\left(x^{7 / 8} \log (N x)^{1 / 4} \log (x)^{-1 / 2}\right)$
2	$E \times E_{C M}^{\prime}$	$\mathrm{SU}(2) \times \mathrm{U}(1)$	1/6	$O\left(x^{5 / 6} \log (N x)^{1 / 3} \log (x)^{-1 / 3}\right)$
2	$\begin{gathered} E_{C M} \times E_{C M}^{\prime} \\ S_{C M} \end{gathered}$	$\mathrm{U}(1) \times \mathrm{U}(1)$	1/4	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
2	$\begin{gathered} E^{2} \\ S_{Q M} \\ \hline \end{gathered}$	SU(2)	1/4	$O\left(x^{3 / 4} \log (N x)^{1 / 2}\right)$
2	$E_{C M}^{2}$	U(1)	1/2	$O\left(x^{1 / 2} \log (N x) \log (x)\right)$

- Numerical data suggests that $\varepsilon=1 / 2$ in all cases.

Ingredients in the proof (I): the Vinogradov function

We construct a function:

with the properties:

- F_{I} is a continuous approximation of the characteristic function of $\pi^{-1} \sigma_{T}^{-1}(I)$.
- $F_{I}(\theta)=\sum_{m \in \mathbb{1}, 9} c_{m} e^{2 r i \theta \cdot m}$ has

Fourier coefficients of rapid decay.

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\text { Frob }_{\mathfrak{p}}\right) .
$$

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\text { Frob }_{\mathfrak{p}}\right) .
$$

- Write $F_{I}=\sum_{\chi} c_{\chi} \chi$. The c_{χ} are still of rapid decay and $c_{1} \approx \mu(I)$.

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\text { Frob }_{\mathfrak{p}}\right) .
$$

- Write $F_{I}=\sum_{\chi} c_{\chi} \chi$. The c_{χ} are still of rapid decay and $c_{1} \approx \mu(I)$.

$\sum$$\delta_{l}\left(\bar{a}_{p}\right) \approx \mu(I) L i(x)+\sum c_{x}$ $\operatorname{Nm}(\mathfrak{p}) \leq x$

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\mathrm{Frob}_{\mathfrak{p}}\right) .
$$

- Write $F_{I}=\sum_{\chi} c_{\chi} \chi$. The c_{χ} are still of rapid decay and $c_{1} \approx \mu(I)$.
- Then

$$
\sum_{N \mathrm{~m}(\mathfrak{p}) \leq x} \delta_{I}\left(\bar{a}_{\mathfrak{p}}\right) \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N \mathrm{~m}(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right) .
$$

- For $\chi \neq 1$ Murty's estimate gives

$\operatorname{Nm}(\mathfrak{p}) \leq x$
-

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\mathrm{Frob}_{\mathfrak{p}}\right) .
$$

- Write $F_{I}=\sum_{\chi} c_{\chi} \chi$. The c_{χ} are still of rapid decay and $c_{1} \approx \mu(I)$.
- Then

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N m(\mathfrak{p}) \leq x} \chi\left(\text { Frob }_{\mathfrak{p}}\right)
$$

- For $\chi \neq 1$ Murty's estimate gives

$$
\sum_{\operatorname{Vm}(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=O\left(d_{\chi} x^{1 / 2} \log \left(N\left(x+w_{\chi}\right)\right)\right)
$$

- The rapid decay of the coefficients c_{χ} compensates the rapid growth of the dimensions d_{χ}, which is exponential in φ.

Ingredients of the proof (II): Murty's estimate

- By construction

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{l}\left(\bar{a}_{\mathfrak{p}}\right) \approx \sum_{\mathrm{Nm}(\mathfrak{p}) \leq x} F_{l}\left(\operatorname{Frob}_{\mathfrak{p}}\right) .
$$

- Write $F_{I}=\sum_{\chi} c_{\chi} \chi$. The c_{χ} are still of rapid decay and $c_{1} \approx \mu(I)$.
- Then

$$
\sum_{N m(\mathfrak{p}) \leq x} \delta_{I}\left(\bar{a}_{\mathfrak{p}}\right) \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N m(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)
$$

- For $\chi \neq 1$ Murty's estimate gives

$$
\sum_{N m(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=O\left(d_{\chi} x^{1 / 2} \log \left(N\left(x+w_{\chi}\right)\right)\right)
$$

- The rapid decay of the coefficients c_{χ} compensates the rapid growth of the dimensions d_{χ}, which is exponential in φ.

