Compatibility in p-adic families

Francesc Fité

November 24, 2015

Abstract

This is the sixth talk in a series of twelve devoted to the works of G. Kings, D. Loeffler, and S. Zerbes in the Workshop "Arithmetic of Euler systems", celebrated in Benasque in August 2015.

Contents

1 Introduction 1
2 Preliminaries on linear algebra 1
2.1 The Clebsch-Gordan map 2
2.2 The k th moment map 2
3 Étale Eisenstein and Rankin-Eisenstein classes 2
4 Eisenstein-Iwasawa and Rankin-Iwasawa classes 4
5 Beilinson-Flach elements: Projection to $Y_{1}(N)$ 7
6 Beilinson-Flach elements in Hida families 8

1 Introduction

The goal of this talk is to construct Beilinson-Flach elements in Hida families which p-adically interpolate étale Rankin-Eisenstein classes at level $\Gamma(M, N)$ for a pair of modular forms f, g of weights $k+2, k^{\prime}+2 \geq 2$ twisted by a cyclotomic variable. These Beilinson-Flach elements project to those constructed by Bertolini, Darmon and Rotger at level $\Gamma_{1}(N)$ and for weights $k+2=k^{\prime}+2=2$ (see BDR15a]. The interpolation property in the case $k+2=k^{\prime}+2=2$ is shown in LLZ14, and generalizes the main result of BDR15b (in which f is fixed, g varies in a Hida family, and no cyclotomic variable is considered). The proof of the interpolation property in the general case is considered in KLZ15. This proof being too long to be reproduced here, we will content ourselves with giving some ideas on the case of a single modular curve (which is treated in [Kin15] by means of a detailed study of the elliptic polylogarithm), that is, we will sketch how Eisenstein-Iwasawa classes interpolate Eisenstein classes.

2 Preliminaries on linear algebra

Let H denote the profinite group $\mathbb{Z}_{p}{ }^{d}$ for $d \geq 1$. We will be interested in the spaces

$$
\mathrm{TSym}^{k} H \quad \text { and } \quad \operatorname{Sym}^{k} H .
$$

The first denotes the \mathbb{Z}_{p}-algebra of symmetric k-tensors, that is, the space of \mathfrak{S}_{k}-invariants of $H \otimes \otimes H$. In contrast, by the second we denote the k th symmetric power of H, that is, the space of \mathfrak{S}_{k}-coinvariants of $H \otimes . k . \otimes H$. For $m \leq k$ and $h \in H$, write $h^{[m]}:=h^{\otimes m} \in \operatorname{TSym}^{m} H$. If $\left(e_{1}, \ldots, e_{d}\right)$ is a basis for H, then $\left(e_{1}^{\left[n_{1}\right]} \cdots e_{d}^{\left[n_{d}\right]} \mid n_{1}+\ldots n_{d}=k\right)$ is a basis for $\operatorname{TSym}^{k} H$. We have a \mathbb{Z}_{p}-homomorphism

$$
\operatorname{Sym}^{k} H \rightarrow \operatorname{TSym}^{k} H, \quad e_{1}^{n_{1}} \cdots e_{d}^{n_{d}} \mapsto k!\cdot e_{1}^{\left[n_{1}\right]} \cdots e_{d}^{\left[n_{d}\right]}
$$

which becomes an isomorphism after tensoring with \mathbb{Q}_{p}. However, we will keep the distinction between these two spaces, because often we will have to work integrally.

2.1 The Clebsch-Gordan map

We wish to define the Clebsch-Gordan map for $k, k^{\prime} \geq 0$ and $0 \leq j \leq \min \left\{k, k^{\prime}\right\}$

$$
\mathrm{CG}^{\left[\mathrm{k}, \mathrm{k}^{\prime}, \mathrm{j}\right]}: \operatorname{TSym}^{k+k^{\prime}-2 j} H \otimes \operatorname{TSym}^{j}\left(\wedge^{2} H\right) \rightarrow \operatorname{TSym}^{k} H \otimes \operatorname{TSym}^{k^{\prime}} H
$$

We have an obvious inclusion

$$
\operatorname{TSym}^{k+k^{\prime}-2 j} H \subseteq \operatorname{TSym}^{k-j} H \otimes \operatorname{TSym}^{k^{\prime}-j} H
$$

By taking jth powers, the map $\wedge^{2} H \rightarrow H \otimes H$ that sends $x \wedge y$ to $x \otimes y-y \otimes x$, yields a map

$$
\operatorname{TSym}^{j}\left(\wedge^{2} H\right) \rightarrow \operatorname{TSym}^{j} H \otimes \operatorname{TSym}^{j} H
$$

The map $C G^{\left[k, k^{\prime}, j\right]}$ is obtained as the tensor product of the two previous maps.

2.2 The k th moment map

Let $\left(x_{1}, \ldots, x_{d}\right)$ be the dual basis of $\left(e_{1}, \ldots, e_{d}\right)$, where $x_{i}: H \rightarrow \mathbb{Z}_{p}$ is seen as a \mathbb{Z}_{p}-valued function on H.

