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Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E, let g = Nm(p) and set
a, =q+1—#E(Fy).

It satisfies

n _ 2
Z(E,,T) = exp (Z #E(]Fqn)%) . %.
n>1
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Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E, let g = Nm(p) and set
a, =q+1—#E(Fy).

It satisfies

n _ 2
n>1

By the Hasse-Weil bound:

— ap
a, = -2 c[-2,2].
P q1/2 [ ]

What is the distribution of the g, on the interval | = [-2,2]?
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The Sato—Tate conjecture for elliptic curves

Sato—Tate conjecture for elliptic curves
The sequence {a,}, is equidistributed on / w.r.t a measure p; given by

1) %\/4 — Z2dz if E does not have CM.
i

1_dz
T4 — 22
1 1 az

1) 2)

if E has CM by M C k.
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1y from a Haar measure
The measures of the previous slide come from real Lie subgroups of

SU2) = {(_35 g) € GLy(C) : a§+b5:1}.



1y from a Haar measure
The measures of the previous slide come from real Lie subgroups of

SuU(2) := {(—aB g) € GLo(C) : aa+bb= 1} .
These subgroups are:
1) SU(2) itself.

2) U(1):={(8 g) :ue(C,|u|:1}.

3) Nsyy(U(1)) = <U(1)’ (—01 g))>



1y from a Haar measure
The measures of the previous slide come from real Lie subgroups of

SU2) = {(_ab Z) € GLy(C) : aa+bb:1}.

These subgroups are:
1) SU(2) itself.

2) U(1);:{(g 2) :ueC,|u|:1}.

3) Nsue)(U(1)) = <U(1), (_01 8)>
Let Gbe asin 1), 2), 3). Note that

Tr:G—1=[-2,2].
Let u be the Haar measure of G. The measure p, satisfies

Tro(p) = -

] aita



Restatement of the conjecture

Define the Sato—Tate group of E as
1) SU(2) if E does not have CM.

2) U(1) if E has CM by M C k.
3) Nsu(z)(U(1)) if E has CM by M ¢ k.
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Restatement of the conjecture

Define the Sato—Tate group of E as
1) SU(2) if E does not have CM.

2) U(1) if E has CM by M C k.

3) Nsy(z)(U(1)) if E has CMby M ¢ k.
Recall the numerator of the Zeta function

L,(E,T):=1—a,T+qT?

Set
L(E, T):=L,(E,T/q"/?)=1-3, T+ T?.
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Restatement of the conjecture

Define the Sato—Tate group of E as
1) SU(2) if E does not have CM.

2) U(1)if E has CM by M C k.
3) Nsye)(U(1)) if E has CMby M ¢ k.
Recall the numerator of the Zeta function
L,(E, T):=1—a,T +qT?

Set
L(E, T):=L,(E,T/q"/?)=1-3, T+ T?.

Sato—Tate conjecture for elliptic curves

The sequence of {L,(E, T)}, is equidistributed on the space of charpolys of
ST(E) w.r.t the Haar measure of ST(E) (projected on this space).
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The Sato—Tate group of an abelian variety of dim < 3

Let A/k be an abelian variety of dimension g > 1.
For a prime ¢, define

To(A) =lmA[C)(@Q),  Vi(A) = T(A) @z, Q.
r
Consider the /-adic representation attached to A

00t Gi — Aut(Vy(A)).
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The Sato—Tate group of an abelian variety of dim < 3

Let A/k be an abelian variety of dimension g > 1.
For a prime ¢, define

T/(A) = mAIEIQ). Vi) = Ti(A) 92, Q.

Consider the /-adic representation attached to A
oe: Gk — Aut(Ve(A)).

Denote by G, C Gszg /Qy the Zariski closure of the image of g,.
There is an injection

End(A@) R Qp — Endgg( VZ(A))

(by Faltings, in fact an isomorphism).
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More conveniently
G — {7 € GSpyy /Q¢|yay™" = afor all a € End(Ag)} -

More accurately

Ge— U {7 € GSpyg /Q¢ | yay ' =o(a)foralla e End(Ag)} -
O’EGK

Building on the work of many, Banaszak and Kedlaya show that if g < 3, then
the above injection is an equality. From now on assume g < 3.
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More conveniently
G — {7 € GSpyy /Q¢|yay™" = afor all a € End(Ag)} -

More accurately
Gp — U {7 € GSpyg /Q¢ | yay~! = o(a) forall a € End(Ag)}-
o€ Gk

Building on the work of many, Banaszak and Kedlaya show that if g < 3, then
the above injection is an equality. From now on assume g < 3.