Interval variant of Linnik's problem for abelian varieties

Corollary 1

Assume the hypotheses of the main result. For every subinterval I of $[-2 g, 2 g]$, there exists a prime \mathfrak{p} not dividing N such that $\bar{a}_{\mathfrak{p}} \in I$ and

$$
N \mathrm{~m}(\mathfrak{p})=O\left(\nu(\min \{|I|, \mu(I)\}) \cdot \log (2 N)^{2} \cdot \log (\log (4 N))^{4}\right) .
$$

The implicit constant in the O-notation depends exclusively on k and g, and $\nu: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ is defined by

$$
\nu(z):=\max \left\{1, \frac{\log (z)^{6}}{z^{1 / \varepsilon}}\right\}
$$

- This generalizes work of Chen-Park-Swaminathan, who considered the case in which A is an elliptic curve.

Interval variant of Linnik's problem for abelian varieties

Corollary 1

Assume the hypotheses of the main result. For every subinterval / of $[-2 g, 2 g]$, there exists a prime \mathfrak{p} not dividing N such that $\bar{a}_{\mathfrak{p}} \in I$ and

$$
N \mathrm{~m}(\mathfrak{p})=O\left(\nu(\min \{|I|, \mu(I)\}) \cdot \log (2 N)^{2} \cdot \log (\log (4 N))^{4}\right) .
$$

The implicit constant in the O-notation depends exclusively on k and g, and $\nu: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ is defined by

$$
\nu(z):=\max \left\{1, \frac{\log (z)^{6}}{z^{1 / \varepsilon}}\right\} .
$$

- This generalizes work of Chen-Park-Swaminathan, who considered the case in which A is an elliptic curve.

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.
 If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.
- Under GRH for Artin L-functions, such a p can be taken with
\square (Serre '86; using "Effective Chebotarev")

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem)
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem)
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
\qquad

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem) If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
Theorem (Harris '09; corollary of Sato-Tate for $A \times A^{\prime}$ over \mathbb{Q})
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

- Under GRH for Symmetric power L-functions, such a p can be taken with (Bucur and Kedlaya '12; using "Effective Sato-Tate").

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem) If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
Theorem (Harris '09; corollary of Sato-Tate for $A \times A^{\prime}$ over \mathbb{Q})
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

- Under GRH for Symmetric power L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{6}\right)
$$

(Bucur and Kedlaya '12; using "Effective Sato-Tate").

Sign variant of Linnik's problem for two abelian varieties
Conjecture
If $\operatorname{Hom}\left(A, A^{\prime}\right)=0$, then there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{\mathfrak{p}}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

Corollary 2
Let A, A^{\prime} be abelian varieties such that $\mathrm{ST}(A), \mathrm{ST}\left(A^{\prime}\right)$ are connected, and

$$
\mathrm{ST}\left(A \times A^{\prime}\right) \simeq \operatorname{ST}(A) \times \operatorname{ST}\left(A^{\prime}\right)
$$

Assume that GRH for $\Lambda\left(\Gamma(A) \otimes \Gamma^{\prime}\left(A^{\prime}\right), s\right)$ holds for all irreducible rep. Γ, Γ^{\prime}. Then, there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{\mathfrak{p}}(A) \cdot a_{\mathfrak{p}}\left(A^{\prime}\right)<0$ and

$$
\operatorname{Nm}(\mathfrak{p})=O\left(\log \left(2 N N^{\prime}\right)^{2} \log \left(\log \left(4 N N^{\prime}\right)\right)^{6}\right)
$$

Sign variant of Linnik's problem for two abelian varieties

Conjecture

If $\operatorname{Hom}\left(A, A^{\prime}\right)=0$, then there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

Corollary 2

Let A, A^{\prime} be abelian varieties such that $\operatorname{ST}(A), \operatorname{ST}\left(A^{\prime}\right)$ are connected, and

$$
\begin{equation*}
\operatorname{ST}\left(A \times A^{\prime}\right) \simeq \operatorname{ST}(A) \times \operatorname{ST}\left(A^{\prime}\right) . \tag{1}
\end{equation*}
$$