Consider the space of \mathbb{Z}_{p}-valued measures on H

$$
\Lambda(H):=\operatorname{Hom}_{\mathbb{Z}_{p}}^{\mathrm{cont}}\left(C\left(H, \mathbb{Z}_{p}\right), \mathbb{Z}_{p}\right)
$$

where $C\left(H, \mathbb{Z}_{p}\right)$ denotes the space of continuous \mathbb{Z}_{p}-valued functions on H. Definition 2.1. The k th moment map is the \mathbb{Z}_{p}-algebra homomorphism

$$
\operatorname{mom}^{k}: \Lambda(H) \rightarrow \operatorname{TSym}^{k} H, \quad \operatorname{mom}^{k}(\mu):=\sum_{n_{1}+\ldots n_{d}=k} \mu\left(x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}\right) e_{1}^{\left[n_{1}\right]} \cdots e_{d}^{\left[n_{d}\right]}
$$

3 Étale Eisenstein and Rankin-Eisenstein classes

Let Y denote a modular curve corresponding to a representable moduli problem. It comes equipped with a universal elliptic curve $\pi: \mathcal{E} \rightarrow Y$. Fix a prime p throughout the talk. We define lisse étale sheaves on $Y[1 / p]$:

- $\mathcal{H}_{\mathbb{Z}_{p}}:=R^{1} \pi_{*} \mathbb{Z}_{p}(1) \simeq R^{1} \pi_{*} \mathbb{Z}_{p}{ }^{\vee}$,
- $\mathcal{H}_{\mathbb{Q}_{p}}:=R^{1} \pi_{*} \mathbb{Q}_{p}(1)$,
- $\mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Z}_{p}}$,
- $\mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}} \simeq \operatorname{Sym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}$.

Remark 3.1. If P is a geometric point on Y corresponding to an elliptic curve E, we should think of the stalk of $\mathcal{H}_{\mathbb{Z}_{p}}$ at P as the p-adic Tate module $M_{p}(E)$ of E. Similarly, we should think of $\mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Z}_{p}, P}$ as $\mathrm{TSym}^{k} M_{p}(E)$.

For $f=\sum_{n \geq 1} a_{n}(f) q^{n} \in S_{k+2}\left(\Gamma_{1}\left(N_{f}\right)\right)$ a normalized cuspidal eigenform, L a number field containing $\mathbb{Q}\left(\left\{a_{n}(f)\right\}_{n \geq 1}\right), N$ divisible by N_{f}, and \mathfrak{P} a prime of L lying over p, let:

- $M_{L_{\mathfrak{P}}}(f)$ be the maximal subspace of $H_{\text {et }, c}^{1}\left(Y_{1}(N)_{\overline{\mathbb{Q}}}, \operatorname{Sym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}^{\vee}\right) \otimes_{\mathbb{Q}_{p}} L_{\mathfrak{F}}$ on which the Hecke operator T_{ℓ} acts as multiplication by a_{ℓ} for every prime ℓ.
- $M_{L_{\mathfrak{F}}}(f)^{*}$ be the maximal quotient of $H_{\text {et }, c}^{1}\left(Y_{1}(N)_{\overline{\mathbb{Q}}}, \mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}(1)\right) \otimes_{\mathbb{Q}_{p}} L_{\mathfrak{F}}$ on which the Hecke operator T_{ℓ}^{\prime} acts as multiplication by a_{ℓ} for every prime ℓ.

If $\mathcal{O}_{\mathfrak{F}}$ denotes the ring of integers of $L_{\mathfrak{P}}$, then one defines integral versions $M_{\mathcal{O}_{\mathfrak{F}}}(f)$ and $M_{\mathcal{O}_{\mathfrak{F}}}(f)^{*}$ of the previous obtects in the obvious way.
Definition 3.2. Let $N \geq 5, b \in \mathbb{Z} / N \mathbb{Z} \backslash\{0\}$, and $k \geq 0$. The étale Eisenstein class $\operatorname{Eis}_{e t, b, N}^{k}$ is defined as the image of the motivic Eisenstein class Eis ${ }_{m o t, b, N}^{k}$ by the étale regulator map

$$
H_{m o t}^{1}\left(Y_{1}(N), \operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}}(1)\right) \rightarrow H_{e t}^{1}\left(Y_{1}(N)_{\mathbb{Z}[1 / N p]}, \operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}(1)\right)
$$

Example 3.3. As we saw in Antonio's talk, for $k=0, H_{m o t}^{1}\left(Y_{1}(N), \mathbb{Q}(1)\right)=$ $\mathcal{O}\left(Y_{1}(N)\right)^{*} \otimes \mathbb{Q}$ and the motivic Eisenstein class $\operatorname{Eis}_{m o t, b, N}^{0}$ is the Siegel unit $g_{0, b / N}$.

Let $f \in S_{k+2}\left(\Gamma_{1}\left(N_{f}\right)\right)$ and $g \in S_{k^{\prime}+2}\left(\Gamma_{1}\left(N_{g}\right)\right)$ for $k, k^{\prime} \geq 0$. To shorten notation, until the end of this \S, let us write $Y:=Y_{1}(N)[1 / N p]$, where N is an integer divisible by N_{f} and N_{g}. For $0 \leq j \leq \min \left\{k, k^{\prime}\right\}$, we will be interested in the following maps:

