Compatibility in p-adic families

Francesc Fité

November 24, 2015

Abstract

This is the sixth talk in a series of twelve devoted to the works of G. Kings, D. Loeffler, and S. Zerbes in the Workshop "Arithmetic of Euler systems", celebrated in Benasque in August 2015.

Contents

1	Introduction	1
2	Preliminaries on linear algebra 2.1 The Clebsch-Gordan map 2.2 The kth moment map	1 2 2
3	Étale Eisenstein and Rankin-Eisenstein classes	2
4	Eisenstein-Iwasawa and Rankin-Iwasawa classes	4
5	Beilinson-Flach elements: Projection to $Y_1(N)$	7
6	Beilinson-Flach elements in Hida families	8

1 Introduction

The goal of this talk is to construct Beilinson-Flach elements in Hida families which p-adically interpolate étale Rankin-Eisenstein classes at level $\Gamma(M, N)$ for a pair of modular forms f, g of weights $k + 2, k' + 2 \ge 2$ twisted by a cyclotomic variable. These Beilinson-Flach elements project to those constructed by Bertolini, Darmon and Rotger at level $\Gamma_1(N)$ and for weights k+2 = k'+2 = 2(see [BDR15a]). The interpolation property in the case k + 2 = k' + 2 = 2 is shown in [LLZ14], and generalizes the main result of [BDR15b] (in which f is fixed, g varies in a Hida family, and no cyclotomic variable is considered). The proof of the interpolation property in the general case is considered in [KLZ15]. This proof being too long to be reproduced here, we will content ourselves with giving some ideas on the case of a single modular curve (which is treated in [Kin15] by means of a detailed study of the elliptic polylogarithm), that is, we will sketch how Eisenstein-Iwasawa classes interpolate Eisenstein classes.

2 Preliminaries on linear algebra

Let H denote the profinite group \mathbb{Z}_p^{d} for $d \geq 1$. We will be interested in the spaces

 $\mathrm{TSym}^k H$ and $\mathrm{Sym}^k H$.

The first denotes the \mathbb{Z}_p -algebra of symmetric k-tensors, that is, the space of \mathfrak{S}_k -invariants of $H \otimes .^k \otimes H$. In contrast, by the second we denote the kth symmetric power of H, that is, the space of \mathfrak{S}_k -coinvariants of $H \otimes .^k \otimes H$. For $m \leq k$ and $h \in H$, write $h^{[m]} := h^{\otimes m} \in \mathrm{TSym}^m H$. If (e_1, \ldots, e_d) is a basis for H, then $(e_1^{[n_1]} \cdots e_d^{[n_d]} | n_1 + \ldots n_d = k)$ is a basis for TSym^k H. We have a \mathbb{Z}_p -homomorphism

 $\operatorname{Sym}^k H \to \operatorname{TSym}^k H$, $e_1^{n_1} \cdots e_d^{n_d} \mapsto k! \cdot e_1^{[n_1]} \cdots e_d^{[n_d]}$,

which becomes an isomorphism after tensoring with \mathbb{Q}_p . However, we will keep the distinction between these two spaces, because often we will have to work integrally.

2.1 The Clebsch-Gordan map

We wish to define the Clebsch-Gordan map for $k, k' \ge 0$ and $0 \le j \le \min\{k, k'\}$

$$\operatorname{CG}^{[k,k',j]}$$
: $\operatorname{TSym}^{k+k'-2j}H \otimes \operatorname{TSym}^{j}(\wedge^{2}H) \to \operatorname{TSym}^{k}H \otimes \operatorname{TSym}^{k'}H$.

We have an obvious inclusion

$$\operatorname{TSym}^{k+k'-2j}H \subseteq \operatorname{TSym}^{k-j}H \otimes \operatorname{TSym}^{k'-j}H.$$

By taking jth powers, the map $\wedge^2 H \to H \otimes H$ that sends $x \wedge y$ to $x \otimes y - y \otimes x$, yields a map

$$\operatorname{TSym}^{j}(\wedge^{2}H) \to \operatorname{TSym}^{j}H \otimes \operatorname{TSym}^{j}H$$

The map $CG^{[k,k',j]}$ is obtained as the tensor product of the two previous maps.

2.2 The *k*th moment map

Let (x_1, \ldots, x_d) be the dual basis of (e_1, \ldots, e_d) , where $x_i : H \to \mathbb{Z}_p$ is seen as a \mathbb{Z}_p -valued function on H.