Assume that GRH for $\Lambda\left(\Gamma(A) \otimes \Gamma^{\prime}\left(A^{\prime}\right), s\right)$ holds for all irreducible rep.
Γ, Γ^{\prime}. Then, there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{\mathfrak{p}}(A) \cdot a_{\mathfrak{p}}\left(A^{\prime}\right)<0$ and

$$
\begin{equation*}
N m(\mathfrak{p})=O\left(\log \left(2 N N^{\prime}\right)^{2} \log \left(\log \left(4 N N^{\prime}\right)\right)^{6}\right) . \tag{2}
\end{equation*}
$$

- Using Bach kernel integration, we can
- replace (1) with the weaker condition $\operatorname{Hom}\left(A, A^{\prime}\right)=0$. - improve (2) to $O\left(\log \left(2 N N^{\prime}\right)^{2}\right)$.

Sign variant of Linnik's problem for two abelian varieties

Conjecture

If $\operatorname{Hom}\left(A, A^{\prime}\right)=0$, then there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

Corollary 2

Let A, A^{\prime} be abelian varieties such that $\operatorname{ST}(A), \operatorname{ST}\left(A^{\prime}\right)$ are connected, and

$$
\begin{equation*}
\operatorname{ST}\left(A \times A^{\prime}\right) \simeq \operatorname{ST}(A) \times \operatorname{ST}\left(A^{\prime}\right) . \tag{1}
\end{equation*}
$$

Assume that GRH for $\Lambda\left(\Gamma(A) \otimes \Gamma^{\prime}\left(A^{\prime}\right)\right.$, s) holds for all irreducible rep.
Γ, Γ^{\prime}. Then, there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{\mathfrak{p}}(A) \cdot a_{\mathfrak{p}}\left(A^{\prime}\right)<0$ and

$$
\begin{equation*}
N m(\mathfrak{p})=O\left(\log \left(2 N N^{\prime}\right)^{2} \log \left(\log \left(4 N N^{\prime}\right)\right)^{6}\right) \tag{2}
\end{equation*}
$$

- Using Bach kernel integration, we can
- replace (1) with the weaker condition $\operatorname{Hom}\left(A, A^{\prime}\right)=0$.
- improve (2) to $O\left(\log \left(2 N N^{\prime}\right)^{2}\right)$.

Frobenius traces attaining the Weil bound

- On this slide, let A be an elliptic curve with CM (defined over k).
- Consider the set of "record primes"

$$
R(x)=\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor\right\}
$$

Frobenius traces attaining the Weil bound

- On this slide, let A be an elliptic curve with CM (defined over k).
- Consider the set of "record primes"

$$
R(x)=\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor\right\} .
$$

- Serre has conjectured ${ }^{2}$

Frobenius traces attaining the Weil bound

- On this slide, let A be an elliptic curve with CM (defined over k).
- Consider the set of "record primes"

$$
R(x)=\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor\right\}
$$

- Serre has conjectured ${ }^{2}$

$$
\# R(x) \sim \frac{4}{3 \pi} \frac{x^{3 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

Suppose that GRH holds for the Hecke L-function attached to any integral power of the Hecke character of A. Then

[^1]
Frobenius traces attaining the Weil bound

- On this slide, let A be an elliptic curve with CM (defined over k).
- Consider the set of "record primes"

$$
R(x)=\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } a_{\mathfrak{p}}=\lfloor 2 \sqrt{\operatorname{Nm}(\mathfrak{p})}\rfloor\right\}
$$

- Serre has conjectured ${ }^{2}$

$$
\# R(x) \sim \frac{4}{3 \pi} \frac{x^{3 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

Corollary 3

Suppose that GRH holds for the Hecke L-function attached to any integral power of the Hecke character of A. Then

$$
\# R(x) \asymp \frac{x^{3 / 4}}{\log (x)} \quad \text { for } x \gg 0
$$

${ }^{2}$ Added after the talk: As J. Achter pointed out to me during the JMM2020, this has been proven by K. James and and P. Pollack. Thus Corollary 3 only recovers a weaker and conditional form of James' and Pollack's result!

Frobenius traces attaining the Weil bound

- A simple idea:

If $\operatorname{Nm}(\mathfrak{p}) \leq x$ and $\bar{a}_{\mathfrak{p}} \in I_{x}:=\left(2-x^{-1 / 2}, 2\right)$, then $a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor$.