- The Clebsch-Gordan map:
$H_{e t}^{1}\left(Y, \operatorname{TSym}^{k+k^{\prime}-2 j} \mathcal{H}_{\mathbb{Q}_{p}}(1)\right) \xrightarrow{\mathrm{CG}_{*}^{\left[k, k^{\prime}, j\right]}} H_{e t}^{1}\left(Y, \operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}} \otimes \operatorname{TSym}^{k^{\prime}} \mathcal{H}_{\mathbb{Q}_{p}}(1-j)\right)$.
At the level of stalks, this is the map defined in 2.1. Indeed, note that in our situation $\wedge^{2} H \simeq \operatorname{det}(H) \simeq \mathbb{Q}_{p}(1)$.
- The push-forward of the diagonal embedding:
$H_{e t}^{1}\left(Y, \operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}} \otimes \operatorname{TSym}^{k^{\prime}} \mathcal{H}_{\mathbb{Q}_{p}}(-j)\right) \xrightarrow{\Delta_{*}} H_{e t}^{3}\left(Y^{2}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right)$.
Here, for \mathcal{A}, \mathcal{B} sheaves on Y and $\pi_{1}, \pi_{2}: Y^{2} \rightarrow Y$ the two distinct projections, we write $\mathcal{A} \boxtimes \mathcal{B}$ for the sheaf $\pi_{1}^{*} \mathcal{A} \otimes \pi_{2}^{*} \mathcal{B}$ on Y^{2}. We then write $\operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}:=\operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}} \boxtimes \operatorname{TSym}^{k^{\prime}} \mathcal{H}_{\mathbb{Q}_{p}}$.
- There is an edge map coming from the Hochschild-Serre spectral sequence

$$
H_{e t}^{3}\left(Y^{2}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right) \stackrel{\simeq}{\rightarrow} H^{1}\left(\mathbb{Z}\left[\frac{1}{N p}\right], H_{e t, c}^{2}\left(Y_{1}(N)_{\mathbb{Q}}^{2}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right)\right) .
$$

- Projection to the (f, g)-isotypic component

$$
H^{1}\left(\mathbb{Z}\left[\frac{1}{N p}\right], H_{e t, c}^{2}\left(Y_{1}(N)_{\stackrel{2}{\mathbb{Q}}}^{2}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right)\right) \xrightarrow{\operatorname{pr}_{f, g}} H^{1}\left(\mathbb{Z}\left[\frac{1}{N p}\right], M_{L_{\mathfrak{F}}}(f)^{*} \otimes M_{L_{\mathfrak{B}}}(g)^{*}(-j)\right)
$$

Definition 3.4. - The Rankin-Eisenstein class $\operatorname{Eis}_{e t, b, N}^{f, g, j}$ is defined as the image of the étale Eisenstein class Eis ${ }_{e t, b, N}^{k+k^{\prime}-2 j}$ by the concatenation of all the previous maps.

- The Rankin-Eisenstein class Eis ${ }_{e t, b, N}^{\left[k, k^{\prime}, j\right]}$ at stage

$$
H_{e t}^{3}\left(Y^{2}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right) \simeq H^{1}\left(\mathbb{Z}\left[\frac{1}{N p}\right], H_{e t, c}^{2}\left(Y_{1}(N)_{\overline{\mathbb{Q}}}, \operatorname{TSym}^{\left[k, k^{\prime}\right]} \mathcal{H}_{\mathbb{Q}_{p}}(2-j)\right)\right)
$$

is defined as the image of the étale Eisenstein class $\operatorname{Eis}_{e t, b, N}^{k+k^{\prime}-2 j}$ by the map $\Delta_{*} \circ \mathrm{CG}_{*}^{\left[k, k^{\prime}, j\right]}$.

4 Eisenstein-Iwasawa and Rankin-Iwasawa classes

Recall that as at the beginning of $\$ 3$, if Y is a modular curve corresponding to a representable moduli problem, we have a universal elliptic curve $\pi: \mathcal{E} \rightarrow Y$. Let us see \mathcal{E} as a covering of itself by means of

$$
\left[p^{r}\right]: \mathcal{E}_{r}:=\mathcal{E} \rightarrow \mathcal{E}
$$

the p^{r}-multiplication map, with $r \geq 1$. Define the pro-system of étale lisse sheaves

$$
\mathcal{L}:=\left(\left[p^{r}\right]_{*}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)\right)_{r \geq 1},
$$

which we call the elliptic polylogarithm. The transition maps are constructed in the following manner. First consider the composition

$$
\begin{equation*}
[p]_{*} \mathbb{Z} / p^{r+1} \mathbb{Z} \rightarrow \mathbb{Z} / p^{r+1} \mathbb{Z} \rightarrow \mathbb{Z} / p^{r} \mathbb{Z} \tag{4.1}
\end{equation*}
$$

of maps of sheaves on \mathcal{E}_{r}, where the first map is the trace map induced by $[p]: \mathcal{E}_{r+1} \rightarrow \mathcal{E}_{r}$ and the second is the reduction map. The transition map is now obtained by projecting (4.1) on \mathcal{E} by $\left[p^{r}\right]_{*}$

$$
\left[p^{r+1}\right]_{*} \mathbb{Z} / p^{r+1} \mathbb{Z} \rightarrow\left[p^{r}\right]_{*} \mathbb{Z} / p^{r} \mathbb{Z}
$$

