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Abstract

This is the sixth talk in a series of twelve devoted to the works of G.
Kings, D. Loeffler, and S. Zerbes in the Workshop “Arithmetic of Euler
systems”, celebrated in Benasque in August 2015.
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1 Introduction

The goal of this talk is to construct Beilinson-Flach elements in Hida families
which p-adically interpolate étale Rankin-Eisenstein classes at level T'(M, N)
for a pair of modular forms f, g of weights k + 2, k' + 2 > 2 twisted by a cyclo-
tomic variable. These Beilinson-Flach elements project to those constructed by
Bertolini, Darmon and Rotger at level I'1 (V) and for weights k+2 =k +2 =2
(see [BDR15a]). The interpolation property in the case k +2 = k' +2 = 2 is
shown in [LLZ14], and generalizes the main result of [BDRI5D] (in which f is
fixed, g varies in a Hida family, and no cyclotomic variable is considered). The
proof of the interpolation property in the general case is considered in [KLZT5].
This proof being too long to be reproduced here, we will content ourselves with
giving some ideas on the case of a single modular curve (which is treated in
[Kin15] by means of a detailed study of the elliptic polylogarithm), that is, we
will sketch how Eisenstein-Iwasawa classes interpolate Eisenstein classes.



2 Preliminaries on linear algebra

Let H denote the profinite group Zpd for d > 1. We will be interested in the
spaces
TSym®*H and Sym"H.

The first denotes the Z,-algebra of symmetric k-tensors, that is, the space of
Gj-invariants of H® .%. ® H. In contrast, by the second we denote the kth
symmetric power of H, that is, the space of &y-coinvariants of H® .%. @ H. For
m < k and h € H, write hl™ := h®™ ¢ TSym™H. If (e1,...,eq) is a basis
for H, then (e[lnl] . -~e£lnd]|n1 +...nq = k) is a basis for TSym*H. We have a
Zp-homomorphism

Sym"H — TSymFH, et -oeld o ket el

which becomes an isomorphism after tensoring with Q,,. However, we will keep
the distinction between these two spaces, because often we will have to work
integrally.

2.1 The Clebsch-Gordan map
We wish to define the Clebsch-Gordan map for k, &’ > 0 and 0 < j < min{k, ¥}

CGloKl, TSymk+k,_2jH ® TSym? (A’H) — TSym"H ® TSymk/H.
We have an obvious inclusion
TSykark/*QjH C TSym" 7 H ® TSykajH.

By taking jth powers, the map A2H — H® H that sends tAyto z @y —y @,
yields a map _ _ '
TSym’ (A’H) — TSym’ H ® TSym’ H .

The map CGIK is obtained as the tensor product of the two previous maps.

2.2 The kth moment map

Let (x1,...,xq) be the dual basis of (ey,...,eq), where x; : H — Z,, is seen as
a Zp-valued function on H.
Consider the space of Zy-valued measures on H

A(H) := Homg™ (C(H, Zy), Zy) ,

where C(H,Z,) denotes the space of continuous Z,-valued functions on H.

Definition 2.1. The kth moment map is the Z,-algebra homomorphism

mom*: A(H) — TSym*H , mom” () := Z p(zt? ~-~:cgd)e[1”1] . e&"d} )

ni+..ng=k



3 Etale Eisenstein and Rankin-Eisenstein classes

Let Y denote a modular curve corresponding to a representable moduli problem.
It comes equipped with a universal elliptic curve 7: £ — Y. Fix a prime p
throughout the talk. We define lisse étale sheaves on Y[1/p]:

o #y = R'm.7Z,(1) ~ R'1,Z,",
o Hy, = R'mQ,(1),
o TSym"#4

. TSymk}ﬂ@p ~ Symkﬂ-@p.
Remark 3.1. If P is a geometric point on Y corresponding to an elliptic curve
E, we should think of the stalk of #z, at P as the p-adic Tate module M,(E)
of E. Similarly, we should think of TSymk}[Zp,p as TSym* M,,(E).

For f =3 5 an(f)q" € Sk42(I'1(Ny)) a normalized cuspidal eigenform, L

a number field containing Q({a,(f)}n>1), N divisible by Ny, and ‘B a prime of
L lying over p, let:

o My, (f) be the maximal subspace of H}; (Y1 (N)g: Symkﬂ-@/p) ®q, Ly on
which the Hecke operator T; acts as multiplication by a, for every prime £.

o Mg, (f)* be the maximal quotient of H}; (Y1 (N)g TSymkH@p (1))®q, Lsp

on which the Hecke operator 7, acts as multiplication by a, for every
prime /.

