Isogeny classes of rational squares of CM elliptic curves

Francesc Fité ${ }^{1}$ (UPC/BGSMath) and Xavier Guitart (UB)

BIRS, Banff, 31st May 2017.
${ }^{1}$ Funded by Maria de Maeztu Grant (MDM-2014-0445)

A conjecture

- F is a number field.
- A / F is an abelian variety
- Call $\operatorname{End}\left(A_{\bar{\infty}}\right) \otimes \mathbb{Q}$ the endomorphism algebra of $A_{\overline{\mathbb{O}}}$.

A conjecture

- F is a number field.
- A / F is an abelian variety
- Call End $\left(A_{\bar{\infty}}\right) \otimes \mathbb{Q}$ the endomorphism algebra of $A_{\bar{\infty}}$.

A conjecture

- F is a number field.
- A / F is an abelian variety
- Call $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the endomorphism algebra of $A_{\overline{\mathbb{Q}}}$.
- For any $g, d \geq 1$, set

A conjecture

- F is a number field.
- A / F is an abelian variety
- Call $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the endomorphism algebra of $A_{\overline{\mathbb{Q}}}$.
- For any $g, d \geq 1$, set

$$
\mathcal{L}_{g, d}=\left\{\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} \mid \operatorname{dim}(A)=g \text { and }[F: \mathbb{Q}]=d\right\} / \simeq .
$$

A conjecture

- F is a number field.
- A / F is an abelian variety
- Call $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the endomorphism algebra of $A_{\overline{\mathbb{Q}}}$.
- For any $g, d \geq 1$, set

$$
\mathcal{L}_{g, d}=\left\{\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} \mid \operatorname{dim}(A)=g \text { and }[F: \mathbb{Q}]=d\right\} / \simeq .
$$

Conjecture

For every $g, d \geq 1$, the set $\mathcal{L}_{g, d}$ is finite.
(Attributed to Coleman; for example in a paper of Bruin-Flynn-González-Rotger.)

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- End $\left(A_{\sigma}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A / \mathbb{Q} has CM by M, then

$$
\mathrm{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right)
$$

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM .
- If A / \mathbb{Q} has CM by M, then

$$
\mathrm{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Gal}\left(M\left(j_{A}\right) / M\right)
$$

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM .
- If A / \mathbb{Q} has CM by M, then

$$
\mathrm{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Gal}\left(M\left(j_{A}\right) / M\right)
$$

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM .
- If A / \mathbb{Q} has CM by M, then

$$
\mathrm{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Gal}\left(M\left(j_{A}\right) / M\right) \simeq\{1\} .
$$

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10 .
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A / \mathbb{Q} has CM by M, then

$$
\operatorname{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Gal}\left(M\left(j_{A}\right) / M\right) \simeq\{1\} .
$$

Thus there are 9 possibilities for M.

An open question

Example: $g=d=1$

$$
\# \mathcal{L}_{1,1}=10
$$

Indeed:

- $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A / \mathbb{Q} has $C M$ by M, then

$$
\operatorname{Cl}(M) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Gal}\left(M\left(j_{A}\right) / M\right) \simeq\{1\} .
$$

Thus there are 9 possibilities for M.

Problem

What is the set $\mathcal{L}_{2,1}$?

Endomorphism algebras of abelian surfaces

Let A be an abelian surface over \mathbb{Q}.

Dec. of $A_{\overline{\mathbb{Q}}}$	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$	\#Possibilities
$A_{\text {© }}$ is simple	\mathbb{Q} real quad. field indef. div. quat. alg./ \mathbb{Q} quartic CM field	
$\begin{aligned} & A_{\bar{Q}} \sim E \times E^{\prime} \\ & \text { and } E \nsim E^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{Q} \times \mathbb{Q} \\ & \mathbb{Q} \times M_{1}, M_{i} \text { quad. imag. } \\ & M_{1} \times M_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 9, \\ & 36 \\ & \text { since } \# \mathrm{Cl}\left(M_{i}\right)=1 \end{aligned}$
$A_{\overline{\mathbb{Q}}} \sim E^{2}$	$\begin{aligned} & M_{2}(\mathbb{Q}) \\ & M_{2}(M), M \text { quad. imag. } \end{aligned}$	

Endomorphism algebras of abelian surfaces

Let A be an abelian surface over \mathbb{Q}.