Write $\mathcal{L}_{\mathbb{Q}_{p}}:=\mathcal{L} \otimes \mathbb{Q}_{p}$. For a section $t: Y \rightarrow \mathcal{E}$, define the sheaf of Iwasawa modules

$$
\begin{gathered}
\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\langle t\rangle\right):=t^{*} \mathcal{L}, \\
\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right):=\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\langle e\rangle\right),
\end{gathered}
$$

where $e: Y \rightarrow \mathcal{E}$ denotes the trivial section.
Remark 4.1. If P is a geometric point on Y corresponding to an elliptic curve E, we should think of the stalk of $\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)$ at P as the Iwasawa algebra of the p-adic Tate module $M_{p}(E)$ of E, that is, the space of \mathbb{Z}_{p}-valued measures on $M_{p}(E)$. This justifies the notation and terminology used.
Remark 4.2. There exist sheafified moment maps

$$
\operatorname{mom}^{k}: \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \rightarrow \mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Z}_{p}}
$$

such that if P is a geometric point on Y corresponding to an elliptic curve E, then

$$
\operatorname{mom}_{P}^{k}: \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)_{P}=\Lambda\left(M_{p}(E)\right) \rightarrow \mathrm{TSym}^{k} \mathcal{H}_{\mathbb{Z}_{p}, P}=\mathrm{TSym}^{k} M_{p}(E)
$$

coincides with the k th moment map of Definition 2.1.
In Antonio's talk, we have defined the Kato units ${ }_{c} \theta_{\mathcal{E}} \in \mathcal{O}(\mathcal{E} \backslash \mathcal{E}[c])^{*}$ for $c>1$ and $(c, 6)=1$. Observe that
$H_{e t}^{1}(\mathcal{E} \backslash \mathcal{E}[c], \mathcal{L}(1)) \simeq \lim _{\leftarrow r} H_{e t}^{1}\left(\mathcal{E} \backslash \mathcal{E}[c],\left[p^{r}\right]_{*}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)(1)\right) \simeq \lim _{\leftarrow r} H_{e t}^{1}\left(\mathcal{E}_{r} \backslash \mathcal{E}_{r}\left[c p^{r}\right], \mathbb{Z} / p^{r} \mathbb{Z}(1)\right)$.
Thanks to the norm relations that we saw that Kato units satisfy, if $p \nmid c$ the following limit is well defined

$$
{ }_{c} \Theta_{\mathcal{E}}:=\lim _{\leftarrow r} \partial_{r}\left({ }_{c} \theta_{\mathcal{E}_{r}}\right) \in \lim _{\leftarrow r} H_{e t}^{1}\left(\mathcal{E}_{r} \backslash \mathcal{E}_{r}\left[c p^{r}\right], \mathbb{Z} / p^{r} \mathbb{Z}(1)\right)
$$

where $\partial_{r}: \mathcal{O}\left(\mathcal{E}_{r} \backslash \mathcal{E}_{r}\left[c p^{r}\right]\right)^{*} \rightarrow H^{1}\left(\mathcal{E}_{r} \backslash \mathcal{E}_{r}\left[c p^{r}\right], \mathbb{Z} / p^{r} \mathbb{Z}(1)\right)$ is the connecting morphism for the exact sequence

$$
1 \rightarrow \mu_{p^{r}} \rightarrow \mathbb{G}_{m} \xrightarrow{. p^{r}} \mathbb{G}_{m} \rightarrow 1
$$

Until the definition of Rankin-Iwasawa class, for $M, N \geq 1, M \mid N$, and $M+$ $N \geq 5$, let Y be the curve $Y(M, N)[1 / M N p]$ defined in Kezuka's talk.
Definition 4.3. Let $c>1$ with $(c, 6 N p)=1$ and $b \in \mathbb{Z} / N \mathbb{Z} \backslash\{0\}$. Let $t_{N}: Y(M, N) \rightarrow \mathcal{E} \backslash \mathcal{E}[c]$ be the canonical section of order N (note that it takes values in $\mathcal{E} \backslash \mathcal{E}[c]$ by our choice of $c)$. The Eisenstein-Iwasawa class ${ }_{c} \mathcal{E I}_{t}$ is defined as the image of ${ }_{c} \Theta_{\mathcal{E}}$ by the map

$$
H_{e t}^{1}(\mathcal{E} \backslash \mathcal{E}[c], \mathcal{L}(1)) \xrightarrow{\left(b t_{N}\right)^{*}} H_{e t}^{1}\left(Y, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\left\langle b t_{N}\right\rangle\right)(1)\right) \xrightarrow{[N]_{*}} H_{e t}^{1}\left(Y, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(1)\right) .
$$

We will be interested in the following maps:

- The map induced by $\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \rightarrow \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \otimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)$

$$
H^{1}\left(Y, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(1)\right) \rightarrow H_{e t}^{1}\left(Y, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \otimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(1)\right) .
$$

- The push-forward of the diagonal embedding $\Delta: Y \rightarrow Y^{2}$

$$
H_{e t}^{1}\left(Y, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \otimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(1)\right) \xrightarrow{\Delta_{*}} H_{e t}^{3}\left(Y^{2}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right) .
$$

- For $a \in \mathbb{Z} / M \mathbb{Z}$, the map

$$
H_{e t}^{3}\left(Y^{2}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right) \xrightarrow{u_{a *}} H_{e t}^{3}\left(Y^{2}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right),
$$

where $u_{a}: Y^{2} \rightarrow Y^{2}$ is the automorphism that is the identity on the first factor and the map that sends a triple $\left(E, e_{1}, e_{2}\right)$ to the triple $\left(E, e_{1}+\right.$ $a \frac{N}{M} e_{2}, e_{2}$) on the second factor.

