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Abstract

This is the sixth talk in a series of twelve devoted to the works of G.
Kings, D. Loeffler, and S. Zerbes in the Workshop “Arithmetic of Euler
systems”, celebrated in Benasque in August 2015.
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1 Introduction

The goal of this talk is to construct Beilinson-Flach elements in Hida families
which p-adically interpolate étale Rankin-Eisenstein classes at level Γ(M,N)
for a pair of modular forms f, g of weights k + 2, k′ + 2 ≥ 2 twisted by a cyclo-
tomic variable. These Beilinson-Flach elements project to those constructed by
Bertolini, Darmon and Rotger at level Γ1(N) and for weights k+ 2 = k′+ 2 = 2
(see [BDR15a]). The interpolation property in the case k + 2 = k′ + 2 = 2 is
shown in [LLZ14], and generalizes the main result of [BDR15b] (in which f is
fixed, g varies in a Hida family, and no cyclotomic variable is considered). The
proof of the interpolation property in the general case is considered in [KLZ15].
This proof being too long to be reproduced here, we will content ourselves with
giving some ideas on the case of a single modular curve (which is treated in
[Kin15] by means of a detailed study of the elliptic polylogarithm), that is, we
will sketch how Eisenstein-Iwasawa classes interpolate Eisenstein classes.
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2 Preliminaries on linear algebra

Let H denote the profinite group Zpd for d ≥ 1. We will be interested in the
spaces

TSymkH and SymkH .

The first denotes the Zp-algebra of symmetric k-tensors, that is, the space of
Sk-invariants of H⊗ k. . . ⊗H. In contrast, by the second we denote the kth
symmetric power of H, that is, the space of Sk-coinvariants of H⊗ k. . . ⊗H. For
m ≤ k and h ∈ H, write h[m] := h⊗m ∈ TSymmH. If (e1, . . . , ed) is a basis

for H, then (e
[n1]
1 · · · e[nd]

d |n1 + . . . nd = k) is a basis for TSymkH. We have a
Zp-homomorphism

SymkH → TSymkH , en1
1 · · · e

nd

d 7→ k! · e[n1]
1 · · · e[nd]

d ,

which becomes an isomorphism after tensoring with Qp. However, we will keep
the distinction between these two spaces, because often we will have to work
integrally.

2.1 The Clebsch-Gordan map

We wish to define the Clebsch-Gordan map for k, k′ ≥ 0 and 0 ≤ j ≤ min{k, k′}

CG[k,k′,j] : TSymk+k′−2jH ⊗ TSymj(∧2H)→ TSymkH ⊗ TSymk′H .

We have an obvious inclusion

TSymk+k′−2jH ⊆ TSymk−jH ⊗ TSymk′−jH .

By taking jth powers, the map ∧2H → H ⊗H that sends x∧ y to x⊗ y− y⊗x,
yields a map

TSymj(∧2H)→ TSymjH ⊗ TSymjH .

The map CG[k,k′,j] is obtained as the tensor product of the two previous maps.

2.2 The kth moment map

Let (x1, . . . , xd) be the dual basis of (e1, . . . , ed), where xi : H → Zp is seen as
a Zp-valued function on H.

Consider the space of Zp-valued measures on H

Λ(H) := Homcont
Zp

(C(H,Zp),Zp) ,

where C(H,Zp) denotes the space of continuous Zp-valued functions on H.

Definition 2.1. The kth moment map is the Zp-algebra homomorphism

momk : Λ(H)→ TSymkH , momk(µ) :=
∑

n1+...nd=k

µ(xn1
1 · · ·x

nd

d )e
[n1]
1 · · · e[nd]

d .
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3 Étale Eisenstein and Rankin-Eisenstein classes

Let Y denote a modular curve corresponding to a representable moduli problem.
It comes equipped with a universal elliptic curve π : E → Y . Fix a prime p
throughout the talk. We define lisse étale sheaves on Y [1/p]:

� HZp := R1π∗Zp(1) ' R1π∗Zp∨,

� HQp
:= R1π∗Qp(1),

� TSymkHZp
,

� TSymkHQp ' SymkHQp .