If Oy denotes the ring of integers of Lz, then one defines integral versions
Moy, (f) and Mo, (f)* of the previous obtects in the obvious way.

Definition 3.2. Let N > 5, b € Z/NZ\ {0}, and k > 0. The étale Fisenstein
class Eisfnb’ n 1s defined as the image of the motivic Eisenstein class Eisf,wt,b’ N
by the étale regulator map

Hypor (Y1(N), TSym"* 2 (1)) = He, (Yi(N)zq /), TSym* g, (1))

Ezample 3.3. As we saw in Antonio’s talk, for k = 0, H! ,(Y1(N),Q(1)) =
O(Y1(N))* ® Q and the motivic Eisenstein class Eisg,wt’b,N is the Siegel unit
9o,b/N -

Let f € Sp42(I'1(Ny)) and g € Spr42(I'1(Ny)) for k, k" > 0. To shorten
notation, until the end of this §, let us write Y := Y7 (N)[1/Np], where N is an
integer divisible by Ny and N,. For 0 < j < min{k, ¥'}, we will be interested
in the following maps:

e The Clebsch-Gordan map:

P [k.k,5] ,
HY(Y, TSym 29, (1)) “C57 B (v, TSym s, @ TSym* sy, (1-5)) .

At the level of stalks, this is the map defined in Indeed, note that in
our situation A2H ~ det(H) ~ Q,(1).



e The push-forward of the diagonal embedding;:
H,(Y. TSym* 36y, & TSym" s, (=) == H(V2, TSym*¥ g, (2— ).

Here, for A, B sheaves on Y and 7, my: Y2 — Y the two distinct pro-
jections, we write A X B for the sheaf 75,4 ® 738 on Y2. We then write

TSym"* .= TSym* s, K TSym* 24, .

e There is an edge map coming from the Hochschild-Serre spectral sequence

’ i ~ 1 ’ .
HE(Y?, TSym" o, (2—j)) 5 Hl(Z[N*pL H, (Vi(N)Z, TSym* s, (2-7))).

e Projection to the (f, g)-isotypic component

1 4 . Py g 1 * * .
Hl(Z[N—p], HZ, (Vi(N)Z, TSym" o, (2—j))) "5 Hl(Z[N—p],MLm (f)*®MLy (9)"(=4))
Definition 3.4. e The Rankin-FEisenstein class Eisfféﬂv is defined as the im-

age of the étale Eisenstein class Eisft"' lf ;\72j by the concatenation of all the

previous maps.
e The Rankin-Eisenstein class Eisgi’]g ;\J,-] at stage
1

HE (2, Tsym ™o, (2-7) = H (25

| H2, ((Y1(N)g, TSym* o, (2-5)))

is defined as the image of the étale Eisenstein class Eis];+ lf ;\72j by the map

Ao CGLEHI],

4 Eisenstein-Iwasawa and Rankin-Iwasawa classes

Recall that as at the beginning of §3] if Y is a modular curve corresponding to
a representable moduli problem, we have a universal elliptic curve 7: £ — Y.
Let us see £ as a covering of itself by means of

p: & ==&

the p"-multiplication map, with » > 1. Define the pro-system of étale lisse
sheaves

L:=([p"1+(Z/p"Z))r21

which we call the elliptic polylogarithm. The transition maps are constructed in
the following manner. First consider the composition

[plZ/p" 7 — Z)p" T — Z)p" T (4.1)

of maps of sheaves on &,., where the first map is the trace map induced by
[p]: €41 — &, and the second is the reduction map. The transition map is now

obtained by projecting (4.1)) on & by [p"]«
L/ — )L/



Write Lo, = L ® Q,. For a section t: Y — &, define the sheaf of Iwasawa
modules
Ay, (1)) =t L,
A(9Hy,,) = My, (€)) ,
where e: Y — £ denotes the trivial section.

Remark 4.1. If P is a geometric point on Y corresponding to an elliptic curve
E, we should think of the stalk of A(#z, ) at P as the Iwasawa algebra of the
p-adic Tate module M,(E) of E, that is, the space of Z,-valued measures on
M,(E). This justifies the notation and terminology used.