Consider the space of \mathbb{Z}_p -valued measures on H

$$\Lambda(H) := \operatorname{Hom}_{\mathbb{Z}_p}^{\operatorname{cont}}(C(H, \mathbb{Z}_p), \mathbb{Z}_p)$$

where $C(H, \mathbb{Z}_p)$ denotes the space of continuous \mathbb{Z}_p -valued functions on H. Definition 2.1. The kth moment map is the \mathbb{Z}_p -algebra homomorphism

$$\operatorname{mom}^{k} \colon \Lambda(H) \to \operatorname{TSym}^{k} H, \qquad \operatorname{mom}^{k}(\mu) := \sum_{n_{1} + \dots + n_{d} = k} \mu(x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}) e_{1}^{[n_{1}]} \cdots e_{d}^{[n_{d}]}.$$

3 Étale Eisenstein and Rankin-Eisenstein classes

Let Y denote a modular curve corresponding to a representable moduli problem. It comes equipped with a universal elliptic curve $\pi: \mathcal{E} \to Y$. Fix a prime p throughout the talk. We define lisse étale sheaves on Y[1/p]:

- $\mathcal{H}_{\mathbb{Z}_p} := R^1 \pi_* \mathbb{Z}_p(1) \simeq R^1 \pi_* \mathbb{Z}_p^{\vee},$
- $\mathcal{H}_{\mathbb{Q}_p} := R^1 \pi_* \mathbb{Q}_p(1),$
- $\mathrm{TSym}^k\mathcal{H}_{\mathbb{Z}_p}$,
- $\operatorname{TSym}^k \mathcal{H}_{\mathbb{Q}_p} \simeq \operatorname{Sym}^k \mathcal{H}_{\mathbb{Q}_p}.$

Remark 3.1. If P is a geometric point on Y corresponding to an elliptic curve E, we should think of the stalk of $\mathcal{H}_{\mathbb{Z}_p}$ at P as the *p*-adic Tate module $M_p(E)$ of E. Similarly, we should think of $\mathrm{TSym}^k \mathcal{H}_{\mathbb{Z}_p,P}$ as $\mathrm{TSym}^k M_p(E)$.

For $f = \sum_{n \ge 1} a_n(f)q^n \in S_{k+2}(\Gamma_1(N_f))$ a normalized cuspidal eigenform, L a number field containing $\mathbb{Q}(\{a_n(f)\}_{n\ge 1}), N$ divisible by N_f , and \mathfrak{P} a prime of L lying over p, let:

- $M_{L_{\mathfrak{P}}}(f)$ be the maximal subspace of $H^1_{et,c}(Y_1(N)_{\overline{\mathbb{Q}}}, \operatorname{Sym}^k \mathcal{H}^{\vee}_{\mathbb{Q}_p}) \otimes_{\mathbb{Q}_p} L_{\mathfrak{P}}$ on which the Hecke operator T_{ℓ} acts as multiplication by a_{ℓ} for every prime ℓ .
- $M_{L_{\mathfrak{P}}}(f)^*$ be the maximal quotient of $H^1_{et,c}(Y_1(N)_{\overline{\mathbb{Q}}}, \mathrm{TSym}^k \mathcal{H}_{\mathbb{Q}_p}(1)) \otimes_{\mathbb{Q}_p} L_{\mathfrak{P}}$ on which the Hecke operator T'_{ℓ} acts as multiplication by a_{ℓ} for every prime ℓ .

If $\mathcal{O}_{\mathfrak{P}}$ denotes the ring of integers of $L_{\mathfrak{P}}$, then one defines integral versions $M_{\mathcal{O}_{\mathfrak{P}}}(f)$ and $M_{\mathcal{O}_{\mathfrak{P}}}(f)^*$ of the previous obtects in the obvious way.

Definition 3.2. Let $N \geq 5$, $b \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}$, and $k \geq 0$. The *étale Eisenstein* class $\operatorname{Eis}_{et,b,N}^k$ is defined as the image of the motivic Eisenstein class $\operatorname{Eis}_{mot,b,N}^k$ by the étale regulator map

$$H^1_{mot}(Y_1(N), \operatorname{TSym}^k \mathcal{H}_{\mathbb{Q}}(1)) \to H^1_{et}(Y_1(N)_{\mathbb{Z}[1/Np]}, \operatorname{TSym}^k \mathcal{H}_{\mathbb{Q}_p}(1))$$

Example 3.3. As we saw in Antonio's talk, for k = 0, $H^1_{mot}(Y_1(N), \mathbb{Q}(1)) = \mathcal{O}(Y_1(N))^* \otimes \mathbb{Q}$ and the motivic Eisenstein class $\operatorname{Eis}^0_{mot,b,N}$ is the Siegel unit $g_{0,b/N}$.

Let $f \in S_{k+2}(\Gamma_1(N_f))$ and $g \in S_{k'+2}(\Gamma_1(N_g))$ for $k, k' \ge 0$. To shorten notation, until the end of this §, let us write $Y := Y_1(N)[1/Np]$, where N is an integer divisible by N_f and N_g . For $0 \le j \le \min\{k, k'\}$, we will be interested in the following maps:

• The Clebsch-Gordan map:

$$H^{1}_{et}(Y, \mathrm{TSym}^{k+k'-2j}\mathcal{H}_{\mathbb{Q}_{p}}(1)) \xrightarrow{\mathrm{CG}^{[k,k',j]}_{*}} H^{1}_{et}(Y, \mathrm{TSym}^{k}\mathcal{H}_{\mathbb{Q}_{p}} \otimes \mathrm{TSym}^{k'}\mathcal{H}_{\mathbb{Q}_{p}}(1-j))$$

At the level of stalks, this is the map defined in 2.1. Indeed, note that in our situation $\wedge^2 H \simeq \det(H) \simeq \mathbb{Q}_p(1)$.