- The edge map

$$
H_{e t}^{3}\left(Y^{2}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right) \stackrel{\sim}{\rightarrow} H^{1}\left(\mathbb{Z}\left[\frac{1}{M N p}\right], H_{e t, c}^{2}\left(Y(M, N)_{\overline{\mathbb{Q}}}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right)\right) .
$$

Definition 4.4. The Rankin-Iwasawa class ${ }_{c} \mathcal{R} \mathcal{I}_{M, N, a}$ is defined as the image of the Eisenstein-Iwasawa class ${ }_{c} \mathcal{E} \mathcal{I}_{1, N}$ by the concatenation of all the previous maps.

In §5, we will see that Rankin-Iwasawa classes (or even more generally, Beilinson-Flach elements) interpolate Rankin-Eisenstein classes (see Theorem 5.1. To conclude the section, we will see an intermediate result, which shows that Eisenstein-Iwasawa classes (for $M=1$) interpolate Eisenstein classes.

Theorem 4.1 (Thm. 4.7.1 of Kin15]). For $N \geq 5, b \in \mathbb{Z} / N \mathbb{Z} \backslash\{0\}$, and $c>1$ with $(c, 6 N p)=1$, one has

$$
\operatorname{mom}^{k}\left({ }_{c} \mathcal{E} \mathcal{I}_{b, N}\right)=c^{2} \operatorname{Eis}_{e t, b, N}^{k}-c^{-k} \operatorname{Eis}_{e t, c b, N}^{k}
$$

as elements of $H_{\text {et }}^{1}\left(Y_{1}(N)[1 / N p], \operatorname{TSym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}(1)\right)$.
Sketch of proof. In the course of the proof, let us write $t: Y_{1}(N) \rightarrow \mathcal{E}$ for a section of order $N, e: Y_{1}(N) \rightarrow \mathcal{E}$ for the trivial section, and $Y:=Y_{1}(N)[1 / N p]$. The proof uses the following crucial properties of the elliptic polylogarithm

- For an isogeny $\varphi: \mathcal{E} \rightarrow \mathcal{E}$, one has $\varphi^{*} \mathcal{L}_{\mathbb{Q}_{p}} \simeq \mathcal{L}_{\mathbb{Q}_{p}}$.
- $e^{*} \mathcal{L}_{\mathbb{Q}_{p}} \simeq t^{*} \mathcal{L}_{\mathbb{Q}_{p}} \simeq\left(\Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\langle t\rangle\right) \otimes \mathbb{Q}_{p}\right) \simeq \prod_{k \geq 0} \operatorname{Sym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}$.
- There is a multiplication map mult: $\pi^{*} \mathcal{H}_{\mathbb{Q}_{p}} \otimes \mathcal{L}_{\mathbb{Q}_{p}} \rightarrow \mathcal{L}_{\mathbb{Q}_{p}}$.

Consider the following diagram (the first vertical arrow of which we take as
a black box ${ }^{11}$

At the level of stalks the contraction map is defined in the following way contr : $H^{\vee} \otimes \operatorname{Sym}^{k} H \rightarrow \operatorname{Sym}^{k-1} H, \quad h^{\vee} \otimes h_{1} \otimes \cdots \otimes h_{k} \mapsto \frac{1}{k+1} \sum_{j=1}^{k} h^{\vee}\left(h_{j}\right) h_{1} \otimes \cdots \otimes \hat{h}_{j} \otimes \cdots \otimes h_{k}$.

Let pol denote the image of the canonical immersion

$$
\mathcal{H}_{\mathbb{Q}_{p}} \hookrightarrow \prod_{k \geq 0} \operatorname{Sym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}
$$

by the very first isomorphism in the above diagram and write t^{*} pol $:=\left(t^{*} \operatorname{pol}^{k}\right)_{k \geq 1}$. The first step of the proof is to show that if $t=b t_{N}$, where t_{N} is the canonical section of order N, then the Eisenstein class Eis ${ }_{e t, b, N}^{k}$ is the image of t^{*} pol $^{k+1}$ by the concatenation of the maps in the first column of the the previous diagram.

Note that we had defined Kato elements ${ }_{c} \Theta_{\mathcal{E}} \in H_{e t}^{1}\left(\mathcal{E} \backslash \mathcal{E}[c], \mathcal{L}_{\mathbb{Q}_{p}}(1)\right)$. If we detnote by mult $\mathscr{H}_{\mathscr{Q}_{p}}$ the concatenation of the maps on the second column, then the second step of the proof consists of establishing the following fundamental relation

$$
\left.c^{2} \operatorname{pol}\right|_{\mathcal{E} \backslash \mathcal{E}[c]}-c[c]^{*} \mathrm{pol}=\operatorname{mult}_{\mathcal{H}_{\mathbb{Q}_{p}}}\left(\Theta_{\mathcal{E}}\right)
$$

in $\operatorname{Ext}_{\mathcal{E} \backslash \mathcal{E}[c]}^{1}\left(\pi^{*} \mathcal{H} \mathbb{Q}_{p}, \mathcal{L}_{\mathbb{Q}_{p}}(1)\right)$. Now the theorem follows from the following two facts:

[^0]- The concatenation of the maps on the second and first column coincide with the sheafified k th moment map mom ${ }^{k}$ (once tensored with \mathbb{Q}_{p}); and
- The isomorphism $t^{*} \mathcal{L}_{\mathbb{Q}_{p}} \simeq t^{*}[c]^{*} \mathcal{L}_{\mathbb{Q}_{p}}$ is multiplication by c^{k} on the graded piece $\operatorname{Sym}^{k} \mathcal{H}_{\mathbb{Q}_{p}}$.