Remark 3.1. If P is a geometric point on Y corresponding to an elliptic curve
E, we should think of the stalk of HZp

at P as the p-adic Tate module Mp(E)

of E. Similarly, we should think of TSymkHZp,P as TSymkMp(E).

For f =
∑
n≥1 an(f)qn ∈ Sk+2(Γ1(Nf )) a normalized cuspidal eigenform, L

a number field containing Q({an(f)}n≥1), N divisible by Nf , and P a prime of
L lying over p, let:

� MLP
(f) be the maximal subspace of H1

et,c(Y1(N)Q,SymkH ∨Qp
)⊗Qp

LP on
which the Hecke operator T` acts as multiplication by a` for every prime `.

� MLP
(f)∗ be the maximal quotient ofH1

et,c(Y1(N)Q,TSymkHQp(1))⊗QpLP

on which the Hecke operator T ′` acts as multiplication by a` for every
prime `.

If OP denotes the ring of integers of LP, then one defines integral versions
MOP

(f) and MOP
(f)∗ of the previous obtects in the obvious way.

Definition 3.2. Let N ≥ 5, b ∈ Z/NZ \ {0}, and k ≥ 0. The étale Eisenstein
class Eisket,b,N is defined as the image of the motivic Eisenstein class Eiskmot,b,N
by the étale regulator map

H1
mot(Y1(N),TSymkHQ(1))→ H1

et(Y1(N)Z[1/Np],TSymkHQp
(1))

Example 3.3. As we saw in Antonio’s talk, for k = 0, H1
mot(Y1(N),Q(1)) =

O(Y1(N))∗ ⊗ Q and the motivic Eisenstein class Eis0
mot,b,N is the Siegel unit

g0,b/N .

Let f ∈ Sk+2(Γ1(Nf )) and g ∈ Sk′+2(Γ1(Ng)) for k, k′ ≥ 0. To shorten
notation, until the end of this §, let us write Y := Y1(N)[1/Np], where N is an
integer divisible by Nf and Ng. For 0 ≤ j ≤ min{k, k′}, we will be interested
in the following maps:

� The Clebsch-Gordan map:

H1
et(Y,TSymk+k′−2jHQp(1))

CG[k,k′,j]
∗−→ H1

et(Y,TSymkHQp⊗TSymk′HQp(1−j)) .

At the level of stalks, this is the map defined in 2.1. Indeed, note that in
our situation ∧2H ' det(H) ' Qp(1).
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� The push-forward of the diagonal embedding:

H1
et(Y,TSymkHQp

⊗TSymk′HQp
(−j)) ∆∗−→ H3

et(Y
2,TSym[k,k′]HQp

(2−j)) .

Here, for A,B sheaves on Y and π1, π2 : Y 2 → Y the two distinct pro-
jections, we write A � B for the sheaf π∗1A ⊗ π∗2B on Y 2. We then write

TSym[k,k′]HQp := TSymkHQp � TSymk′HQp .

� There is an edge map coming from the Hochschild-Serre spectral sequence

H3
et(Y

2,TSym[k,k′]HQp
(2−j)) '→ H1(Z[

1

Np
], H2

et,c(Y1(N)2
Q,TSym[k,k′]HQp

(2−j))) .

� Projection to the (f, g)-isotypic component

H1(Z[
1

Np
], H2

et,c(Y1(N)2
Q,TSym[k,k′]HQp

(2−j)))
prf,g→ H1(Z[

1

Np
],MLP

(f)∗⊗MLP
(g)∗(−j))

Definition 3.4. � The Rankin-Eisenstein class Eisf,g,jet,b,N is defined as the im-

age of the étale Eisenstein class Eisk+k′−2j
et,b,N by the concatenation of all the

previous maps.

� The Rankin-Eisenstein class Eis
[k,k′,j]
et,b,N at stage

H3
et(Y

2,TSym[k,k′]HQp(2−j)) ' H1(Z[
1

Np
], H2

et,c(Y1(N)Q,TSym[k,k′]HQp(2−j)))

is defined as the image of the étale Eisenstein class Eisk+k′−2j
et,b,N by the map

∆∗ a CG[k,k′,j]
∗ .

