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A conjecture

F is a number field.

A/F is an abelian variety

Call End(Ag) ® Q the endomorphism algebra of Ag.
For any g,d > 1, set

Lg.q ={End(Ag) ® Q[ dim(A) = g and [F : Q] = d}/ ~ .

Conjecture
For every g, d > 1, the set L, 4 is finite. J

(Attributed to Coleman; for example in a paper of Bruin-Flynn-Gonzélez-Rotger.)
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An open question

Example: g=d =1
#L11 =10.
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An open question

Example: g=d =1

#L11=10.
Indeed:

o End(Ag) ® Q is Q if A does not have CM.
o If A/Q has CM by M, then

CY(M) ~ Gal(Huy/M) ~ Gal(M(ja)/M) ~ {1} .

Thus there are 9 possibilities for M.

Problem
What is the set £, 7
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ay End(Ag) ® Q #Possibilities
Q
A is simple real quad. field
g 'S SImPp indef. div. quat. alg./Q
quartic CM field
As~ExE | @xQ :
ar?d ELE Q x My, M; quad. imag.
Ml X M2
A@ ~ E2 M2(Q)

M,(M), M quad. imag.
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Dec. of A@ End(A@) RQ #Possibilities
1
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Az End(Ag) ® Q #Possibilities
1
Q ?
real quad. field »

Ag s simple indef. div. quat. alg./Q

quartic CM field

13 (Murabayashi-Umegaki,
Bisson-Kilicer-Streng)

AQd EI:;LXE/E Q x My, M; quad. imag. 9, since #CI(M;) = 1
an Ml X M2 36
Ag ~ E? M:2(Q) 1

M, (M), M quad. imag.

?7, since #Cl(M) =1,2,...
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
1
Q ?
- real quad. field i
Az is simple . . ?
Q
In:aeriicdquflijjlz 2lg./Q 13 (Murabayashi-Umegaki,
q Bisson-Kilicer-Streng)
Y / QxQ 1
A@d Et;éXE{:_ Q x My, M; quad. imag. 9, since #CI(M;) =1
an Ml X M2 36
Af ~ E2 M2(@) 1
Q Ma(M), M quad. imag. N,

The goal of the talk is to find an upper bound for

N, = #{ab. surf. A/Q such that Ag ~ E?, where E has CM}/ ~g .
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
1
Q ?
- real quad. field i
Az is simple . . ?
Q
In:aeriicdquflijjlz 2lg./Q 13 (Murabayashi-Umegaki,
q Bisson-Kilicer-Streng)
Y / QxQ 1
A@d Et;éXE{:_ Q x My, M; quad. imag. 9, since #CI(M;) =1
an Ml X M2 36
Af ~ E2 M2(@) 1
Q Ma(M), M quad. imag. N,

Actually, for any prime g, we will find an upper bound for

Ng = #{ab. var. A/Q such that Ag ~ E€, where E has CM}/ ~5 .
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Main result

Theorem 1 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that A@ ~ E&, where
E/Q is an elliptic curve with CM by M. Then:
@ The class group CI(M) has exponent dividing g.
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Main result

Theorem 1 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that A@ ~ E&, where
E/Q is an elliptic curve with CM by M. Then:

@ The class group CI(M) has exponent dividing g.

@ If moreover g is prime, then

CI(M) . 1, 027 CQ X Cz Ifg = 2,
BN Cg otherwise.
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An upper bound

o Write:

ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
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An upper bound

o Write:
ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
@ Theorem 1 implies:

Ny < #ME + #M? + #M?2
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An upper bound
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An upper bound

o Write:
ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
@ Theorem 1 implies:

Np < #M? + #M? + # M2 = 0418 + 24 = 51.
Ng < #M+#ME, forg >3.
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An upper bound

o Write:
ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
@ Theorem 1 implies:

Ny < #M + #M? + #M?2 =9 +18+24 =51.
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An upper bound

o Write:
ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
@ Theorem 1 implies:

Ny < #M + #M? + #M?2 =9+ 18 + 24 =51.
Ng < #M! + #ME for g > 3.

@ On the other hand: Ny > #HM 4 # M8 for g > 2. Indeed, for M € M8,
take E/Q(jg) with CM by M. Then

A= Res%UE)(E)
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An upper bound

o Write:
ME+8 .= {M quad. imag. field | CI(M) ~ Cyx .. xCg}.
@ Theorem 1 implies:

Ny < #M + #M? + #M?2 =9+ 18 + 24 =51.
NgS#Ml—i—#Mg, for g > 3.