Dec. of $A_{\overline{\mathbb{Q}}}$	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$	\#Possibilities
	\mathbb{Q}	1
	real quad. field	$?$
$A_{\overline{\mathbb{Q}}}$ is simple	indef. div. quat. alg. $/ \mathbb{Q}$	$?$
	quartic CM field	13 (Murabayashi-Umegaki,
	$\mathbb{Q} \times \mathbb{Q}$	Bisson-Kilicer-Streng)
$A_{\overline{\mathbb{Q}}} \sim E \times E^{\prime}$	$\mathbb{Q} \times M_{1}, M_{i}$ quad. imag.	9, since \#Cl $\left(M_{i}\right)=1$
and $E \nsim E^{\prime}$	$M_{1} \times M_{2}$	36
$A_{\overline{\mathbb{Q}}} \sim E^{2}$	$\mathrm{M}_{2}(\mathbb{Q})$	

Endomorphism algebras of abelian surfaces

Let A be an abelian surface over \mathbb{Q}.

Dec. of $A_{\overline{\mathbb{Q}}}$	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$	\#Possibilities
	\mathbb{Q}	1
	real quad. field	$?$
$A_{\overline{\mathbb{Q}}}$ is simple	indef. div. quat. alg./ \mathbb{Q}	$?$
	quartic CM field	13 (Murabayashi-Umegaki,
	$\mathbb{Q} \times \mathbb{Q}$	Bisson-Kilicer-Streng)
$\sim E \times E^{\prime}$	\mathbb{Q}	1
	$\mathbb{Q} \times M_{1}, M_{i}$ quad. imag.	9, since $\# \mathrm{Cl}\left(M_{i}\right)=1$
	$M_{1} \times M_{2}$	36
$\sim E_{\overline{\mathbb{Q}}} \sim$	$\mathrm{M}_{2}(\mathbb{Q})$	1
	$\mathrm{M}_{2}(M), M$ quad. imag.	?, since $\# \mathrm{Cl}(M)=1,2, \ldots$

Endomorphism algebras of abelian surfaces

Let A be an abelian surface over \mathbb{Q}.

Dec. of $A_{\bar{Q}}$	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$	\#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	\mathbb{Q} real quad. field indef. div. quat. alg./ \mathbb{Q} quartic CM field	
$\begin{aligned} & A_{\overline{\mathbb{Q}}} \sim E \times E^{\prime} \\ & \text { and } E \nsim E^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{Q} \times \mathbb{Q} \\ & \mathbb{Q} \times M_{1}, M_{i} \text { quad. imag. } \\ & M_{1} \times M_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 9, \text { since } \# \mathrm{Cl}\left(M_{i}\right)=1 \\ & 36 \end{aligned}$
$A_{\overline{\mathbb{Q}}} \sim E^{2}$	$\begin{aligned} & M_{2}(\mathbb{Q}) \\ & M_{2}(M), M \text { quad. imag. } \end{aligned}$	$\begin{aligned} & 1 \\ & N_{2} \end{aligned}$

The goal of the talk is to find an upper bound for

$$
N_{2}=\#\left\{\text { ab. surf. } A / \mathbb{Q} \text { such that } A_{\overline{\mathbb{Q}}} \sim E^{2}, \text { where } E \text { has } C M\right\} / \sim_{\overline{\mathbb{Q}}} .
$$

Endomorphism algebras of abelian surfaces

Let A be an abelian surface over \mathbb{Q}.

Dec. of $A_{\bar{Q}}$	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$	\#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	\mathbb{Q} real quad. field indef. div. quat. alg./ \mathbb{Q} quartic CM field	
$\begin{aligned} & A_{\overline{\mathbb{Q}}} \sim E \times E^{\prime} \\ & \text { and } E \nsim E^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{Q} \times \mathbb{Q} \\ & \mathbb{Q} \times M_{1}, M_{i} \text { quad. imag. } \\ & M_{1} \times M_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 9, \text { since } \# \mathrm{Cl}\left(M_{i}\right)=1 \\ & 36 \end{aligned}$
$A_{\overline{\mathbb{Q}}} \sim E^{2}$	$\begin{aligned} & M_{2}(\mathbb{Q}) \\ & M_{2}(M), M \text { quad. imag. } \end{aligned}$	$\begin{aligned} & 1 \\ & N_{2} \end{aligned}$

Actually, for any prime g, we will find an upper bound for
$N_{g}=\#\left\{\right.$ ab. var. A / \mathbb{Q} such that $A_{\overline{\mathbb{Q}}} \sim E^{g}$, where E has $\left.C M\right\} / \sim_{\overline{\mathbb{Q}}}$.