4 Eisenstein-Iwasawa and Rankin-Iwasawa classes

Recall that as at the beginning of §3, if Y is a modular curve corresponding to
a representable moduli problem, we have a universal elliptic curve π : E → Y .
Let us see E as a covering of itself by means of

[pr] : Er := E → E

the pr-multiplication map, with r ≥ 1. Define the pro-system of étale lisse
sheaves

L := ([pr]∗(Z/prZ))r≥1 ,

which we call the elliptic polylogarithm. The transition maps are constructed in
the following manner. First consider the composition

[p]∗Z/pr+1Z→ Z/pr+1Z→ Z/prZ (4.1)

of maps of sheaves on Er, where the first map is the trace map induced by
[p] : Er+1 → Er and the second is the reduction map. The transition map is now
obtained by projecting (4.1) on E by [pr]∗

[pr+1]∗Z/pr+1Z→ [pr]∗Z/prZ .
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Write LQp
:= L ⊗ Qp. For a section t : Y → E , define the sheaf of Iwasawa

modules
Λ(HZp

〈t〉) := t∗L ,

Λ(HZp
) := Λ(HZp

〈e〉) ,

where e : Y → E denotes the trivial section.

Remark 4.1. If P is a geometric point on Y corresponding to an elliptic curve
E, we should think of the stalk of Λ(HZp

) at P as the Iwasawa algebra of the
p-adic Tate module Mp(E) of E, that is, the space of Zp-valued measures on
Mp(E). This justifies the notation and terminology used.

Remark 4.2. There exist sheafified moment maps

momk : Λ(HZp)→ TSymkHZp

such that if P is a geometric point on Y corresponding to an elliptic curve E,
then

momk
P : Λ(HZp)P = Λ(Mp(E))→ TSymkHZp,P = TSymkMp(E)

coincides with the kth moment map of Definition 2.1.

In Antonio’s talk, we have defined the Kato units cθE ∈ O(E \E [c])∗ for c > 1
and (c, 6) = 1. Observe that

H1
et(E\E [c],L(1)) ' lim

←r
H1
et(E\E [c], [pr]∗(Z/prZ)(1)) ' lim

←r
H1
et(Er\Er[cpr],Z/prZ(1)) .

Thanks to the norm relations that we saw that Kato units satisfy, if p - c the
following limit is well defined

cΘE := lim
←r

∂r(cθEr ) ∈ lim
←r

H1
et(Er \ Er[cpr],Z/prZ(1)) ,

where ∂r : O(Er \ Er[cpr])∗ → H1(Er \ Er[cpr],Z/prZ(1)) is the connecting mor-
phism for the exact sequence

1→ µpr → Gm
·p

r

→ Gm → 1 .

Until the definition of Rankin-Iwasawa class, for M,N ≥ 1, M |N , and M +
N ≥ 5, let Y be the curve Y (M,N)[1/MNp] defined in Kezuka’s talk.

Definition 4.3. Let c > 1 with (c, 6Np) = 1 and b ∈ Z/NZ \ {0}. Let
tN : Y (M,N) → E \ E [c] be the canonical section of order N (note that it
takes values in E \ E [c] by our choice of c). The Eisenstein-Iwasawa class cEIt
is defined as the image of cΘE by the map

H1
et(E \ E [c],L(1))

(btN )∗→ H1
et(Y,Λ(HZp〈btN 〉)(1))

[N ]∗→ H1
et(Y,Λ(HZp)(1)) .

We will be interested in the following maps:

� The map induced by Λ(HZp)→ Λ(HZp)⊗ Λ(HZp)

H1(Y,Λ(HZp)(1))→ H1
et(Y,Λ(HZp)⊗ Λ(HZp)(1)) .
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� The push-forward of the diagonal embedding ∆: Y → Y 2

H1
et(Y,Λ(HZp

)⊗ Λ(HZp
)(1))

∆∗→ H3
et(Y

2,Λ(HZp
) � Λ(HZp

)(2)) .

� For a ∈ Z/MZ, the map

H3
et(Y

2,Λ(HZp
) � Λ(HZp

)(2))
ua∗→ H3

et(Y
2,Λ(HZp

) � Λ(HZp
)(2)) ,

where ua : Y 2 → Y 2 is the automorphism that is the identity on the first
factor and the map that sends a triple (E, e1, e2) to the triple (E, e1 +
aNM e2, e2) on the second factor.