• The push-forward of the diagonal embedding:

$$H^1_{et}(Y, \mathrm{TSym}^k\mathcal{H}_{\mathbb{Q}_p} \otimes \mathrm{TSym}^{k'}\mathcal{H}_{\mathbb{Q}_p}(-j)) \xrightarrow{\Delta_*} H^3_{et}(Y^2, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_p}(2-j))$$

Here, for \mathcal{A}, \mathcal{B} sheaves on Y and $\pi_1, \pi_2 \colon Y^2 \to Y$ the two distinct projections, we write $\mathcal{A} \boxtimes \mathcal{B}$ for the sheaf $\pi_1^* \mathcal{A} \otimes \pi_2^* \mathcal{B}$ on Y^2 . We then write $\mathrm{TSym}^{[k,k']} \mathcal{H}_{\mathbb{Q}_p} := \mathrm{TSym}^k \mathcal{H}_{\mathbb{Q}_p} \boxtimes \mathrm{TSym}^{k'} \mathcal{H}_{\mathbb{Q}_p}.$

• There is an edge map coming from the Hochschild-Serre spectral sequence

$$H^3_{et}(Y^2, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_p}(2-j)) \xrightarrow{\simeq} H^1(\mathbb{Z}[\frac{1}{Np}], H^2_{et,c}(Y_1(N)^2_{\mathbb{Q}}, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_p}(2-j))).$$

• Projection to the (f, g)-isotypic component

$$H^{1}(\mathbb{Z}[\frac{1}{Np}], H^{2}_{et,c}(Y_{1}(N)^{2}_{\mathbb{Q}}, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_{p}}(2-j))) \xrightarrow{\mathrm{pr}_{f,g}} H^{1}(\mathbb{Z}[\frac{1}{Np}], M_{L_{\mathfrak{P}}}(f)^{*} \otimes M_{L_{\mathfrak{P}}}(g)^{*}(-j))$$

- Definition 3.4. The Rankin-Eisenstein class $\operatorname{Eis}_{et,b,N}^{f,g,j}$ is defined as the image of the étale Eisenstein class $\operatorname{Eis}_{et,b,N}^{k+k'-2j}$ by the concatenation of all the previous maps.
 - The Rankin-Eisenstein class $\operatorname{Eis}_{et,b,N}^{[k,k',j]}$ at stage

$$H^3_{et}(Y^2, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_p}(2-j)) \simeq H^1(\mathbb{Z}[\frac{1}{Np}], H^2_{et,c}(Y_1(N)_{\overline{\mathbb{Q}}}, \mathrm{TSym}^{[k,k']}\mathcal{H}_{\mathbb{Q}_p}(2-j)))$$

is defined as the image of the étale Eisenstein class $\mathrm{Eis}_{et,b,N}^{k+k'-2j}$ by the map $\Delta_* \circ \mathrm{CG}_*^{[k,k',j]}.$

4 Eisenstein-Iwasawa and Rankin-Iwasawa classes

Recall that as at the beginning of §3, if Y is a modular curve corresponding to a representable moduli problem, we have a universal elliptic curve $\pi: \mathcal{E} \to Y$. Let us see \mathcal{E} as a covering of itself by means of

$$[p^r]: \mathcal{E}_r := \mathcal{E} \to \mathcal{E}$$

the p^r -multiplication map, with $r \ge 1$. Define the pro-system of étale lisse sheaves

$$\mathcal{L} := ([p^r]_*(\mathbb{Z}/p^r\mathbb{Z}))_{r \ge 1}$$

which we call the *elliptic polylogarithm*. The transition maps are constructed in the following manner. First consider the composition

$$[p]_*\mathbb{Z}/p^{r+1}\mathbb{Z} \to \mathbb{Z}/p^{r+1}\mathbb{Z} \to \mathbb{Z}/p^r\mathbb{Z}$$

$$(4.1)$$

of maps of sheaves on \mathcal{E}_r , where the first map is the trace map induced by $[p]: \mathcal{E}_{r+1} \to \mathcal{E}_r$ and the second is the reduction map. The transition map is now obtained by projecting (4.1) on \mathcal{E} by $[p^r]_*$

$$[p^{r+1}]_*\mathbb{Z}/p^{r+1}\mathbb{Z} \to [p^r]_*\mathbb{Z}/p^r\mathbb{Z}$$

Write $\mathcal{L}_{\mathbb{Q}_p} := \mathcal{L} \otimes \mathbb{Q}_p$. For a section $t: Y \to \mathcal{E}$, define the sheaf of Iwasawa modules

$$\begin{split} \Lambda(\mathcal{H}_{\mathbb{Z}_p}\langle t\rangle) &:= t^*\mathcal{L}\,,\\ \Lambda(\mathcal{H}_{\mathbb{Z}_p}) &:= \Lambda(\mathcal{H}_{\mathbb{Z}_p}\langle e\rangle) \end{split}$$

where $e: Y \to \mathcal{E}$ denotes the trivial section.