@ On the other hand: Ny > #HM 4 # M8 for g > 2. Indeed, for M € M8,
take E/Q(jg) with CM by M. Then

A= Res%UE)(E)

satisfies dim(A) = [Q(jg) : Q] = #Cl(M) = g and Ag ~ E&.

Open question
Is N, >9+4187 J
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Proof of Theorem 1

Definition
Let B/F be an abelian variety. The minimal extension K/F over which
End(Bk) ~ End(Bg)

is called the endomorphism field of B.

Francesc Fité (UPC) 7/15



Proof of Theorem 1

Definition
Let B/F be an abelian variety. The minimal extension K/F over which
End(Bk) ~ End(Bg)

is called the endomorphism field of B.

e K/F is finite and Galois.

Francesc Fité (UPC)

7/15



Proof of Theorem 1

Definition

Let B/F be an abelian variety. The minimal extension K/F over which
End(Bk) ~ End(Bg)

is called the endomorphism field of B.

e K/F is finite and Galois.

@ Recast of the setting of Theorem 1:

(H) A/Q is an abelian variety of dimension g > 1 such that Ax ~ E¢, where E/K
is an elliptic curve with CM by M.

Here K/Q is the endomorphism field of A.
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve E’/L such
that:

e L/M is Galois and Gal(L/M) has exponent dividing g.
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Under (H), there exist a subextension M C L C K and an elliptic curve E’/L such
that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve E’/L such
that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2

Gal(L/M) — Gal(M(jg')/M) ~ Gal(Hp /M) =~ CL(M).

Theorem 3 (After Guralnick-Kedlaya)

Suppose that (H) holds and g is prime. If v, denotes the g-adic valuation, then:
o vu(# Gal(K/M)) < 2.

e For g > 2, we have #CI(M) = 1 or v, (# Gal(K/M)) < 1.
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve E’/L such
that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2

Gal(L/M) — Gal(M(jg')/M) ~ Gal(Hp /M) =~ CL(M).

Theorem 3 (After Guralnick-Kedlaya)

Suppose that (H) holds and g is prime. If v, denotes the g-adic valuation, then:
o vu(# Gal(K/M)) < 2.

e For g > 2, we have #CI(M) = 1 or v, (# Gal(K/M)) < 1.

@ Part ii) of Theorem 1 follows from Theorem 3.
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A refined version of Theorem 1 for g = 2

Theorem 1* (F.-Guitart)

Let A/Q be an abelian surface such that Ag ~ E?, where E/Q is an elliptic curve
with CM by M. Then, the set of possibilities for M provided that Gal(K/M) ~ G

is contained in M(G), where

Gal(K /M) M(Gal(K/M))
Cq M
Co Ml UM2
Cs M
Cs {Q(V-1),Q(v=2)} u M?
Ce {Q(v=3)um?
D> MU MU M??
Ds MU M?
D4 {Q(v-1),Q(v=2)} U M* U M??
Ds {Q(v=3)} U M2 UM?*?
Aq M\{Q(v=T7)}
Sa {Q(v=2)} U M*\{Q(v=15), Q(+/—35), Q(v=51), Q(/-115)}
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Proof of Theorem 2: abelian F-varieties

Definition (Ribet)
Let B/Q be an abelian variety and F a number field.

We say that B is an (abelian) F-variety if for every o € Gg:
@ There exists an isogeny u,: °B — B,

@ For every ¢ € End(B), the following diagram commutes

og t . p

og " B
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@ There exists an isogeny u,: °B — B,
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o If dim(B) =1, then B is called an (elliptic) F-curve.
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Proof of Theorem 2: abelian F-varieties

Definition (Ribet)
Let B/Q be an abelian variety and F a number field.

We say that B is an (abelian) F-variety if for every o € Gg:
@ There exists an isogeny u,: °B — B,

@ For every ¢ € End(B), the following diagram commutes

og t . p

og " B

e If dim(B) =1, then B is called an (elliptic) F-curve.
o If dim(B) = 1, observe that

> If B does not have CM, then 2) is always satisfied.
> If B has CM (by M), then 1) automatic and 2) amounts to M C F.
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Weil's descent criterion
o Let B be a F-variety.
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o Let B be a F-variety.

e We may assume B/K, where K is a number field.

o We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,
> All the isogenies i, are defined over K.
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o Let B be a F-variety.
e We may assume B/K, where K is a number field.

o We may assume that K is a field of complete definition for B, i.e.:

» K/F is finite and Galois,
> All the isogenies i, are defined over K.