Main result

Theorem 1 (F.-Guitart)
Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ such that $A_{\overline{\mathbb{Q}}} \sim E^{g}$, where $E / \overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then:
(0) The class group $\mathrm{Cl}(M)$ has exponent dividing g.
(1) If moreover g is prime, then

Main result

Theorem 1 (F.-Guitart)

Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ such that $A_{\overline{\mathbb{Q}}} \sim E^{g}$, where $E / \overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then:
(1) The class group $\mathrm{Cl}(M)$ has exponent dividing g.
(1) If moreover g is prime, then

$$
\mathrm{Cl}(M)= \begin{cases}1, \mathrm{C}_{2}, \mathrm{C}_{2} \times \mathrm{C}_{2} & \text { if } g=2 \\ 1, \mathrm{C}_{g} & \text { otherwise }\end{cases}
$$

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

- Theorem 1 implies:

$$
N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}
$$

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

- Theorem 1 implies:

$$
N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}=9+18+24=51 .
$$

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

- Theorem 1 implies:

$$
\begin{aligned}
& N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}=9+18+24=51 . \\
& N_{g} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}, \quad \text { for } g \geq 3 .
\end{aligned}
$$

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

- Theorem 1 implies:

$$
\begin{aligned}
& N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}=9+18+24=51 . \\
& N_{g} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}, \quad \text { for } g \geq 3 .
\end{aligned}
$$

- On the other hand: $N_{g} \geq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}$ for $g \geq 2$. Indeed, for $M \in \mathcal{M}^{g}$
\square
$A=\operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}\left(j_{E}\right)}(E)$
satisfies $\operatorname{dim}(A)=\left[Q\left(J_{E}\right): \mathbb{Q}\right]=\# C l(M)=g$ and $A_{Q} \sim E_{Q}^{g}$.

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots \times \mathrm{C}_{g}\right\} .
$$

- Theorem 1 implies:

$$
\begin{aligned}
& N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}=9+18+24=51 \\
& N_{g} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}, \quad \text { for } g \geq 3
\end{aligned}
$$

- On the other hand: $N_{g} \geq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}$ for $g \geq 2$. Indeed, for $M \in \mathcal{M}^{g}$, take $E / \mathbb{Q}\left(j_{E}\right)$ with CM by M. Then

$$
A=\operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}\left(j_{E}\right)}(E)
$$

satisfies $\operatorname{dim}(A)=\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=\# \mathrm{Cl}(M)=g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\mathbb{Q}}^{g}$.

An upper bound

- Write:

$$
\mathcal{M}^{g, \ldots, g}:=\left\{M \text { quad. imag. field } \mid \mathrm{Cl}(M) \simeq \mathrm{C}_{g} \times \ldots . i \times \mathrm{C}_{g}\right\}
$$

- Theorem 1 implies:

$$
\begin{aligned}
& N_{2} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{2}+\# \mathcal{M}^{2,2}=9+18+24=51 \\
& N_{g} \leq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}, \quad \text { for } g \geq 3
\end{aligned}
$$

- On the other hand: $N_{g} \geq \# \mathcal{M}^{1}+\# \mathcal{M}^{g}$ for $g \geq 2$. Indeed, for $M \in \mathcal{M}^{g}$, take $E / \mathbb{Q}\left(j_{E}\right)$ with CM by M. Then

$$
A=\operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}\left(j_{E}\right)}(E)
$$

satisfies $\operatorname{dim}(A)=\left[\mathbb{Q}\left(j_{E}\right): \mathbb{Q}\right]=\# \mathrm{Cl}(M)=g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\mathbb{Q}}^{g}$.

Open question

Is $N_{2}>9+18$?