Remark 4.1. If P is a geometric point on Y corresponding to an elliptic curve E, we should think of the stalk of $\Lambda(\mathcal{H}_{\mathbb{Z}_p})$ at P as the Iwasawa algebra of the p-adic Tate module $M_p(E)$ of E, that is, the space of \mathbb{Z}_p -valued measures on $M_p(E)$. This justifies the notation and terminology used.

Remark 4.2. There exist sheafified moment maps

$$\operatorname{mom}^k \colon \Lambda(\mathcal{H}_{\mathbb{Z}_n}) \to \operatorname{TSym}^k \mathcal{H}_{\mathbb{Z}_n}$$

such that if P is a geometric point on Y corresponding to an elliptic curve E, then

$$\operatorname{mom}_{P}^{k} \colon \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})_{P} = \Lambda(M_{p}(E)) \to \operatorname{TSym}^{k}\mathcal{H}_{\mathbb{Z}_{p},P} = \operatorname{TSym}^{k}M_{p}(E)$$

coincides with the kth moment map of Definition 2.1.

In Antonio's talk, we have defined the Kato units $_{c}\theta_{\mathcal{E}} \in \mathcal{O}(\mathcal{E} \setminus \mathcal{E}[c])^{*}$ for c > 1and (c, 6) = 1. Observe that

$$H^1_{et}(\mathcal{E} \setminus \mathcal{E}[c], \mathcal{L}(1)) \simeq \lim_{\leftarrow r} H^1_{et}(\mathcal{E} \setminus \mathcal{E}[c], [p^r]_*(\mathbb{Z}/p^r\mathbb{Z})(1)) \simeq \lim_{\leftarrow r} H^1_{et}(\mathcal{E}_r \setminus \mathcal{E}_r[cp^r], \mathbb{Z}/p^r\mathbb{Z}(1)).$$

Thanks to the norm relations that we saw that Kato units satisfy, if $p \nmid c$ the following limit is well defined

$${}_{c}\Theta_{\mathcal{E}} := \lim_{\leftarrow r} \partial_{r}({}_{c}\theta_{\mathcal{E}_{r}}) \in \lim_{\leftarrow r} H^{1}_{et}(\mathcal{E}_{r} \setminus \mathcal{E}_{r}[cp^{r}], \mathbb{Z}/p^{r}\mathbb{Z}(1)),$$

where $\partial_r : \mathcal{O}(\mathcal{E}_r \setminus \mathcal{E}_r[cp^r])^* \to H^1(\mathcal{E}_r \setminus \mathcal{E}_r[cp^r], \mathbb{Z}/p^r\mathbb{Z}(1))$ is the connecting morphism for the exact sequence

$$1 \to \mu_{p^r} \to \mathbb{G}_m \xrightarrow{p^r} \mathbb{G}_m \to 1$$
.

Until the definition of Rankin-Iwasawa class, for $M, N \ge 1, M|N$, and $M + N \ge 5$, let Y be the curve Y(M, N)[1/MNp] defined in Kezuka's talk.

Definition 4.3. Let c > 1 with (c, 6Np) = 1 and $b \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}$. Let $t_N \colon Y(M, N) \to \mathcal{E} \setminus \mathcal{E}[c]$ be the canonical section of order N (note that it takes values in $\mathcal{E} \setminus \mathcal{E}[c]$ by our choice of c). The Eisenstein-Iwasawa class ${}_c\mathcal{EI}_t$ is defined as the image of ${}_c\Theta_{\mathcal{E}}$ by the map

$$H^{1}_{et}(\mathcal{E} \setminus \mathcal{E}[c], \mathcal{L}(1)) \stackrel{(bt_{N})^{*}}{\to} H^{1}_{et}(Y, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}} \langle bt_{N} \rangle)(1)) \stackrel{[N]_{*}}{\to} H^{1}_{et}(Y, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})(1)).$$

We will be interested in the following maps:

• The map induced by $\Lambda(\mathcal{H}_{\mathbb{Z}_p}) \to \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \otimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})$

$$H^1(Y, \Lambda(\mathcal{H}_{\mathbb{Z}_p})(1)) \to H^1_{et}(Y, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \otimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(1)).$$

• The push-forward of the diagonal embedding $\Delta \colon Y \to Y^2$

$$H^1_{et}(Y, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \otimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(1)) \xrightarrow{\Delta_*} H^3_{et}(Y^2, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(2)) \,.$$

• For $a \in \mathbb{Z}/M\mathbb{Z}$, the map

$$H^{3}_{et}(Y^{2}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})(2)) \xrightarrow{u_{a*}} H^{3}_{et}(Y^{2}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})(2)),$$

where $u_a: Y^2 \to Y^2$ is the automorphism that is the identity on the first factor and the map that sends a triple (E, e_1, e_2) to the triple $(E, e_1 + a\frac{N}{M}e_2, e_2)$ on the second factor.

