
Isogeny classes of rational squares of CM elliptic curves
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A conjecture

F is a number field.

A/F is an abelian variety

Call End(AQ)⊗Q the endomorphism algebra of AQ.

For any g , d ≥ 1, set

Lg ,d = {End(AQ)⊗Q | dim(A) = g and [F : Q] = d}/ ' .

Conjecture

For every g , d ≥ 1, the set Lg ,d is finite.

(Attributed to Coleman; for example in a paper of Bruin-Flynn-González-Rotger.)
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Francesc Fité (UPC) 2 / 15
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An open question

Example: g = d = 1

#L1,1 = 10 .

Indeed:

End(AQ)⊗Q is Q if A does not have CM.

If A/Q has CM by M, then

Cl(M) ' Gal(HM/M) ' Gal(M(jA)/M) ' {1} .

Thus there are 9 possibilities for M.

Problem
What is the set L2,1 ?
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of AQ End(AQ)⊗Q #Possibilities

AQ is simple

Q
real quad. field
indef. div. quat. alg./Q
quartic CM field

1
?
?
13 (Murabayashi-Umegaki,

Bisson-Kilicer-Streng)

AQ ∼ E × E ′

and E 6∼ E ′

Q×Q
Q×M1, Mi quad. imag.
M1 ×M2

1
9, since #Cl(Mi ) = 1
36

AQ ∼ E 2 M2(Q)
M2(M), M quad. imag.
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Main result

Theorem 1 (F.-Guitart)

Let A/Q be an abelian variety of dimension g ≥ 1 such that AQ ∼ E g , where

E/Q is an elliptic curve with CM by M. Then:

i) The class group Cl(M) has exponent dividing g .

ii) If moreover g is prime, then

Cl(M) =

{
1, C2, C2 × C2 ifg = 2,

1, Cg otherwise.
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An upper bound

Write:

Mg , i...,g := {M quad. imag. field |Cl(M) ' Cg× i. . . ×Cg}.

Theorem 1 implies:

N2 ≤ #M1 + #M2 + #M2,2 = 9 + 18 + 24 = 51 .

Ng ≤ #M1 + #Mg , for g ≥ 3 .

On the other hand: Ng ≥ #M1 + #Mg for g ≥ 2. Indeed, for M ∈Mg ,
take E/Q(jE ) with CM by M. Then

A = Res
Q(jE )
Q (E )

satisfies dim(A) = [Q(jE ) : Q] = #Cl(M) = g and AQ ∼ E g

Q.

Open question

Is N2 > 9 + 18 ?
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Francesc Fité (UPC) 6 / 15



An upper bound

Write:

Mg , i...,g := {M quad. imag. field |Cl(M) ' Cg× i. . . ×Cg}.

Theorem 1 implies:

N2 ≤ #M1 + #M2 + #M2,2 = 9 + 18 + 24 = 51 .

Ng ≤ #M1 + #Mg , for g ≥ 3 .

On the other hand: Ng ≥ #M1 + #Mg for g ≥ 2. Indeed, for M ∈Mg ,
take E/Q(jE ) with CM by M. Then

A = Res
Q(jE )
Q (E )

satisfies dim(A) = [Q(jE ) : Q] = #Cl(M) = g and AQ ∼ E g

Q.

Open question

Is N2 > 9 + 18 ?

Francesc Fité (UPC) 6 / 15
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Proof of Theorem 1

Definition

Let B/F be an abelian variety. The minimal extension K/F over which

End(BK ) ' End(BQ)

is called the endomorphism field of B.

K/F is finite and Galois.

Recast of the setting of Theorem 1:

(H) A/Q is an abelian variety of dimension g ≥ 1 such that AK ∼ E g , where E/K
is an elliptic curve with CM by M.

Here K/Q is the endomorphism field of A.

Francesc Fité (UPC) 7 / 15
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Proof of Theorem 1

Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M ⊆ L ⊆ K and an elliptic curve E ′/L such
that:

E ′Q ∼ EQ

L/M is Galois and Gal(L/M) has exponent dividing g .

Part i) of Theorem 1 follows from Theorem 2

Gal(L/M)� Gal(M(jE ′)/M) ' Gal(HM/M) ' Cl(M) .