Proof of Theorem 1

Definition

Let B / F be an abelian variety. The minimal extension K / F over which

$$
\operatorname{End}\left(B_{K}\right) \simeq \operatorname{End}\left(B_{\overline{\mathbb{Q}}}\right)
$$

is called the endomorphism field of B.

- K / F is finite and Galois.
- Recast of the setting of Theorem 1

Here K / \mathbb{Q} is the endomorphism field of A.

Proof of Theorem 1

Definition

Let B / F be an abelian variety. The minimal extension K / F over which

$$
\operatorname{End}\left(B_{K}\right) \simeq \operatorname{End}\left(B_{\overline{\mathbb{Q}}}\right)
$$

is called the endomorphism field of B.

- K / F is finite and Galois.
- Recast of the setting of Theorem 1
(H) A / \mathbb{Q} is an abelian variety of dimension $g \geq 1$ such that $A_{K} \sim E^{g}$, where E / K is an elliptic curve with CM by M.
Here K / \mathbb{Q} is the endomorphism field of A.

Proof of Theorem 1

Definition

Let B / F be an abelian variety. The minimal extension K / F over which

$$
\operatorname{End}\left(B_{K}\right) \simeq \operatorname{End}\left(B_{\overline{\mathbb{Q}}}\right)
$$

is called the endomorphism field of B.

- K / F is finite and Galois.
- Recast of the setting of Theorem 1 :
(H) A / \mathbb{Q} is an abelian variety of dimension $g \geq 1$ such that $A_{K} \sim E^{g}$, where E / K is an elliptic curve with CM by M.
Here K / \mathbb{Q} is the endomorphism field of A.

Proof of Theorem 1

Theorem 2 (F.-Guitart)
Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Part i) of Theorem 1 follows from Theorem 2

$$
\operatorname{Gal}(L / M) \rightarrow \operatorname{Gal}\left(M\left(j_{E^{\prime}}\right) / M\right) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Cl}(M)
$$

Proof of Theorem 1

Theorem 2 (F.-Guitart)
Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Part i) of Theorem 1 follows from Theorem 2

$$
\operatorname{Gal}(L / M) \rightarrow \operatorname{Gal}\left(M\left(j_{E^{\prime}}\right) / M\right) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Cl}(M)
$$

\square

- Part ii) of Theorem 1 follows from Theorem 3

Proof of Theorem 1

Theorem 2 (F.-Guitart)
Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Part i) of Theorem 1 follows from Theorem 2

$$
\operatorname{Gal}(L / M) \rightarrow \operatorname{Gal}\left(M\left(j_{E^{\prime}}\right) / M\right) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Cl}(M)
$$

Theorem 3 (After Guralnick-Kedlaya)

Suppose that (H) holds and g is prime. If v_{g} denotes the g-adic valuation, then:

- $v_{2}(\# \operatorname{Gal}(K / M)) \leq 2$.
- For $g>2$, we have $\# \mathrm{Cl}(M)=1$ or $v_{g}(\# \operatorname{Gal}(K / M)) \leq 1$.

Proof of Theorem 1

Theorem 2 (F.-Guitart)
Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Part i) of Theorem 1 follows from Theorem 2

$$
\operatorname{Gal}(L / M) \rightarrow \operatorname{Gal}\left(M\left(j_{E^{\prime}}\right) / M\right) \simeq \operatorname{Gal}\left(H_{M} / M\right) \simeq \operatorname{Cl}(M)
$$

Theorem 3 (After Guralnick-Kedlaya)

Suppose that (H) holds and g is prime. If v_{g} denotes the g-adic valuation, then:

- $v_{2}(\# \operatorname{Gal}(K / M)) \leq 2$.
- For $g>2$, we have $\# \mathrm{Cl}(M)=1$ or $v_{g}(\# \operatorname{Gal}(K / M)) \leq 1$.
- Part ii) of Theorem 1 follows from Theorem 3.