• The edge map

$$H^{3}_{et}(Y^{2}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})(2)) \xrightarrow{\simeq} H^{1}(\mathbb{Z}[\frac{1}{MNp}], H^{2}_{et,c}(Y(M,N)_{\overline{\mathbb{Q}}}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_{p}})(2)))$$

Definition 4.4. The Rankin-Iwasawa class ${}_{c}\mathcal{RI}_{M,N,a}$ is defined as the image of the Eisenstein-Iwasawa class ${}_{c}\mathcal{EI}_{1,N}$ by the concatenation of all the previous maps.

In §5, we will see that Rankin-Iwasawa classes (or even more generally, Beilinson-Flach elements) interpolate Rankin-Eisenstein classes (see Theorem 5.1). To conclude the section, we will see an intermediate result, which shows that Eisenstein-Iwasawa classes (for M = 1) interpolate Eisenstein classes.

Theorem 4.1 (Thm. 4.7.1 of [Kin15]). For $N \ge 5$, $b \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}$, and c > 1 with (c, 6Np) = 1, one has

$$\operatorname{mom}^{k}(_{c}\mathcal{EI}_{b,N}) = c^{2}\operatorname{Eis}_{et,b,N}^{k} - c^{-k}\operatorname{Eis}_{et,cb,N}^{k}$$

as elements of $H^1_{et}(Y_1(N)[1/Np], \mathrm{TSym}^k\mathcal{H}_{\mathbb{Q}_p}(1)).$

Sketch of proof. In the course of the proof, let us write $t: Y_1(N) \to \mathcal{E}$ for a section of order $N, e: Y_1(N) \to \mathcal{E}$ for the trivial section, and $Y := Y_1(N)[1/Np]$. The proof uses the following crucial properties of the elliptic polylogarithm

- For an isogeny $\varphi \colon \mathcal{E} \to \mathcal{E}$, one has $\varphi^* \mathcal{L}_{\mathbb{Q}_p} \simeq \mathcal{L}_{\mathbb{Q}_p}$.
- $e^* \mathcal{L}_{\mathbb{Q}_p} \simeq t^* \mathcal{L}_{\mathbb{Q}_p} \simeq (\Lambda(\mathcal{H}_{\mathbb{Z}_p} \langle t \rangle) \otimes \mathbb{Q}_p) \simeq \prod_{k \ge 0} \operatorname{Sym}^k \mathcal{H}_{\mathbb{Q}_p}.$
- There is a multiplication map mult: $\pi^* \mathcal{H}_{\mathbb{Q}_p} \otimes \mathcal{L}_{\mathbb{Q}_p} \to \mathcal{L}_{\mathbb{Q}_p}$.

Consider the following diagram (the first vertical arrow of which we take as

a black box^1)

At the level of stalks the contraction map is defined in the following way

contr:
$$H^{\vee} \otimes \operatorname{Sym}^{k} H \to \operatorname{Sym}^{k-1} H$$
, $h^{\vee} \otimes h_{1} \otimes \cdots \otimes h_{k} \mapsto \frac{1}{k+1} \sum_{j=1}^{k} h^{\vee}(h_{j}) h_{1} \otimes \cdots \otimes \hat{h}_{j} \otimes \cdots \otimes h_{k}$

Let pol denote the image of the canonical immersion

$$\mathcal{H}_{\mathbb{Q}_p} \hookrightarrow \prod_{k \ge 0} \operatorname{Sym}^k \mathcal{H}_{\mathbb{Q}_p}$$

by the very first isomorphism in the above diagram and write $t^* \text{pol} := (t^* \text{pol}^k)_{k \geq 1}$. The first step of the proof is to show that if $t = bt_N$, where t_N is the canonical section of order N, then the Eisenstein class $\text{Eis}_{et,b,N}^k$ is the image of $t^* \text{pol}^{k+1}$ by the concatenation of the maps in the first column of the the previous diagram.

Note that we had defined Kato elements ${}_{c}\Theta_{\mathcal{E}} \in H^{1}_{et}(\mathcal{E} \setminus \mathcal{E}[c], \mathcal{L}_{\mathbb{Q}_{p}}(1))$. If we detnote by $\operatorname{mult}_{\mathcal{H}_{\mathbb{Q}_{p}}}$ the concatenation of the maps on the second column, then the second step of the proof consists of establishing the following fundamental relation

$$c^2 \mathrm{pol}|_{\mathcal{E}\setminus\mathcal{E}[c]} - c[c]^*\mathrm{pol} = \mathrm{mult}_{\mathcal{H}_{\mathbb{Q}_p}}(c\Theta_{\mathcal{E}})$$

in $\operatorname{Ext}^{1}_{\mathcal{E}\setminus\mathcal{E}[c]}(\pi^{*}\mathcal{H}\mathbb{Q}_{p},\mathcal{L}_{\mathbb{Q}_{p}}(1))$. Now the theorem follows from the following two facts:

¹It follows from the Leray spectral sequence for $\mathcal{L}_{\mathbb{Q}_p}$ and π , the localization sequence, and the vanishing of $R^i \pi_* \mathcal{L}_{\mathbb{Q}_p}$ except for i = 2.