� The edge map

H3
et(Y

2,Λ(HZp
)�Λ(HZp

)(2))
'→ H1(Z[

1

MNp
], H2

et,c(Y (M,N)Q,Λ(HZp
)�Λ(HZp

)(2))) .

Definition 4.4. The Rankin-Iwasawa class cRIM,N,a is defined as the image of
the Eisenstein-Iwasawa class cEI1,N by the concatenation of all the previous
maps.

In §5, we will see that Rankin-Iwasawa classes (or even more generally,
Beilinson-Flach elements) interpolate Rankin-Eisenstein classes (see Theorem 5.1).
To conclude the section, we will see an intermediate result, which shows that
Eisenstein-Iwasawa classes (for M = 1) interpolate Eisenstein classes.

Theorem 4.1 (Thm. 4.7.1 of [Kin15]). For N ≥ 5, b ∈ Z/NZ \ {0}, and c > 1
with (c, 6Np) = 1, one has

momk(cEIb,N ) = c2 Eisket,b,N −c−k Eisket,cb,N

as elements of H1
et(Y1(N)[1/Np],TSymkHQp

(1)).

Sketch of proof. In the course of the proof, let us write t : Y1(N) → E for a
section of order N , e : Y1(N)→ E for the trivial section, and Y := Y1(N)[1/Np].
The proof uses the following crucial properties of the elliptic polylogarithm

� For an isogeny ϕ : E → E , one has ϕ∗LQp
' LQp

.

� e∗LQp
' t∗LQp

' (Λ(HZp
〈t〉)⊗Qp) '

∏
k≥0 SymkHQp

.

� There is a multiplication map mult : π∗HQp ⊗ LQp → LQp .

Consider the following diagram (the first vertical arrow of which we take as
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a black box1)

HomY (HQp ,
∏
k≥1 SymkHQp

)

'
��

Ext1
E\{e}(π

∗HQp ,LQp(1))

t∗

��

[c]∗
// Ext1

E\E[c](π
∗HQp , [c]

∗LQp(1))

'
��

Ext1
Y (HQp ,

∏
k≥0 SymkHQp(1))

'
��

Ext1
E\E[c](π

∗HQp ,LQp(1))

Ext1
Y (Qp,H ∨Qp

⊗
∏
k≥0 SymkHQp

(1))

'
��

Ext1
E\E[c](π

∗HQp
,LQp

⊗ π∗HQp
(1))

multHQp

OO

H1
et(Y,H ∨Qp

⊗
∏
k≥0 SymkHQp(1))

contr

��

Ext1
E\E[c](Qp,LQp(1))

⊗π∗HQp

OO

H1
et(Y,

∏
k≥1 Symk−1HQp

(1))

prk−1

��

H1
et(E \ E [c],LQp

(1))

'

OO

H1
et(Y,Symk−1HQp(1))

At the level of stalks the contraction map is defined in the following way

contr : H∨⊗SymkH → Symk−1H , h∨⊗h1⊗· · ·⊗hk 7→
1

k + 1

k∑
j=1

h∨(hj)h1⊗· · ·⊗ĥj⊗· · ·⊗hk .

Let pol denote the image of the canonical immersion

HQp
↪→
∏
k≥0

SymkHQp

by the very first isomorphism in the above diagram and write t∗pol := (t∗polk)k≥1.
The first step of the proof is to show that if t = btN , where tN is the canonical
section of order N , then the Eisenstein class Eisket,b,N is the image of t∗polk+1 by
the concatenation of the maps in the first column of the the previous diagram.

Note that we had defined Kato elements cΘE ∈ H1
et(E \ E [c],LQp(1)). If we

detnote by multHQp
the concatenation of the maps on the second column, then

the second step of the proof consists of establishing the following fundamental
relation

c2pol|E\E[c] − c[c]∗pol = multHQp
(cΘE)

in Ext1
E\E[c](π

∗H Qp,LQp
(1)). Now the theorem follows from the following two

facts:

1It follows from the Leray spectral sequence for LQp and π, the localization sequence, and

the vanishing of Riπ∗LQp except for i = 2.
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� The concatenation of the maps on the second and first column coincide
with the sheafified kth moment map momk (once tensored with Qp); and

� The isomorphism t∗LQp ' t∗[c]∗LQp is multiplication by ck on the graded

piece SymkHQp
.