5 Beilinson-Flach elements: Projection to $Y_{1}(N)$

Let $m \geq 1$ and $N \geq 5$. Let μ_{m}° be the scheme of primitive m th roots of unity, that is, $\mu_{m}^{\circ}=\operatorname{Spec}\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$, where ζ_{m} is a primitive m th root of unity. In Vivek's talk we have seen that there exists a mar ${ }^{2}$

$$
\alpha_{m}: Y(m, m N) \rightarrow Y_{1}(N) \times \mu_{m}^{\circ}
$$

Definition 5.1. We will write ${ }_{c} \mathcal{B} \mathcal{F}_{m, N}^{[0]}$ for the image of the Rankin-Iwasawa class ${ }_{c} \mathcal{R} \mathcal{I}_{m, m N, 1}$ by the map
$\left(\alpha_{m} \times \alpha_{m}\right)_{*}: H_{e t}^{3}\left(Y(m, m N)^{2}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right) \rightarrow H_{e t}^{3}\left(Y_{1}(N)^{2} \times \mu_{m}^{\circ}, \Lambda\left(\mathcal{H}_{Z_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right)$
We still need to introduce one more sheaf of Iwasawa modules. Let

$$
\operatorname{pr}_{r}: \operatorname{Spec}(\mathbb{Z}[1 / p]) \times \mu_{p^{r}}^{\circ} \rightarrow \operatorname{Spec}(\mathbb{Z}[1 / p])
$$

the natural projection for $r \geq 1$. Define the pro-étale sheaf

$$
\Lambda_{\Gamma}(-\mathbf{j}):=\left(\operatorname{pr}_{r *}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)\right)_{r \geq 1}
$$

The notation is justified by the fact that the stalk of $\Lambda_{\Gamma}(-\mathbf{j})$ at a geometric point is the Iwasawa algebra Λ_{Γ} of the Galois group $\Gamma:=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}\right)$, equipped with an action of Γ by the inverse of the canonical character $\mathbf{j}: \Gamma \rightarrow \Lambda_{\Gamma}^{*}$. There are moment maps

$$
\operatorname{mom}_{\Gamma}^{j}: \Lambda_{\Gamma}(-\mathbf{j}) \rightarrow \mathbb{Z}_{p}(-j)
$$

The key property of $\Lambda_{\Gamma}(-\mathbf{j})$ is that it permits to transfer variations on the level to the sheaf side. More precisely, there is an isomorphism
$\lim _{\leftarrow r} H^{3}\left(Y_{1}(N)^{2} \times \mu_{m p^{r}}^{\circ}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(2)\right)=H^{3}\left(Y_{1}(N)^{2} \times \mu_{m}^{\circ}, \Lambda\left(\mathcal{H}_{Z_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{Z_{p}}\right) \otimes \Lambda_{\Gamma}(2-\mathbf{j})\right)$,
Let us write

$$
e^{\prime}:=e_{\text {ord }}^{\prime}:=\lim _{n \rightarrow \infty}\left(U_{p}^{\prime}\right)^{n!}
$$

for Ohta's anti-ordinary operator. The operator $\left(U_{p}^{\prime}, U_{p}^{\prime}\right)$ is invertible on the image of (e^{\prime}, e^{\prime}), and the so-called "Second norm relation", seen in Vivek's talk, shows that the inverse limit

$$
{ }_{c} \mathcal{B} \mathcal{F}_{m, N}:=\lim _{\leftarrow r}\left(U_{p}^{\prime}, U_{p}^{\prime}\right)^{-r}\left(e^{\prime}, e^{\prime}\right)_{c} \mathcal{B} \mathcal{F}_{m p^{r}, N}^{[0]}
$$

which is an element of

$$
\left(e^{\prime}, e^{\prime}\right) H^{3}\left(Y_{1}(N)^{2} \times \mu_{m}^{\circ}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \boxtimes \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\right) \otimes \Lambda_{\Gamma}(2-\mathbf{j})\right),
$$

[^1]is well defined. The classes ${ }_{c} \mathcal{B} \mathcal{F}_{m, N}$ are called Beilinson-Flach elements. The following theorem establishes the interpolation property of the Beilinson-Flach elements. It should be seen as a generalization of Theorem 4.1.
Theorem 5.1 (Thm. 6.3.3 of (KLZ15]). Let $k, k^{\prime} \geq 0$ and $0 \leq j \leq \min \left\{k, k^{\prime}\right\}$. For a prime $p \geq 3, N \geq 1, m \geq 1$ and $c>1$ with $p \mid N,(p, m)=1$, and $(c, 6 m N p)=1$, we have that
\[

$$
\begin{gathered}
\operatorname{mom}^{k} \otimes \operatorname{mom}^{k^{\prime}} \otimes \operatorname{mom}_{\Gamma}^{j}\left({ }_{c} \mathcal{B} \mathcal{F}_{m, N}\right)= \\
=\left(1-p^{j}\left(U_{p}^{\prime}, U_{p}^{\prime}\right)^{-1} \sigma_{p}\right)\left(c^{2}-c^{-k-k^{\prime}+2 j} \sigma_{c}^{2}(\langle c\rangle,\langle c\rangle)\right) \frac{\left(e^{\prime}, e^{\prime}\right) \operatorname{Eis}_{e t, m, N}^{\left[k, k^{\prime}, j\right]}}{(-1)^{j} j!\binom{k}{j}\binom{k_{j}^{\prime}}{j}},
\end{gathered}
$$
\]

where σ_{c} is the arithmetic Frobenius at c in $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{m}\right) / \mathbb{Q}\right)$.