- The concatenation of the maps on the second and first column coincide with the sheafified kth moment map mom^k (once tensored with \mathbb{Q}_p); and
- The isomorphism $t^* \mathcal{L}_{\mathbb{Q}_p} \simeq t^*[c]^* \mathcal{L}_{\mathbb{Q}_p}$ is multiplication by c^k on the graded piece $\operatorname{Sym}^k \mathcal{H}_{\mathbb{Q}_p}$.

5 Beilinson-Flach elements: Projection to $Y_1(N)$

Let $m \ge 1$ and $N \ge 5$. Let μ_m° be the scheme of primitive *m*th roots of unity, that is, $\mu_m^{\circ} = \operatorname{Spec}(\mathbb{Z}[\zeta_m])$, where ζ_m is a primitive *m*th root of unity. In Vivek's talk we have seen that there exists a map²

$$\alpha_m \colon Y(m, mN) \to Y_1(N) \times \mu_m^{\circ}$$

Definition 5.1. We will write ${}_{c}\mathcal{BF}_{m,N}^{[0]}$ for the image of the Rankin-Iwasawa class ${}_{c}\mathcal{RI}_{m,mN,1}$ by the map

 $(\alpha_m \times \alpha_m)_* \colon H^3_{et}(Y(m, mN)^2, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(2)) \to H^3_{et}(Y_1(N)^2 \times \mu_m^{\circ}, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(2))$

We still need to introduce one more sheaf of Iwasawa modules. Let

$$\operatorname{pr}_r \colon \operatorname{Spec}(\mathbb{Z}[1/p]) \times \mu_{n^r}^{\circ} \to \operatorname{Spec}(\mathbb{Z}[1/p])$$

the natural projection for $r \ge 1$. Define the pro-étale sheaf

$$\Lambda_{\Gamma}(-\mathbf{j}) := (\mathrm{pr}_{r*}(\mathbb{Z}/p^{r}\mathbb{Z}))_{r \ge 1}.$$

The notation is justified by the fact that the stalk of $\Lambda_{\Gamma}(-\mathbf{j})$ at a geometric point is the Iwasawa algebra Λ_{Γ} of the Galois group $\Gamma := \operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})$, equipped with an action of Γ by the inverse of the canonical character $\mathbf{j} \colon \Gamma \to \Lambda_{\Gamma}^*$. There are moment maps

$$\operatorname{mom}_{\Gamma}^{j} \colon \Lambda_{\Gamma}(-\mathbf{j}) \to \mathbb{Z}_{p}(-j).$$

The key property of $\Lambda_{\Gamma}(-\mathbf{j})$ is that it permits to transfer variations on the level to the sheaf side. More precisely, there is an isomorphism

$$\lim_{\leftarrow r} H^3(Y_1(N)^2 \times \mu_{mp^r}^{\circ}, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_p})(2)) = H^3(Y_1(N)^2 \times \mu_m^{\circ}, \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_p}) \otimes \Lambda_{\Gamma}(2-\mathbf{j})),$$

Let us write

$$e':=e'_{\mathrm{ord}}:=\lim_{n\to\infty}(U'_p)^{n!}$$

for Ohta's anti-ordinary operator. The operator (U'_p, U'_p) is invertible on the image of (e', e'), and the so-called "Second norm relation", seen in Vivek's talk, shows that the inverse limit

$${}_{c}\mathcal{BF}_{m,N} := \lim_{\leftarrow r} (U'_{p}, U'_{p})^{-r} (e', e')_{c} \mathcal{BF}^{[0]}_{mp^{r}, N},$$

which is an element of

$$(e',e')H^{3}(Y_{1}(N)^{2} \times \mu_{m}^{\circ}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \boxtimes \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}) \otimes \Lambda_{\Gamma}(2-\mathbf{j})),$$

²There, this map was denoted by t_m , but in the present talk we reserve this notation for the canonical section of order m.

is well defined. The classes ${}_{c}\mathcal{BF}_{m,N}$ are called *Beilinson-Flach elements*. The following theorem establishes the interpolation property of the Beilinson-Flach elements. It should be seen as a generalization of Theorem 4.1.