Theorem 3 (After Guralnick-Kedlaya)

Suppose that (H) holds and g is prime. If vg denotes the g -adic valuation, then:

v2(# Gal(K/M)) ≤ 2.

For g > 2, we have #Cl(M) = 1 or vg (# Gal(K/M)) ≤ 1.

Part ii) of Theorem 1 follows from Theorem 3.
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A refined version of Theorem 1 for g = 2

Theorem 1? (F.-Guitart)

Let A/Q be an abelian surface such that AQ ∼ E 2, where E/Q is an elliptic curve

with CM by M. Then, the set of possibilities for M provided that Gal(K/M) ' G
is contained in M(G ), where

Gal(K/M) M(Gal(K/M))

C1 M1

C2 M1 ∪M2

C3 M1

C4 {Q(
√
−1),Q(

√
−2)} ∪M2

C6 {Q(
√
−3)} ∪M2

D2 M1 ∪M2 ∪M2,2

D3 M1 ∪M2

D4 {Q(
√
−1),Q(

√
−2)} ∪M2 ∪M2,2

D6 {Q(
√
−3)} ∪M2 ∪M2,2

A4 M1 \{Q(
√
−7)}

S4 {Q(
√
−2)} ∪M2 \{Q(

√
−15),Q(

√
−35),Q(

√
−51),Q(

√
−115)}
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Proof of Theorem 2: abelian F -varieties

Definition (Ribet)

Let B/Q be an abelian variety and F a number field.
We say that B is an (abelian) F -variety if for every σ ∈ GF :

1 There exists an isogeny µσ : σB → B,

2 For every ϕ ∈ End(B), the following diagram commutes

σB

σϕ

��

µσ // B

ϕ

��
σB

µσ // B

If dim(B) = 1, then B is called an (elliptic) F -curve.

If dim(B) = 1, observe that
I If B does not have CM, then 2) is always satisfied.
I If B has CM (by M), then 1) automatic and 2) amounts to M ⊆ F .
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Weil’s descent criterion
Let B be a F -variety.

We may assume B/K , where K is a number field.

We may assume that K is a field of complete definition for B, i.e.:
I K/F is finite and Galois,
I All the isogenies µσ are defined over K .

Set G = Gal(K/F ) and define

Denote by γB = [cB ] ∈ H2(G ,R×) .

Weil’s descent criterion (Ribet)

If F ⊆ L ⊆ K is such that

γB ∈ Ker(H2(G ,R×)
res→ H2(Gal(K/L),R×)) ,

then there exists B ′/L such that B ′Q ∼ BQ.
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Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g ≥ 1 such that:

AK ∼ E g

E/K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension M ⊆ L ⊆ K and an elliptic curve E ′/L such
that:

E ′Q ∼ EQ,

L/M is Galois and Gal(L/M) has exponent dividing g .

Key observation:
E is a an M-curve and K is a field of complete definition for E .

∀σ ∈ GM : σE g ∼ σAK ∼ AK ∼ E g  µσ : σE → E .
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:

One shows that γE ∈ H2(G ,M×)[g ], where G = Gal(K/M)
(by relating γE , γE g , and γA).

Write P = M×/U, where U ⊆ M× denotes the roots of unity in M×.

We have

For any subgroup H ⊆ G , one shows that

resGH(γ) = 1 ⇒ resGH(γU) = 1 .
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Sketch of proof of Theorem 2

Consider the map
P → P

x 7→ xg

It induces an exact sequence in cohomology

Take H = 〈ag | a ∈ G 〉 / G . Then clearly

resGH(γ) = 1, as γ ∈ Hom(G ,P/Pg ) .

By Weil’s descent criterion:
I There is a model of E over L = KH , and
I Gal(L/F ) ' G/H is killed by g .
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Final comments

Theorem (Elkies-Ribet)

Let E/Q be an F -curve without CM. Then E admits a model over a
polyquadratic extension of F .

Ribet shows that
γE ∈ H2(G ,Q×)[2] ,

(for different reasons as ours). The other steps of the proof are analogous.

Corollary

Let A be an abelian variety over F such that AQ ∼ E g , where E is an elliptic
curve without CM and g is odd. Then E admits a model over F .

γgE = 1

γ2
E = 1

}
⇒ γE = 1⇒ E admits a model over F .

Francesc Fité (UPC) 15 / 15