5 Beilinson-Flach elements: Projection to Y1(N)

Let m ≥ 1 and N ≥ 5. Let µ
a
m be the scheme of primitive mth roots of unity,

that is, µ
a
m = Spec(Z[ζm]), where ζm is a primitive mth root of unity. In Vivek’s

talk we have seen that there exists a map2

αm : Y (m,mN)→ Y1(N)× µ
a
m .

Definition 5.1. We will write cBF [0]
m,N for the image of the Rankin-Iwasawa class

cRIm,mN,1 by the map

(αm×αm)∗ : H3
et(Y (m,mN)2,Λ(HZp)�Λ(HZp)(2))→ H3

et(Y1(N)2×µ
a
m,Λ(HZp)�Λ(HZp)(2))

We still need to introduce one more sheaf of Iwasawa modules. Let

prr : Spec(Z[1/p])× µ
a
pr → Spec(Z[1/p])

the natural projection for r ≥ 1. Define the pro-étale sheaf

ΛΓ(−j) := (prr∗(Z/prZ))r≥1 .

The notation is justified by the fact that the stalk of ΛΓ(−j) at a geometric point
is the Iwasawa algebra ΛΓ of the Galois group Γ := Gal(Q(µp∞)/Q), equipped
with an action of Γ by the inverse of the canonical character j : Γ→ Λ∗Γ. There
are moment maps

momj
Γ : ΛΓ(−j)→ Zp(−j) .

The key property of ΛΓ(−j) is that it permits to transfer variations on the level
to the sheaf side. More precisely, there is an isomorphism

lim
←r

H3(Y1(N)2×µ
a

mpr ,Λ(HZp)�Λ(HZp)(2)) = H3(Y1(N)2×µ
a
m,Λ(HZp)�Λ(HZp)⊗ΛΓ(2−j)) ,

Let us write
e′ := e′ord := lim

n→∞
(U ′p)

n!

for Ohta’s anti-ordinary operator. The operator (U ′p, U
′
p) is invertible on the

image of (e′, e′), and the so-called “Second norm relation”, seen in Vivek’s talk,
shows that the inverse limit

cBFm,N := lim
←r

(U ′p, U
′
p)
−r(e′, e′)cBF [0]

mpr,N ,

which is an element of

(e′, e′)H3(Y1(N)2 × µ
a
m,Λ(HZp

) � Λ(HZp
)⊗ ΛΓ(2− j)) ,

2There, this map was denoted by tm, but in the present talk we reserve this notation for
the canonical section of order m.
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is well defined. The classes cBFm,N are called Beilinson-Flach elements. The
following theorem establishes the interpolation property of the Beilinson-Flach
elements. It should be seen as a generalization of Theorem 4.1.

Theorem 5.1 (Thm. 6.3.3 of [KLZ15]). Let k, k′ ≥ 0 and 0 ≤ j ≤ min{k, k′}.
For a prime p ≥ 3, N ≥ 1, m ≥ 1 and c > 1 with p|N , (p,m) = 1, and
(c, 6mNp) = 1, we have that

momk ⊗momk′ ⊗momj
Γ(cBFm,N ) =

= (1− pj(U ′p, U ′p)−1σp)(c
2 − c−k−k

′+2jσ2
c (〈c〉, 〈c〉))

(e′, e′) Eis
[k,k′,j]
et,m,N

(−1)jj!
(
k
j

)(
k′

j

) ,

where σc is the arithmetic Frobenius at c in Gal(Q(µm)/Q).

6 Beilinson-Flach elements in Hida families

Set
H1

ord(Np∞) := lim
←r

e′H1
et(Y1(Npr)Q,Zp(1)) .

It is finitely generated and projective over ΛD := Zp[[Zp∗]]. For r ≥ 1, recall
the existence of Ohta’s twisting map

H1
ord(Np∞)

Ohta→ e′H1
et(Y1(Npr)Q,Λ(HZp

〈tN 〉)(1)) .