Theorem 5.1 (Thm. 6.3.3 of [KLZ15]). Let $k, k' \ge 0$ and $0 \le j \le \min\{k, k'\}$. For a prime $p \ge 3$, $N \ge 1$, $m \ge 1$ and c > 1 with p|N, (p,m) = 1, and (c, 6mNp) = 1, we have that

 $\operatorname{mom}^k \otimes \operatorname{mom}^{k'} \otimes \operatorname{mom}^j_{\Gamma}({}_c \mathcal{BF}_{m,N}) =$

$$= (1 - p^{j}(U'_{p}, U'_{p})^{-1}\sigma_{p})(c^{2} - c^{-k-k'+2j}\sigma_{c}^{2}(\langle c \rangle, \langle c \rangle))\frac{(e', e')\operatorname{Eis}_{et,m,N}^{[k,k',j]}}{(-1)^{j}j!\binom{k}{j}\binom{k'}{j}},$$

where σ_c is the arithmetic Frobenius at c in $\operatorname{Gal}(\mathbb{Q}(\mu_m)/\mathbb{Q})$.

6 Beilinson-Flach elements in Hida families

Set

$$H^{1}_{\mathrm{ord}}(Np^{\infty}) := \lim_{\leftarrow r} e' H^{1}_{et}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \mathbb{Z}_{p}(1)) \,.$$

It is finitely generated and projective over $\Lambda_D := \mathbb{Z}_p[[\mathbb{Z}_p^*]]$. For $r \geq 1$, recall the existence of Ohta's twisting map

$$H^{1}_{\mathrm{ord}}(Np^{\infty}) \xrightarrow{\mathrm{Ohta}} e' H^{1}_{et}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \Lambda(\mathcal{H}_{\mathbb{Z}_{p}}\langle t_{N} \rangle)(1)) \,.$$

Remark 6.1. For r = 1, it is easy to see that Ohta's twisting map is an isomorphism. Indeed, if one defines $\mathcal{E}[p^r]\langle t_N \rangle$ by the cartesian diagram

$$\begin{aligned} \mathcal{E}[p^r]\langle t_N \rangle & \longrightarrow \mathcal{E}_r := \mathcal{E} \\ & \downarrow^{\mathrm{pr}_{r,t}} & \downarrow^{[p^r]} \\ & Y_1(N) & \xrightarrow{t_N} & \mathcal{E} \end{aligned}$$

it is not difficult to see that $\mathcal{E}[p^r]\langle t_N \rangle \simeq Y_1(Np^r)$. Set

$$\Lambda(\mathcal{H}_r\langle t_N\rangle) := t_N^*([p^r]_*\mathbb{Z}/p^r\mathbb{Z}) = \mathrm{pr}_{r,t*}(\mathbb{Z}/p^r\mathbb{Z}).$$

It follows that

$$H^{1}_{et}(Y_{1}(N)_{\overline{\mathbb{Q}}}, \Lambda(\mathcal{H}_{r}\langle t_{N} \rangle)(1)) \simeq H^{1}_{et}(\mathcal{E}[p^{r}]\langle t_{N} \rangle_{\overline{\mathbb{Q}}}, \mathbb{Z}/p^{r}\mathbb{Z}(1)) \simeq H^{1}_{et}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \mathbb{Z}/p^{r}\mathbb{Z}(1))$$

By taking limits we get

$$H^1_{et}(Y_1(N)_{\overline{\mathbb{Q}}}, \Lambda(\mathcal{H}_{\mathbb{Z}_p}\langle t_N \rangle)(1)) \simeq H^1_{et}(Y_1(Np^r)_{\overline{\mathbb{Q}}}, \mathbb{Z}_p(1)) \,.$$

As we saw in Chris' talk, Ohta's control Theorem states that the compostion of the moment map $\text{mom}^k \circ [N]_!$ with Ohta's twisting map induces an isomorphism

$$H^{1}_{\mathrm{ord}}(Np^{\infty})/I_{k,r} \to e'H^{1}_{et}(Y_{1}(Np^{r})_{\overline{\mathbb{Q}}}, \mathrm{TSym}^{k}(\mathcal{H}_{\mathbb{Z}_{p}})(1)), \qquad (6.1)$$

where $I_{k,r}$ is the ideal of Λ_D generated by $[1+p^r] - (1+p^r)^k$. Write $\mathbb{T}_{Np^{\infty}}$ for the Hecke algebra generated by the Hecke operators T'_{ℓ} acting on $H^1_{\text{ord}}(Np^{\infty})$. There are Λ_D -linear commuting actions of $\mathbb{T}_N p^{\infty}$ and $G_{\mathbb{Q},S}$, the Galois group of the maximal unramified extension outside the set S of primes dividing Np. $\mathbb{T}_N p^{\infty}$ is a finite projective Λ_D -algebra.

- Definition 6.2. A Hida family **f** is any of the finitely many maximal ideals of $\mathbb{T}_N p^{\infty}$.
 - If **f** is a Hida family, set

$$M(\mathbf{f})^* := H^1_{\mathrm{ord}}(Np^{\infty})_{\mathbf{f}}, \qquad \Lambda_{\mathbf{f}} := (\mathbb{T}_N p^{\infty})_{\mathbf{f}}.$$

• An arithmetic prime is a prime ideal \mathfrak{p} of Λ_D of height 1 lying over an ideal of the form $I_{k,r}$ for some k, r.