Remark 4.2. There exist sheafified moment maps
mom” : A(Hg,) — TSymk}[Zp

such that if P is a geometric point on Y corresponding to an elliptic curve F,
then

mom}: A(%,)p = A(M,(E)) — TSym"#;  p = TSym* M, (E)

coincides with the kth moment map of Definition

In Antonio’s talk, we have defined the Kato units .0g € O(E\E[c])* for ¢ > 1
and (¢,6) = 1. Observe that

HL/(E\ELe], £(1)) = lim HYy(E\ELe], [57]. (Z/52)(1)) = lim HLy(E\E en"), Z/p2(1))

Thanks to the norm relations that we saw that Kato units satisfy, if p t ¢ the
following limit is well defined

O = Li_mar(CQgr) € 1<i_m HL(E\ Eep™], Z)p"Z(1))

where 0,: O(E,\ E:[ep™])* — HY(E,\ Er[ep™], Z/p"Z(1)) is the connecting mor-
phism for the exact sequence

I%up?%GmiGmﬁl.
Until the definition of Rankin-Iwasawa class, for M, N > 1, M|N, and M +
N > 5, let Y be the curve Y (M, N)[1/M Np] defined in Kezuka’s talk.

Definition 4.3. Let ¢ > 1 with (¢,6Np) = 1 and b € Z/NZ \ {0}. Let
tn: Y(M,N) — &\ &[] be the canonical section of order N (note that it
takes values in £ \ £[c] by our choice of ¢). The Fisenstein-Twasawa class ET;
is defined as the image of .O¢ by the map

(th)

HL(EN\Eld, £(1) "N HL (v, A, (ben)) (1) S HL (Y, A(5,)(1)).

We will be interested in the following maps:

e The map induced by A(#z,) — A(%Hy,) @ A(Hz,)

HY(Y,A(942,) (1)) — H, (Y, A(%2,) @ A(94,)(1)) .



e The push-forward of the diagonal embedding A: Y — Y2
HY (Y, A(%,) @ A(5,)(1)) 55 HE (Y2, A(%4,) K A(%,)(2).
e For a € Z/MZ, the map
HE,(Y?, A(oz,) K A(92,)(2)) =% HE, (Y2, A(z,) K A(72,)(2)),

where uq: Y2 — Y2 is the automorphism that is the identity on the first
factor and the map that sends a triple (E,eq,e3) to the triple (F,e; +
a%eg, e2) on the second factor.

e The edge map

HE,(Y2, A7, )RA(9,,)(2)) 5 HY (2], H?

T (Y (V. V), A, A, ) (2))

Definition 4.4. The Rankin-Iwasawa class ;RZy, N,q is defined as the image of
the Eisenstein-Iwasawa class .£7Z1 n by the concatenation of all the previous
maps.

In we will see that Rankin-Iwasawa classes (or even more generally,
Beilinson-Flach elements) interpolate Rankin-Eisenstein classes (see Theorem 5.1]).
To conclude the section, we will see an intermediate result, which shows that
Eisenstein-Iwasawa classes (for M = 1) interpolate Eisenstein classes.

Theorem 4.1 (Thm. 4.7.1 of [Kinl5]). For N > 5, b€ Z/NZ\ {0}, and ¢ > 1
with (¢,6Np) =1, one has

k 2 sk —ksok
mom”(.EZp N) = ¢ Eisgy v —¢ " Eisgy b v

as elements of HY,(Y1(N)[1/Np], TSymk}@p(l)),

Sketch of proof. In the course of the proof, let us write ¢: Y1(IN) — & for a
section of order N, e: Y1 (NN) — & for the trivial section, and Y := Y;(N)[1/Np].
The proof uses the following crucial properties of the elliptic polylogarithm

e For an isogeny ¢: & — £, one has ¢*Lg, ~ Lqg, -
o " Lo, =t"Lg, = (A, () @ Qp) = [0 Sym" sy, .
e There is a multiplication map mult: 7*#y, ® Lo, — Lg, -

Consider the following diagram (the first vertical arrow of which we take as



a black boxEI)

Homy (}l{@P, szl Symk]{@p)

. [e]” «
Extg, 1oy (7" g, , Lg, (1) ————— Extg\ g1 (7", []* Lg, (1))
t* ~
Exty (#y,, [ 150 Sym” #, (1)) Exte\ (o (7" Hy, , Lo, (1))
~ mult%Qp
Exty (Qp, Hy, @ [Liso Sym"#4, (1)) Extg g1 (7" g, , Lo, © 73y, (1))