Define the twisted Lefschetz group of A by

TL(A) := U {7 € Spyg /Q| yay ' =o(a)foralla e End(Ag)}-
o€ Gk

The Sato—Tate group of A is a maximal compact subgroup of TL(A) xg C.
Denote it ST(A). It is a subgroup of USp(2g), well defined up to conjugacy.

] 7014



Sato—Tate conjecture for abelian varieties of dim < 3

Let p be a prime of good reduction for A. Define
L, (A, T) = det(1 — o¢(Frob,) T|V,(A)), Ly(AT)=Ly(A T/q'"?).
Along with ST(A), one can also define certain x, € Conj(ST(A)) such that
Charpoly(x,) = Ly (A, T).
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Sato—Tate conjecture for abelian varieties of dim < 3

Let p be a prime of good reduction for A. Define
L, (A, T) = det(1 — o¢(Frob,) T|V,(A)), Ly(AT)=Ly(A T/q'"?).
Along with ST(A), one can also define certain x, € Conj(ST(A)) such that
Charpoly(x,) = L, (A, T).

Sato—Tate conjecture for abelian varieties (Serre)

The sequence {x,}, is equidistributed on Conj(ST(A)) w.r.t the Haar measure
of ST(A) (projected on this space).

In general the map
Conj(ST(A)) — {Charpolys of ST(A)}, X + Charpoly(x)

is not injective.
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Sato—Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). ST(A)° contains a Hodge circle and is topologically
generated by them (a Hodge circle is the image of a hom 6: U(1) — ST(A)°
such that 6(u) has eigenvalues u, 1/u with multiplicity g).
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Sato—Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). ST(A)° contains a Hodge circle and is topologically
generated by them (a Hodge circle is the image of a hom 6: U(1) — ST(A)°
such that 6(u) has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component H C ST(A) and
character x, the expected value [, xx is an integer (with pu(H) = 1).

Lefschetz condition (ST3). The subgroup of USp(2g) fixing (C29)STA’° is
ST(A)C.

Serre condition (ST4). Let F/k be the minimal extension such that
End(Af) ~ End(Ag). We call F the endomorphism field of A. Then

ST(A)/ST(A)° ~ Gal(F /k).
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Sato—Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). ST(A)° contains a Hodge circle and is topologically
generated by them (a Hodge circle is the image of a hom 6: U(1) — ST(A)°
such that 6(u) has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component H C ST(A) and
character x, the expected value [, xx is an integer (with pu(H) = 1).
Lefschetz condition (ST3). The subgroup of USp(2g) fixing (C29)STA’° is
ST(A)°.

Serre condition (ST4). Let F/k be the minimal extension such that
End(Af) ~ End(Ag). We call F the endomorphism field of A. Then

ST(A)/ST(A) ~ Gal(F/k).
Remarks:
@ None of (ST3) and (ST4) are expected for g > 4.
@ Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
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Sato—Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)
@ Up to conjugacy in USp(4), there are 52 Sato—Tate groups of abelian
surfaces over number fields.
@ The 11 maximal groups (w.r.t finite inclusions) occur as Sato—Tate groups
of abelian surfaces over Q.

@ The degree of the endomorphism field of an abelian surface (defined over
a number field) divides 48.

vy
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Sato—Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

@ Up to conjugacy in USp(4), there are 52 Sato—Tate groups of abelian
surfaces over number fields.

@ The 11 maximal groups (w.r.t finite inclusions) occur as Sato—Tate groups
of abelian surfaces over Q.

@ The degree of the endomorphism field of an abelian surface (defined over
a number field) divides 48.

vy

Only 34 occur as Sato-Tate groups of abelian surfaces over Q (FKRS).

There exists a number field kg over which all 52 groups arise as the Sato-Tate
group of an abelian surface defined over k; (F.-Guitart).

All 52 Sato—Tate groups occur as the Sato—Tate group of the Jacobian of a
genus 2 curve defined over a number field (FKRS).