@ Set G = Gal(K/F) and define
cg: G x G — (End(B) ® Q)*
(0,7) = o © Ttz © (por) ™
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Welil's descent criterion

o Let B be a F-variety.
e We may assume B/K, where K is a number field.

o We may assume that K is a field of complete definition for B, i.e.:

» K/F is finite and Galois,
> All the isogenies i, are defined over K.

@ Set G = Gal(K/F) and define
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e Denote by vg = [cg] € H*(G,R*).
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Welil's descent criterion

o Let B be a F-variety.
e We may assume B/K, where K is a number field.

o We may assume that K is a field of complete definition for B, i.e.:

» K/F is finite and Galois,
> All the isogenies i, are defined over K.

@ Set G = Gal(K/F) and define
cg: Gx G— Z(End(B) ® Q)* = R*
(0,7) = f1g 0 pir 0 (ptor) "

@ Denote by vg = [cg] € H?(G,R*).

Weil's descent criterion (Ribet)
If FC L C K is such that

vg € Ker(H?(G, R*) =% H?(Gal(K /L), R*)),

then there exists B’/L such that Bf@ ~ Bg.
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Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that:
o Ax ~ ES
e E/K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension M C L C K and an elliptic curve E’/L such
that:

] E(/@ ~ E@,
e L/M is Galois and Gal(L/M) has exponent dividing g.
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Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that:
o Ax ~ ES
e E/K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension M C L C K and an elliptic curve E’/L such
that:

(] E(/@ ~ E@,
e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Key observation:
E is a an M-curve and K is a field of complete definition for E.

Vo € Guy: TE8 ~TAx ~ Ak ~ E& ~ ILLU:GE*)E.
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that v € H2(G, M*)[g], where G = Gal(K /M)
(by relating ve, vee, and ya).
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@ One shows that v € H2(G, M*)[g], where G = Gal(K /M)
(by relating ve, vee, and ya).
o Write P = M* /U, where U C M* denotes the roots of unity in M*.
o We have

H?(G, M*) ~ H*(G, U) x H*(G, P)
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It follows ‘Ribet’s strategy’:
@ One shows that v € H2(G, M*)[g], where G = Gal(K /M)
(by relating ve, vee, and ya).
o Write P = M* /U, where U C M* denotes the roots of unity in M*.
o We have

H3(G, M*)[g] = H*(G, U)[g] x H*(G, P)[g]

YE > (’YUvi)
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that v € H2(G, M*)[g], where G = Gal(K /M)
(by relating v, vee, and ya).
o Write P = M* /U, where U C M* denotes the roots of unity in M*.
@ We have

H?(G, M*)[g] ~ H*(G, U)lg] x H*(G, P)[g]
YE — (’YUvi)
@ For any subgroup H C G, one shows that

res(7) = 1 = resg(yy) = 1.
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8

@ It induces an exact sequence in cohomology

HY(G,P) — HY(G,P/P&) — H*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8

@ It induces an exact sequence in cohomology

Hom(G, P) — Hom(G, P/P&) — H*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8

@ It induces an exact sequence in cohomology

1 — Hom(G, P/P8) =s H*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8

@ It induces an exact sequence in cohomology
1 — Hom(G,P/P&) =+ H*(G,P)[g] — 1
o Take H= (a8 |a € G)< G. Then clearly

resS(7) = 1, as 7 € Hom(G, P/P#).
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Sketch of proof of Theorem 2

o Consider the map
P—P

X > x8

It induces an exact sequence in cohomology

1 — Hom(G, P/P8) =s H*(G,P)[g] — 1

Take H=(a®|a € G)<G. Then clearly

resS(7) = 1, as 7 € Hom(G, P/P#).

By Weil's descent criterion:

» There is a model of E over L = K", and
» Gal(L/F) ~ G/H is killed by g.
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Final comments

Theorem (Elkies-Ribet)

Let £/Q be an F-curve without CM. Then E admits a model over a
polyquadratic extension of F.

@ Ribet shows that
VE € Hz(G»QX)p]v

(for different reasons as ours). The other steps of the proof are analogous.

Corollary

Let A be an abelian variety over F such that A@ ~ E&, where E is an elliptic
curve without CM and g is odd. Then E admits a model over F.

=1
2
E

} = g = 1 = E admits a model over F.
Y
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