~ ®@n* Hy,

H\ (Y, ﬂgp ® [I>o0 Symk%@p(l)) EXt}s\‘S[c] (Qp: Lo, (1))
contr ~

HY(Y, [Tisy Sym™ g, (1)) H}{(E\ E[d], Lo, (1))

Pry_1

HEL,(Y,Sym" 3y, (1))

At the level of stalks the contraction map is defined in the following way

k

1
contr: HY®@Sym*H — Sym" 'H | hY®hi®- - -@hy, > —— Zhv Nhi®- - ®h3®"

Let pol denote the image of the canonical immersion

Hy, — H Symkﬂ{@

k>0

by the very first isomorphism in the above diagram and write ¢t*pol := (t*pol’C Vie>1-
The first step of the proof is to show that if ¢ = bt , where ¢y is the canonical
section of order N, then the Eisenstein class ElSPt p.v 18 the image of t*pol* 1 by
the concatenation of the maps in the first column of the the previous diagram.

Note that we had defined Kato elements .Og € H}, (€ \ €[c], Lg,(1)). If we
detnote by mult}@p the concatenation of the maps on the second column, then
the second step of the proof consists of establishing the following fundamental
relation

02p01|g\g[c] — c[¢]*pol = mult%p (:O¢)

in Extg\g (m*HQp, Lg,(1)). Now the theorem follows from the following two
facts:

11t follows from the Leray spectral sequence for Lg, and m, the localization sequence, and
the vanishing of R, Ly, except for i = 2.

‘®hy .



e The concatenation of the maps on the second and first column coincide
with the sheafified kth moment map mom” (once tensored with @Q,); and

e The isomorphism t*Lg, ~ t*[c]*Lg, is multiplication by ¢* on the graded
piece Symkﬂ-[Qp.
O

5 Beilinson-Flach elements: Projection to Y;(V)

Let m > 1 and N > 5. Let p,, be the scheme of primitive mth roots of unity,
that is, u,, = Spec(Z[(mn]), where (,, is a primitive mth root of unity. In Vivek’s
talk we have seen that there exists a mapP|

A Y(m,mN) — Y1 (N) x u,, .
Definition 5.1. We will write .BF 7[2]’  for the image of the Rankin-Iwasawa class
¢RIy, mn,1 by the map
(@mXam)«: H(Y (m,mN)?, A(9, )RA(,)(2)) = Hey (Yi(N)? X i, A9, )JRA(92,,)(2))
We still need to introduce one more sheaf of Iwasawa modules. Let

pr,: Spec(Z[1/p]) x p,» — Spec(Z[1/p])

the natural projection for » > 1. Define the pro-étale sheaf
Ar(=)) == (pr,. (Z/D"Z)) 21 -

The notation is justified by the fact that the stalk of Ap(—j) at a geometric point
is the Iwasawa algebra Ar of the Galois group I' := Gal(Q(up=)/Q), equipped
with an action of I' by the inverse of the canonical character j: I' — Aj.. There
are moment maps ]

momi-: Ap(—j) = Zy(—7).
The key property of Ar(—j) is that it permits to transfer variations on the level
to the sheaf side. More precisely, there is an isomorphism

lim H* (Yo (N)* X e, A9, JRA (%, ) (2)) = H* (Yi(N)? X pi, A (2, ) RA(92, ) ©Ar (2-)))

Let us write

/ ’ : /\n!
e:=e = lim (U,
ord n—>oo( p)

for Ohta’s anti-ordinary operator. The operator (U,,U,) is invertible on the
image of (¢, ¢’), and the so-called “Second norm relation”, seen in Vivek’s talk,
shows that the inverse limit

BFmy = m(Uy, Up) 7 (€ )BFYL v

which is an element of

(€', Y HP (YL(N)? X iy, A(9z,) ®A(7z,) @ Ar(2 = J)),

2There, this map was denoted by t.,, but in the present talk we reserve this notation for
the canonical section of order m.



is well defined. The classes .BF,, n are called Beilinson-Flach elements. The
following theorem establishes the interpolation property of the Beilinson-Flach
elements. It should be seen as a generalization of Theorem

Theorem 5.1 (Thm. 6.3.3 of [KLZI5]). Let k, k' >0 and 0 < j < min{k, k'}.
For a prime p > 3, N > 1, m > 1 and ¢ > 1 with p|N, (p,m) = 1, and
(¢,6mNp) =1, we have that

mom”* ® mom” ® mom?.(BF,, n) =
(kK
P A VA
(*1)331(]')(]’)

where o, is the arithmetic Frobenius at ¢ in Gal(Q(um)/Q).