Remark 6.1. For r = 1, it is easy to see that Ohta’s twisting map is an isomor-
phism. Indeed, if one defines E [pr]〈tN 〉 by the cartesian diagram

E [pr]〈tN 〉

prr,t

��

// Er := E

[pr]

��

Y1(N)
tN // E

,

it is not difficult to see that E [pr]〈tN 〉 ' Y1(Npr). Set

Λ(Hr〈tN 〉) := t∗N ([pr]∗Z/prZ) = prr,t∗(Z/prZ) .

It follows that

H1
et(Y1(N)Q,Λ(Hr〈tN 〉)(1)) ' H1

et(E [pr]〈tN 〉Q,Z/p
rZ(1)) ' H1

et(Y1(Npr)Q,Z/p
rZ(1)) .

By taking limits we get

H1
et(Y1(N)Q,Λ(HZp

〈tN 〉)(1)) ' H1
et(Y1(Npr)Q,Zp(1)) .

As we saw in Chris’ talk, Ohta’s control Theorem states that the compostion
of the moment map momk a [N ]! with Ohta’s twisting map induces an isomor-
phism

H1
ord(Np∞)/Ik,r → e′H1

et(Y1(Npr)Q,TSymk(HZp
)(1)) , (6.1)

where Ik,r is the ideal of ΛD generated by [1 + pr]− (1 + pr)k. Write TNp∞ for
the Hecke algebra generated by the Hecke operators T ′` acting on H1

ord(Np∞).
There are ΛD-linear commuting actions of TNp∞ and GQ,S , the Galois group
of the maximal unramified extension outside the set S of primes dividing Np.
TNp∞ is a finite projective ΛD-algebra.
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Definition 6.2. � A Hida family f is any of the finitely many maximal ideals
of TNp∞.

� If f is a Hida family, set

M(f)∗ := H1
ord(Np∞)f , Λf := (TNp∞)f .

� An arithmetic prime is a prime ideal p of ΛD of height 1 lying over an
ideal of the form Ik,r for some k, r.

Associated to an arithmetic prime p, there is an eigenform fp of level Npr

and weight k + 2 such that

MOP
(fp)∗ = M(f)∗ ⊗Λf

OP ,

where P is a prime of TNp∞ above p ⊆ ΛD and the tensor product is taken with
respect to the projection map

Λf → OP := Λf/P .

Definition 6.3. For Hida families f and g of tame levels Nf and Ng, m ≥ 1
coprime to p, and c > 1 coprime to 6mNfNgp, we define

cBF f ,g
m ∈ H1(Z[

1

mpNfNg
, µm],M(f)∗ ⊗M(g)∗ ⊗ ΛΓ(−j))

to be the image of the class cBFm,N for N := Lcm(Nf , Ng) under the edge
map coming from the Hochschild-Serre spectral sequence, the projection map
Y1(N)2 → Y1(Nf )× Y1(Ng), the Künneth formula, and localization at f and g.

The main and final theorem of this talk is the following.

Theorem 6.1 (Thm. 8.1.4 of [KLZ15]). If f and g are ordinary newforms
of levels Nf and Ng which are specializations of the Hida families f and g of
weights k + 2 and k′ + 2, then for every 0 ≤ j ≤ min{k, k′} the specialization

cBF f ,g
1 (f, g, j) ∈ H1(Z[1/pNfNg],MLP

(f)∗ ⊗MLP
(g)∗(−j))

is equal to(
1− pj

αfαg

)(
1− αfβg

p1+j

)(
1− βfαg

p1+j

)(
1− βfβg

p1+j

)
(−1)jj!

(
k
j

)(
k′

j

) (
c2 − c−k−k

′+2j

εc(f)εc(g)

)
(Eisf,g,jet,1,N ) ,

where αf , βf are the roots of the Hecke polynomial X2−ap(f)X+pk−1εp(f),
and analogously for αg, βg.

Proof. Except of three Euler factors, the other factors come from Theorem 5.1
applied to the p-stabilizations of f and g. Let N be divisible by Nf , Ng, and p.
The remaining three Euler factors are obtained by relating the Beilinson-Flach
elements cBF1,N/p and cBF1,N relative to f and g; or equivalently, the Rankin-
Iwasawa classes cRI1,N/p,1 and cRI1,N,1 relative to f and g.

Aknwoledgements. I would like to thank D. Loeffler and V. Rotger for
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