A refined version of Theorem 1 for $g=2$

Theorem 1* (F.-Guitart)

Let A / \mathbb{Q} be an abelian surface such that $A_{\overline{\mathbb{Q}}} \sim E^{2}$, where $E / \overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then, the set of possibilities for M provided that $\operatorname{Gal}(K / M) \simeq G$ is contained in $\mathcal{M}(G)$, where

$\mathrm{Gal}(K / M)$	$\mathcal{M}(\mathrm{Gal}(K / M))$
C_{1}	\mathcal{M}^{1}
C_{2}	$\mathcal{M}^{1} \cup \mathcal{M}^{2}$
C_{3}	\mathcal{M}^{1}
C_{4}	$\{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2}$
C_{6}	$\{\mathbb{Q}(\sqrt{-3})\} \cup \mathcal{M}^{2}$
D_{2}	$\mathcal{M}^{1} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
D_{3}	$\mathcal{M}^{1} \cup \mathcal{M}^{2}$
D_{4}	$\{\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
D_{6}	$\{\mathbb{Q}(\sqrt{-3})\} \cup \mathcal{M}^{2} \cup \mathcal{M}^{2,2}$
$\mathrm{~A}_{4}$	$\left.\mathcal{M}^{1} \backslash \mathbb{Q}(\sqrt{-7})\right\}$
S_{4}	$\{\mathbb{Q}(\sqrt{-2})\} \cup \mathcal{M}^{2} \backslash\{\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{-35}), \mathbb{Q}(\sqrt{-51}), \mathbb{Q}(\sqrt{-115})\}$

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B / \overline{\mathbb{Q}}$ be an abelian variety and F a number field. We say that B is an (abelian) F-variety if for every $\sigma \in G_{F}$:
(1) There exists an isogeny $\mu_{\sigma}:{ }^{\sigma} B \rightarrow B$,
(2) For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If $\operatorname{dim}(B)=1$, then B is called an (elliptic) F-curve.
- If $\operatorname{dim}(B)=1$, observe that
\rightarrow If B does not have $C M$, then 2) is always satisfied.

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B / \overline{\mathbb{Q}}$ be an abelian variety and F a number field.
We say that B is an (abelian) F-variety if for every $\sigma \in G_{F}$:
(1) There exists an isogeny $\mu_{\sigma}:{ }^{\sigma} B \rightarrow B$,
(2) For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If $\operatorname{dim}(B)=1$, then B is called an (elliptic) F-curve.
- If $\operatorname{dim}(B)=1$, observe that
- If B does not have CM, then 2) is always satisfied.
- If B has CM (by M), then 1) automatic and 2) amounts to $M \subseteq F$

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B / \overline{\mathbb{Q}}$ be an abelian variety and F a number field.
We say that B is an (abelian) F-variety if for every $\sigma \in G_{F}$:
(1) There exists an isogeny $\mu_{\sigma}:{ }^{\sigma} B \rightarrow B$,
(2) For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If $\operatorname{dim}(B)=1$, then B is called an (elliptic) F-curve.
- If $\operatorname{dim}(B)=1$, observe that
- If B does not have CM , then 2) is always satisfied.
- If B has CM (by M), then 1) automatic and 2) amounts to $M \subseteq F$.

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e. - K/F is finite and Galois,
- All the isogenies μ_{σ} are defined over K

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.
- Set $G=\operatorname{Gal}(K / F)$ and define

$$
\begin{gathered}
c_{B}: G \times G \rightarrow(\operatorname{End}(B) \otimes \mathbb{Q})^{\times} \\
(\sigma, \tau) \mapsto \mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ\left(\mu_{\sigma \tau}\right)^{-1}
\end{gathered}
$$

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.
- Set $G=\operatorname{Gal}(K / F)$ and define

$$
\begin{gathered}
c_{B}: G \times G \rightarrow Z(\operatorname{End}(B) \otimes \mathbb{Q})^{\times} \\
(\sigma, \tau) \mapsto \mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ\left(\mu_{\sigma \tau}\right)^{-1}
\end{gathered}
$$

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.
- Set $G=\operatorname{Gal}(K / F)$ and define

$$
\begin{aligned}
c_{B}: G \times G & \rightarrow Z(\operatorname{End}(B) \otimes \mathbb{Q})^{\times}=R^{\times} \\
(\sigma, \tau) & \mapsto \mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ\left(\mu_{\sigma \tau}\right)^{-1}
\end{aligned}
$$

- Denote by $\gamma_{B}=\left[c_{B}\right] \in H^{2}\left(G, R^{\times}\right)$
\qquad

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.
- Set $G=\operatorname{Gal}(K / F)$ and define

$$
\begin{aligned}
c_{B}: G \times G & \rightarrow Z(\operatorname{End}(B) \otimes \mathbb{Q})^{\times}=R^{\times} \\
(\sigma, \tau) & \mapsto \mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ\left(\mu_{\sigma \tau}\right)^{-1}
\end{aligned}
$$

- Denote by $\gamma_{B}=\left[c_{B}\right] \in H^{2}\left(G, R^{\times}\right)$.
\square If $F \subseteq L \subseteq K$ is such that

then there exists B^{\prime} / L such that $B_{\overline{\mathbb{Q}}}^{\prime} \sim B_{\bar{Q}}$.