=1 - (U, U Lop)(c? — e FFH202((c), ()

6 Beilinson-Flach elements in Hida families

Set
HL g (Np™) = lim ¢/ B, (Vi (Np ) (1)

o

It is finitely generated and projective over Ap := Z,[[Z,"]]. For r > 1, recall
the existence of Ohta’s twisting map

HLo(Np™) 25 e B (Yi(ND" g A%, (tx)) (1)) -

Remark 6.1. For r = 1, it is easy to see that Ohta’s twisting map is an isomor-
phism. Indeed, if one defines E[p"]{tx) by the cartesian diagram

EPTtn) — & =&,

lprm l[zﬂ

Vi(N) —2

it is not difficult to see that E[p"]{tn) ~ Y1(Np"). Set
A (tn)) =t (P2 /P Z) = pr, 1. (Z/D"L) .
It follows that
He (Yi(N)g, A4 (tn)) (1)) = Hey (E[" (N ) Z/p"Z(1)) = Hey(Yi(ND")g, Z/p"Z(1)) -
By taking limits we get
He, (Yi(N)g, A, (tn)) (1) = He, (Vi (Np g, Zp(1)) -

As we saw in Chris’ talk, Ohta’s control Theorem states that the compostion
of the moment map mom®<[N]; with Ohta’s twisting map induces an isomor-
phism

Hog(Np™) /T — € Hy (Yi(Np)g, TSym" (96,)(1)) (6.1)

where I, , is the ideal of Ap generated by [1+p”"] — (1 +p")*. Write T npee for
the Hecke algebra generated by the Hecke operators T, acting on HZ ,(Np™).
There are Ap-linear commuting actions of Txp™ and Gg,s, the Galois group
of the maximal unramified extension outside the set S of primes dividing Np.
Tnp™> is a finite projective Ap-algebra.



Definition 6.2. e A Hida family f is any of the finitely many maximal ideals
of TNpOO.

e If f is a Hida family, set

M(£)* = ngd(Npoo)b Ag := (Tnp™)e .

e An arithmetic prime is a prime ideal p of Ap of height 1 lying over an
ideal of the form I}, for some k, .

Associated to an arithmetic prime p, there is an eigenform f, of level Np”
and weight k£ + 2 such that
Moy (fp)" = M(£f)" @, Og ,

where P is a prime of Typ~ above p C Ap and the tensor product is taken with
respect to the projection map

Af — ng = Af/m

Definition 6.3. For Hida families f and g of tame levels Ny and Ny, m > 1
coprime to p, and ¢ > 1 coprime to 6mN¢N,p, we define

1

BFfe ¢ HY(Z][———
¢ < ( [mprNg

m

s ], M(£)" @ M (g)" © Ar(=]))

to be the image of the class BF,, ny for N := Lem(Ny, Ng) under the edge
map coming from the Hochschild-Serre spectral sequence, the projection map
Y1(N)? = Y1(Ns) x Y1(N,), the Kiinneth formula, and localization at f and g.

The main and final theorem of this talk is the following.

Theorem 6.1 (Thm. 8.1.4 of [KLZI5|). If f and g are ordinary newforms
of levels Ny and Ny which are specializations of the Hida families £ and g of
weights k + 2 and k' 4 2, then for every 0 < j < min{k, k'} the specialization

BF1E(f.9.5) € H'(ZIL/pNsNo|, My (f)7 © Mpy (9)"(=5)
s equal to
_ _ aBy _ Brayg _ BsBg o
(o) (3) () (- 88) [, e
(=1751(5) (%) eelfzelg) )0

where oy, By are the roots of the Hecke polynomial X2 —a,(f)X +p*~te,(f),
and analogously for ay, By.

Proof. Except of three Euler factors, the other factors come from Theorem
applied to the p-stabilizations of f and g. Let N be divisible by Ny, Ny, and p.
The remaining three Euler factors are obtained by relating the Beilinson-Flach
elements .BF n/, and BF1 y relative to f and g; or equivalently, the Rankin-
Iwasawa classes RZ, N/p,1 and (RZ; n, relative to f and g. O

Aknwoledgements. I would like to thank D. Loeffler and V. Rotger for
helpful discussions.
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