] 10114



Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A/k as the
isomorphism class of the R-algebra

End(Ag) ® R equipped with the action of Gal(F/k).

Example:
There are three Galois endomorphism types of elliptic curves.

They are R, C (both equipped with the trivial action), and C equipped with the
action of complex conjugation.
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Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A/k as the
isomorphism class of the R-algebra

End(Ag) ® R equipped with the action of Gal(F/k).

Example:
There are three Galois endomorphism types of elliptic curves.

They are R, C (both equipped with the trivial action), and C equipped with the
action of complex conjugation.

Theorem (FKRS)

@ There are 52 Galois endomorphism types of abelian surfaces over
number fields.

@ The Sato—Tate group and the Galois endomorphism type of an abelian
surface determine each other uniquely.

] mn



Comments on the classification g = 2
(ST1) allows 6 possibilities for G° C USp(4) ((ST3) is redundant for g = 2).

G° End(Ag) ® R Nuspe)(G%)/G°  #A

USp(4) R G

SU(2) x SU(2) R xR C 2

SU(2) x U(1) R xC G

u(1) x U(1) CxC Ds

SU(2), Ma(R) 0(2) 10

U(1)2 Mz (C) SO(3)x C, 32
55

@ A = set of finite subgroups of Nysy)(G®)/G° for which (ST2) is satisfied.
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G° End(Ag) ® R Nuspa)(G°)/G®  #A
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SU(2) x SU(2) R x R Co 2
SU(2) x U(1) R xC Co 2
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55

@ A = set of finite subgroups of Nysy)(G°)/G° for which (ST2) is satisfied.
@ 3 of the groups in the case G° = U(1) x U(1) do not satisfy (ST4):
» Ais Q-isogenous to a product of abelian varieties A; with CM by M..

» G/G° ~ Gal(F/k)
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@ A = set of finite subgroups of Nysy)(G°)/G° for which (ST2) is satisfied.
@ 3 of the groups in the case G° = U(1) x U(1) do not satisfy (ST4):
» Ais Q-isogenous to a product of abelian varieties A; with CM by M..

» G/G° ~ Gal(F/k) ~ [] Gal(kM} /k) C Cz x Cz, Cs.
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Sato—Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)
@ Up to conjugacy in USp(6), there are 410 Sato—Tate groups of abelian
threefolds over number fields.
@ The 33 maximal groups (w.r.t finite inclusions) occur as Sato—Tate groups
of abelian threefolds over Q or Q(v/3).

@ The degree of the endomorphism field of an abelian threefold (defined
over a number field) divides 192, 336, or 432.
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Sato—Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

@ Up to conjugacy in USp(6), there are 410 Sato—Tate groups of abelian
threefolds over number fields.

@ The 33 maximal groups (w.r.t finite inclusions) occur as Sato—Tate groups
of abelian threefolds over Q or Q(v/3).

@ The degree of the endomorphism field of an abelian threefold (defined
over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: [F : k] | Lcm(192, 336,432).
That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland.

How many over Q7?
Is there a ko over which all 410 groups can be realized?
Do they all occur among Jacobians of genus 3 curves?

De they all occur among principally polarized abelian threefolds?

] 13014



Comments on the classification g = 3

G° End(Ag) ® R Nusp(e)(G°)/G®  #A
USp(6) R o 1
U(3) C C2 2
SU(2) x USp(4) R xR Ci 1
U(1) x USp(4) CxR C 2
U(1) x SU(2) x SU(2) CxRxR Co x G 5
SU(2) x U(1) x U(1) RxCxC Dy 8
SU(2) x SU(2)2 R x Ma(R) 0O(2) 10
SU(2) x U(1)2 R x Mp(C) SO(3)x C, 32
U(1) x SU(2)2 C x Mz(R) C> x0(2) 3t
U(1) X U(1)2 C x MZ(C) Cg X 50(3) X Cg 122
SU(2) x SU(2) x SU(2) RxRxR Ss 4
U(1) x U(1) x U(1) CxCxC (CoxCoxC)xS 33
SU(2)s Ms(R) SO(3) 11
U(1)s Ms(C) PSU3) x C, 171

A = set of finite subgroups of Nys,e)(G®)/G® for which (ST2) is satisfied.
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