Weil's descent criterion

- Let B be a F-variety.
- We may assume B / K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
- K / F is finite and Galois,
- All the isogenies μ_{σ} are defined over K.
- Set $G=\operatorname{Gal}(K / F)$ and define

$$
\begin{aligned}
c_{B}: G \times G & \rightarrow Z(\operatorname{End}(B) \otimes \mathbb{Q})^{\times}=R^{\times} \\
(\sigma, \tau) & \mapsto \mu_{\sigma} \circ{ }^{\sigma} \mu_{\tau} \circ\left(\mu_{\sigma \tau}\right)^{-1}
\end{aligned}
$$

- Denote by $\gamma_{B}=\left[c_{B}\right] \in H^{2}\left(G, R^{\times}\right)$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

$$
\gamma_{B} \in \operatorname{Ker}\left(H^{2}\left(G, R^{\times}\right) \xrightarrow{\text { res }} H^{2}\left(\operatorname{Gal}(K / L), R^{\times}\right)\right),
$$

then there exists B^{\prime} / L such that $B_{\overline{\mathbb{Q}}}^{\prime} \sim B_{\overline{\mathbb{Q}}}$.

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)
Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ such that:

- $A_{K} \sim E^{g}$
- E / K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$,
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Key observation:
E is a an M-curve and K is a field of complete definition for E

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)
Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ such that:

- $A_{K} \sim E^{g}$
- E / K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$,
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Key observation:
E is a an M-curve and K is a field of complete definition for E.

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)
Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ such that:

- $A_{K} \sim E^{g}$
- E / K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E^{\prime} / L such that:

- $E_{\overline{\mathbb{Q}}}^{\prime} \sim E_{\overline{\mathbb{Q}}}$,
- L / M is Galois and $\operatorname{Gal}(L / M)$ has exponent dividing g.
- Key observation:
E is a an M-curve and K is a field of complete definition for E.

$$
\forall \sigma \in G_{M}: \quad{ }^{\sigma} E^{g} \sim{ }^{\sigma} A_{K} \sim A_{K} \sim E^{g} \quad \rightsquigarrow \quad \mu_{\sigma}:{ }^{\sigma} E \rightarrow E
$$

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E^{g}}$, and γ_{A}).

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E^{g}}$, and γ_{A}).

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E^{g}}$, and γ_{A}).
- Write $P=M^{\times} / U$, where $U \subseteq M^{\times}$denotes the roots of unity in M^{\times}.
- We have

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E g}$, and γ_{A}).
- Write $P=M^{\times} / U$, where $U \subseteq M^{\times}$denotes the roots of unity in M^{\times}.
- We have

$$
H^{2}\left(G, M^{\times}\right) \simeq H^{2}(G, U) \times H^{2}(G, P)
$$

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E g}$, and γ_{A}).
- Write $P=M^{\times} / U$, where $U \subseteq M^{\times}$denotes the roots of unity in M^{\times}.
- We have

$$
H^{2}\left(G, M^{\times}\right)[g] \simeq H^{2}(G, U)[g] \times H^{2}(G, P)[g]
$$

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E g}$, and γ_{A}).
- Write $P=M^{\times} / U$, where $U \subseteq M^{\times}$denotes the roots of unity in M^{\times}.
- We have

$$
\begin{gathered}
H^{2}\left(G, M^{\times}\right)[g] \simeq H^{2}(G, U)[g] \times H^{2}(G, P)[g] \\
\gamma_{E} \mapsto\left(\gamma_{U}, \bar{\gamma}\right)
\end{gathered}
$$

- For any subgroup $H \subseteq G$, one shows that

Sketch of proof of Theorem 2

It follows 'Ribet's strategy':