Associated to an arithmetic prime \mathfrak{p} , there is an eigenform $f_{\mathfrak{p}}$ of level Np^r and weight k + 2 such that

$$M_{\mathcal{O}_{\mathfrak{P}}}(f_{\mathfrak{p}})^* = M(\mathbf{f})^* \otimes_{\Lambda_{\mathbf{f}}} \mathcal{O}_{\mathfrak{P}},$$

where \mathfrak{P} is a prime of $\mathbb{T}_{Np^{\infty}}$ above $\mathfrak{p} \subseteq \Lambda_D$ and the tensor product is taken with respect to the projection map

$$\Lambda_{\mathbf{f}} o \mathcal{O}_{\mathfrak{P}} := \Lambda_{\mathbf{f}}/\mathfrak{P}$$
 .

Definition 6.3. For Hida families **f** and **g** of tame levels N_f and N_g , $m \ge 1$ coprime to p, and c > 1 coprime to $6mN_fN_gp$, we define

$${}_{c}\mathcal{BF}_{m}^{\mathbf{f},\mathbf{g}} \in H^{1}(\mathbb{Z}[\frac{1}{mpN_{f}N_{g}},\mu_{m}],M(\mathbf{f})^{*}\otimes M(\mathbf{g})^{*}\otimes\Lambda_{\Gamma}(-\mathbf{j}))$$

to be the image of the class ${}_{c}\mathcal{BF}_{m,N}$ for $N := \operatorname{Lcm}(N_{f}, N_{g})$ under the edge map coming from the Hochschild-Serre spectral sequence, the projection map $Y_{1}(N)^{2} \to Y_{1}(N_{f}) \times Y_{1}(N_{g})$, the Künneth formula, and localization at **f** and **g**.

The main and final theorem of this talk is the following.

Theorem 6.1 (Thm. 8.1.4 of [KLZ15]). If f and g are ordinary newforms of levels N_f and N_g which are specializations of the Hida families \mathbf{f} and \mathbf{g} of weights k + 2 and k' + 2, then for every $0 \le j \le \min\{k, k'\}$ the specialization

$${}_{c}\mathcal{BF}_{1}^{\mathbf{f},\mathbf{g}}(f,g,j) \in H^{1}(\mathbb{Z}[1/pN_{f}N_{g}], M_{L_{\mathfrak{P}}}(f)^{*} \otimes M_{L_{\mathfrak{P}}}(g)^{*}(-j))$$

is equal to

$$\frac{\left(1-\frac{p^{j}}{\alpha_{f}\alpha_{g}}\right)\left(1-\frac{\alpha_{f}\beta_{g}}{p^{1+j}}\right)\left(1-\frac{\beta_{f}\alpha_{g}}{p^{1+j}}\right)\left(1-\frac{\beta_{f}\beta_{g}}{p^{1+j}}\right)}{(-1)^{j}j!\binom{k}{j}\binom{k'}{j}}\left(c^{2}-\frac{c^{-k-k'+2j}}{\varepsilon_{c}(f)\varepsilon_{c}(g)}\right)\left(\operatorname{Eis}_{et,1,N}^{f,g,j}\right),$$

where α_f , β_f are the roots of the Hecke polynomial $X^2 - a_p(f)X + p^{k-1}\varepsilon_p(f)$, and analogously for α_q , β_q .

Proof. Except of three Euler factors, the other factors come from Theorem 5.1 applied to the *p*-stabilizations of f and g. Let N be divisible by N_f , N_g , and p. The remaining three Euler factors are obtained by relating the Beilinson-Flach elements ${}_{c}\mathcal{BF}_{1,N/p}$ and ${}_{c}\mathcal{BF}_{1,N}$ relative to f and g; or equivalently, the Rankin-Iwasawa classes ${}_{c}\mathcal{RI}_{1,N/p,1}$ and ${}_{c}\mathcal{RI}_{1,N,1}$ relative to f and g.

Aknwoledgements. I would like to thank D. Loeffler and V. Rotger for helpful discussions.

References

- [BDR15a] M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler systems I: syntomic regulators and p-adic Rankin L-series, J. Algebraic Geometry 24 (2015), 355–378.
- [BDR15b] M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions, J. Algebraic Geometry 24 (2015), 569–604.
- [Kat04] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque, (295):ix, 117–290, 2004. Cohomologies p-adiques et applications arithmétiques. III.
- [Kin15] G. Kings, Eisenstein classes, elliptic Soulé elements and the l-adic elliptic polylogarithm, London Math. Soc. Lecture Note Ser., 418, Cambridge Univ. Press, 2015.
- [KLZ15] G. Kings, D. Loeffler, S.L. Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws, preprint.
- [LLZ14] A. Lei, D. Loeffler, S.L. Zerbes, Euler systems for RankinSelberg convolutions of modular forms, Ann. of Math. 180 (2014), no. 2, 653–771.