6 Beilinson-Flach elements in Hida families

Set

$$
H_{\mathrm{ord}}^{1}\left(N p^{\infty}\right):=\lim _{\leftarrow r} e^{\prime} H_{e t}^{1}\left(Y_{1}\left(N p^{r}\right)_{\overline{\mathbb{Q}}}, \mathbb{Z}_{p}(1)\right)
$$

It is finitely generated and projective over $\Lambda_{D}:=\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}{ }^{*}\right]\right]$. For $r \geq 1$, recall the existence of Ohta's twisting map

$$
H_{\mathrm{ord}}^{1}\left(N p^{\infty}\right) \xrightarrow{\text { Ohta }} e^{\prime} H_{e t}^{1}\left(Y_{1}\left(N p^{r}\right)_{\overline{\mathbb{Q}}}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\left\langle t_{N}\right\rangle\right)(1)\right) .
$$

Remark 6.1. For $r=1$, it is easy to see that Ohta's twisting map is an isomorphism. Indeed, if one defines $\mathcal{E}\left[p^{r}\right]\left\langle t_{N}\right\rangle$ by the cartesian diagram

it is not difficult to see that $\mathcal{E}\left[p^{r}\right]\left\langle t_{N}\right\rangle \simeq Y_{1}\left(N p^{r}\right)$. Set

$$
\Lambda\left(\mathcal{H}_{r}\left\langle t_{N}\right\rangle\right):=t_{N}^{*}\left(\left[p^{r}\right]_{*} \mathbb{Z} / p^{r} \mathbb{Z}\right)=\operatorname{pr}_{r, t *}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)
$$

It follows that
$H_{e t}^{1}\left(Y_{1}(N)_{\overline{\mathbb{Q}}}, \Lambda\left(\mathcal{H}_{r}\left\langle t_{N}\right\rangle\right)(1)\right) \simeq H_{e t}^{1}\left(\mathcal{E}\left[p^{r}\right]\left\langle t_{N}\right\rangle_{\overline{\mathbb{Q}}}, \mathbb{Z} / p^{r} \mathbb{Z}(1)\right) \simeq H_{e t}^{1}\left(Y_{1}\left(N p^{r}\right)_{\overline{\mathbb{Q}}}, \mathbb{Z} / p^{r} \mathbb{Z}(1)\right)$.
By taking limits we get

$$
H_{e t}^{1}\left(Y_{1}(N)_{\overline{\mathbb{Q}}}, \Lambda\left(\mathcal{H}_{\mathbb{Z}_{p}}\left\langle t_{N}\right\rangle\right)(1)\right) \simeq H_{e t}^{1}\left(Y_{1}\left(N p^{r}\right)_{\overline{\mathbb{Q}}}, \mathbb{Z}_{p}(1)\right) .
$$

As we saw in Chris' talk, Ohta's control Theorem states that the compostion of the moment map mom ${ }^{k} \circ[N]$! with Ohta's twisting map induces an isomorphism

$$
\begin{equation*}
H_{\mathrm{ord}}^{1}\left(N p^{\infty}\right) / I_{k, r} \rightarrow e^{\prime} H_{e t}^{1}\left(Y_{1}\left(N p^{r}\right)_{\overline{\mathbb{Q}}}, \operatorname{TSym}^{k}\left(\mathcal{H}_{\mathbb{Z}_{p}}\right)(1)\right), \tag{6.1}
\end{equation*}
$$

where $I_{k, r}$ is the ideal of Λ_{D} generated by $\left[1+p^{r}\right]-\left(1+p^{r}\right)^{k}$. Write $\mathbb{T}_{N p^{\infty}}$ for the Hecke algebra generated by the Hecke operators T_{ℓ}^{\prime} acting on $H_{\text {ord }}^{1}\left(N p^{\infty}\right)$. There are Λ_{D}-linear commuting actions of $\mathbb{T}_{N} p^{\infty}$ and $G_{\mathbb{Q}, S}$, the Galois group of the maximal unramified extension outside the set S of primes dividing $N p$. $\mathbb{T}_{N} p^{\infty}$ is a finite projective Λ_{D}-algebra.

Definition 6.2.

- A Hida family \mathbf{f} is any of the finitely many maximal ideals of $\mathbb{T}_{N} p^{\infty}$.
- If \mathbf{f} is a Hida family, set

$$
M(\mathbf{f})^{*}:=H_{\mathrm{ord}}^{1}\left(N p^{\infty}\right)_{\mathbf{f}}, \quad \Lambda_{\mathbf{f}}:=\left(\mathbb{T}_{N} p^{\infty}\right)_{\mathbf{f}}
$$

- An arithmetic prime is a prime ideal \mathfrak{p} of Λ_{D} of height 1 lying over an ideal of the form $I_{k, r}$ for some k, r.
Associated to an arithmetic prime \mathfrak{p}, there is an eigenform $f_{\mathfrak{p}}$ of level $N p^{r}$ and weight $k+2$ such that

$$
M_{\mathcal{O}_{\mathfrak{P}}}\left(f_{\mathfrak{p}}\right)^{*}=M(\mathbf{f})^{*} \otimes_{\Lambda_{\mathfrak{f}}} \mathcal{O}_{\mathfrak{P}},
$$

where \mathfrak{P} is a prime of $\mathbb{T}_{N p \infty}$ above $\mathfrak{p} \subseteq \Lambda_{D}$ and the tensor product is taken with respect to the projection map

$$
\Lambda_{\mathbf{f}} \rightarrow \mathcal{O}_{\mathfrak{P}}:=\Lambda_{\mathbf{f}} / \mathfrak{P}
$$