- One shows that $\gamma_{E} \in H^{2}\left(G, M^{\times}\right)[g]$, where $G=\operatorname{Gal}(K / M)$ (by relating $\gamma_{E}, \gamma_{E g}$, and γ_{A}).
- Write $P=M^{\times} / U$, where $U \subseteq M^{\times}$denotes the roots of unity in M^{\times}.
- We have

$$
\begin{gathered}
H^{2}\left(G, M^{\times}\right)[g] \simeq H^{2}(G, U)[g] \times H^{2}(G, P)[g] \\
\gamma_{E} \mapsto\left(\gamma_{U}, \bar{\gamma}\right)
\end{gathered}
$$

- For any subgroup $H \subseteq G$, one shows that

$$
\operatorname{res}_{H}^{G}(\bar{\gamma})=1 \quad \Rightarrow \quad \operatorname{res}_{H}^{G}\left(\gamma_{U}\right)=1
$$

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology

$$
H^{1}(G, P) \rightarrow H^{1}\left(G, P / P^{g}\right) \rightarrow H^{2}(G, P)[g] \rightarrow 1
$$

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology
$\operatorname{Hom}(G, P) \rightarrow \operatorname{Hom}\left(G, P / P^{g}\right) \rightarrow H^{2}(G, P)[g] \rightarrow 1$

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology

$$
1 \rightarrow \operatorname{Hom}\left(G, P / P^{g}\right) \xrightarrow{\simeq} H^{2}(G, P)[g] \rightarrow 1
$$

- Take $H=\left\langle a^{g} \mid a \in G\right\rangle \triangleleft G$. Then clearly

$$
\operatorname{res}_{H}^{G}(\bar{\gamma})=1, \quad \text { as } \bar{\gamma} \in \operatorname{Hom}\left(G, P / P^{g}\right) .
$$

- By Weil's descent criterion: - There is a model of E over $L=K^{H}$, and

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology

$$
1 \rightarrow \operatorname{Hom}\left(G, P / P^{g}\right) \xrightarrow{\simeq} H^{2}(G, P)[g] \rightarrow 1
$$

- Take $H=\left\langle a^{g} \mid a \in G\right\rangle \triangleleft G$. Then clearly

$$
\operatorname{res}_{H}^{G}(\bar{\gamma})=1, \quad \text { as } \bar{\gamma} \in \operatorname{Hom}\left(G, P / P^{g}\right) .
$$

- By Weil's descent criterion:
- There is a model of E over $L=K^{H}$, and
- $\operatorname{Gal}(L / F) \simeq G / H$ is killed by g.

Sketch of proof of Theorem 2

- Consider the map

$$
\begin{aligned}
& P \rightarrow P \\
& x \mapsto x^{g}
\end{aligned}
$$

- It induces an exact sequence in cohomology

$$
1 \rightarrow \operatorname{Hom}\left(G, P / P^{g}\right) \xrightarrow{\simeq} H^{2}(G, P)[g] \rightarrow 1
$$

- Take $H=\left\langle a^{g} \mid a \in G\right\rangle \triangleleft G$. Then clearly

$$
\operatorname{res}_{H}^{G}(\bar{\gamma})=1, \quad \text { as } \bar{\gamma} \in \operatorname{Hom}\left(G, P / P^{g}\right) .
$$

- By Weil's descent criterion:
- There is a model of E over $L=K^{H}$, and
- $\operatorname{Gal}(L / F) \simeq G / H$ is killed by g.

Final comments

Theorem (Elkies-Ribet)

Let $E / \overline{\mathbb{Q}}$ be an F-curve without $C M$. Then E admits a model over a polyquadratic extension of F.

- Ribet shows that

$$
\gamma_{E} \in H^{2}\left(G, \mathbb{Q}^{\times}\right)[2],
$$

(for different reasons as ours). The other steps of the proof are analogous.

Corollary

Let A be an abelian variety over F such that $A_{\bar{Q}} \sim E^{g}$, where E is an elliptic curve without $C M$ and g is odd. Then E admits a model over F.

$$
\left.\begin{array}{l}
\gamma_{E}^{g}=1 \\
\gamma_{E}^{2}=1
\end{array}\right\} \Rightarrow \gamma_{E}=1 \Rightarrow E \text { admits a model over } F
$$