- Therefore

Frobenius traces attaining the Weil bound

- A simple idea:

If $\operatorname{Nm}(\mathfrak{p}) \leq x$ and $\bar{a}_{\mathfrak{p}} \in I_{x}:=\left(2-x^{-1 / 2}, 2\right)$, then $a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor$.

- Therefore

$$
\# R(x) \geq \sum_{N m(\mathfrak{p}) \leq x} \delta_{I_{x}}\left(\bar{a}_{\mathfrak{p}}\right)=\mu\left(I_{x}\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log (N x) \log (x)\right) .
$$

- Using that $\mu\left(I_{x}\right)=\frac{1}{\pi} x^{-1 / 4}+O\left(x^{-3 / 4}\right)$, we find that

Frobenius traces attaining the Weil bound

- A simple idea:

If $\operatorname{Nm}(\mathfrak{p}) \leq x$ and $\bar{a}_{\mathfrak{p}} \in I_{x}:=\left(2-x^{-1 / 2}, 2\right)$, then $a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor$.

- Therefore

$$
\# R(x) \geq \sum_{N m(\mathfrak{p}) \leq x} \delta_{I_{x}}\left(\bar{a}_{\mathfrak{p}}\right)=\mu\left(I_{x}\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log (N x) \log (x)\right)
$$

- Using that $\mu\left(I_{x}\right)=\frac{1}{\pi} x^{-1 / 4}+O\left(x^{-3 / 4}\right)$, we find that

$$
\# R(x) \geq \frac{1}{\pi} \frac{x^{3 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

- If A is a non $C M$ elliptic curve, then $\mu\left(I_{x}\right)$ is tiny and the error term bigger. No hope for such an approach to count record primes!

Frobenius traces attaining the Weil bound

- A simple idea:

$$
\text { If } N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I_{x}:=\left(2-x^{-1 / 2}, 2\right) \text {, then } a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor
$$

- Therefore

$$
\# R(x) \geq \sum_{N m(\mathfrak{p}) \leq x} \delta_{I_{x}}\left(\bar{a}_{\mathfrak{p}}\right)=\mu\left(I_{x}\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log (N x) \log (x)\right)
$$

- Using that $\mu\left(I_{x}\right)=\frac{1}{\pi} x^{-1 / 4}+O\left(x^{-3 / 4}\right)$, we find that

$$
\# R(x) \geq \frac{1}{\pi} \frac{x^{3 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

- If A is a non CM elliptic curve, then $\mu\left(I_{x}\right)$ is tiny and the error term bigger. No hope for such an approach to count record primes!

Frobenius traces attaining the Weil bound

- A simple idea:

$$
\text { If } N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I_{x}:=\left(2-x^{-1 / 2}, 2\right) \text {, then } a_{\mathfrak{p}}=\lfloor 2 \sqrt{N m(\mathfrak{p})}\rfloor
$$

- Therefore

$$
\# R(x) \geq \sum_{N m(\mathfrak{p}) \leq x} \delta_{l_{x}}\left(\bar{a}_{\mathfrak{p}}\right)=\mu\left(I_{x}\right) \operatorname{Li}(x)+O\left(x^{1 / 2} \log (N x) \log (x)\right)
$$

- Using that $\mu\left(I_{x}\right)=\frac{1}{\pi} x^{-1 / 4}+O\left(x^{-3 / 4}\right)$, we find that

$$
\# R(x) \geq \frac{1}{\pi} \frac{x^{3 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

- If A is a non CM elliptic curve, then $\mu\left(I_{x}\right)$ is tiny and the error term bigger. No hope for such an approach to count record primes! Nonetheless, Serre still conjectures:

$$
\# R(x) \sim \frac{8}{3 \pi} \frac{x^{1 / 4}}{\log (x)} \quad \text { as } x \rightarrow \infty
$$

[^0]: ${ }^{1}$ Funded by the National Science Foundation grant DMS-1638352 and the Simons Foundation grant 550033.

[^1]: ${ }^{2}$ Added after the talk: As J. Achter pointed out to me during the JMM2020, this has been proven by K. James and and P. Pollack. Thus Corollary 3 only recovers a weaker and conditional form of James' and Pollack's result!