Definition 6.3. For Hida families \mathbf{f} and \mathbf{g} of tame levels N_{f} and $N_{g}, m \geq 1$ coprime to p, and $c>1$ coprime to $6 m N_{f} N_{g} p$, we define

$$
{ }_{c} \mathcal{B} \mathcal{F}_{m}^{\mathbf{f}, \mathbf{g}} \in H^{1}\left(\mathbb{Z}\left[\frac{1}{m p N_{f} N_{g}}, \mu_{m}\right], M(\mathbf{f})^{*} \otimes M(\mathbf{g})^{*} \otimes \Lambda_{\Gamma}(-\mathbf{j})\right)
$$

to be the image of the class ${ }_{c} \mathcal{B} \mathcal{F}_{m, N}$ for $N:=\operatorname{Lcm}\left(N_{f}, N_{g}\right)$ under the edge map coming from the Hochschild-Serre spectral sequence, the projection map $Y_{1}(N)^{2} \rightarrow Y_{1}\left(N_{f}\right) \times Y_{1}\left(N_{g}\right)$, the Künneth formula, and localization at \mathbf{f} and \mathbf{g}.

The main and final theorem of this talk is the following.
Theorem 6.1 (Thm. 8.1.4 of (KLZ15). If f and g are ordinary newforms of levels N_{f} and N_{g} which are specializations of the Hida families \mathbf{f} and \mathbf{g} of weights $k+2$ and $k^{\prime}+2$, then for every $0 \leq j \leq \min \left\{k, k^{\prime}\right\}$ the specialization

$$
{ }_{c} \mathcal{B} \mathcal{F}_{1}^{\mathbf{f}, \mathbf{g}}(f, g, j) \in H^{1}\left(\mathbb{Z}\left[1 / p N_{f} N_{g}\right], M_{L_{\mathfrak{F}}}(f)^{*} \otimes M_{L_{\mathfrak{P}}}(g)^{*}(-j)\right)
$$

is equal to

$$
\frac{\left(1-\frac{p^{j}}{\alpha_{f} \alpha_{g}}\right)\left(1-\frac{\alpha_{f} \beta_{g}}{p^{1+j}}\right)\left(1-\frac{\beta_{f} \alpha_{g}}{p^{1+j}}\right)\left(1-\frac{\beta_{f} \beta_{g}}{p^{1+j}}\right)}{(-1)^{j} j!\binom{k}{j}\binom{k^{\prime}}{j}}\left(c^{2}-\frac{c^{-k-k^{\prime}+2 j}}{\varepsilon_{c}(f) \varepsilon_{c}(g)}\right)\left(\operatorname{Eis}_{e t,, 1, N}^{f, g, j}\right),
$$

where α_{f}, β_{f} are the roots of the Hecke polynomial $X^{2}-a_{p}(f) X+p^{k-1} \varepsilon_{p}(f)$, and analogously for α_{g}, β_{g}.

Proof. Except of three Euler factors, the other factors come from Theorem 5.1 applied to the p-stabilizations of f and g. Let N be divisible by N_{f}, N_{g}, and p. The remaining three Euler factors are obtained by relating the Beilinson-Flach elements ${ }_{c} \mathcal{B} \mathcal{F}_{1, N / p}$ and ${ }_{c} \mathcal{B} \mathcal{F}_{1, N}$ relative to f and g; or equivalently, the RankinIwasawa classes ${ }_{c} \mathcal{R} \mathcal{I}_{1, N / p, 1}$ and ${ }_{c} \mathcal{R} \mathcal{I}_{1, N, 1}$ relative to f and g.

Aknwoledgements. I would like to thank D. Loeffler and V. Rotger for helpful discussions.

References

[BDR15a] M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler systems I: syntomic regulators and p-adic Rankin L-series, J. Algebraic Geometry 24 (2015), 355-378.
[BDR15b] M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions, J. Algebraic Geometry 24 (2015), 569-604.
[Kat04] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque, (295):ix, 117-290, 2004. Cohomologies p-adiques et applications arithmétiques. III.
[Kin15] G. Kings, Eisenstein classes, elliptic Soulé elements and the ℓ-adic elliptic polylogarithm, London Math. Soc. Lecture Note Ser., 418, Cambridge Univ. Press, 2015.
[KLZ15] G. Kings, D. Loeffler, S.L. Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws, preprint.
[LLZ14] A. Lei, D. Loeffler, S.L. Zerbes, Euler systems for RankinSelberg convolutions of modular forms, Ann. of Math. 180 (2014), no. 2, 653-771.

[^0]: ${ }^{1}$ It follows from the Leray spectral sequence for $\mathcal{L}_{\mathbb{Q}_{p}}$ and π, the localization sequence, and the vanishing of $R^{i} \pi_{*} \mathcal{L}_{\mathbb{Q}_{p}}$ except for $i=2$.

[^1]: ${ }^{2}$ There, this map was denoted by t_{m}, but in the present talk we reserve this notation for the canonical section of order m.

