Sato-Tate groups of abelian threefolds

Francesc Fité (MIT)

Joint work with Kiran Kedlaya and Andrew Sutherland
Barcelona Mathematical Days, 10/24/2020

Frobenius traces of elliptic curves

k a number field.
E / k an elliptic curve.
For a prime \mathfrak{p} of good reduction for E, let $q=\operatorname{Nm}(\mathfrak{p})$ and set

$$
a_{p}:=q+1-\# E\left(\mathbb{F}_{q}\right)
$$

It satisfies

$$
Z\left(E_{\mathfrak{p}}, T\right):=\exp \left(\sum_{n \geq 1} \# E\left(\mathbb{F}_{q^{n}}\right) \frac{T^{n}}{n}\right)=\frac{1-a_{\mathfrak{p}} T+q T^{2}}{(1-T)(1-q T)}
$$

Frobenius traces of elliptic curves

k a number field.
E / k an elliptic curve.
For a prime \mathfrak{p} of good reduction for E, let $q=\operatorname{Nm}(\mathfrak{p})$ and set

$$
a_{\mathfrak{p}}:=q+1-\# E\left(\mathbb{F}_{q}\right) .
$$

It satisfies

$$
Z\left(E_{\mathfrak{p}}, T\right):=\exp \left(\sum_{n \geq 1} \# E\left(\mathbb{F}_{q^{n}}\right) \frac{T^{n}}{n}\right)=\frac{1-a_{p} T+q T^{2}}{(1-T)(1-q T)}
$$

By the Hasse-Weil bound:

$$
\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{q^{1 / 2}} \in[-2,2] .
$$

What is the distribution of the $\bar{a}_{\mathfrak{p}}$ on the interval $I=[-2,2]$?

The Sato-Tate conjecture for elliptic curves

Sato-Tate conjecture for elliptic curves
The sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on / w.r.t a measure μ_{I} given by

1) $\frac{1}{2 \pi} \sqrt{4-z^{2}} d z$ if E does not have CM.
2) $\frac{1}{\pi} \frac{d z}{\sqrt{4-z^{2}}}$ if E has $C M$ by $M \subseteq k$.
3) $\frac{1}{2} \delta_{0}+\frac{1}{2 \pi} \frac{d z}{\sqrt{4-z^{2}}}$ if E has CM by $M \nsubseteq k$.

$\mu_{\text {I }}$ from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$
\mathrm{SU}(2):=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C}): a \bar{a}+b \bar{b}=1\right\} .
$$

$\mu_{\text {I }}$ from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$
\mathrm{SU}(2):=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C}): a \bar{a}+b \bar{b}=1\right\} .
$$

These subgroups are:

1) $S U(2)$ itself.
2) $U(1):=\left\{\left(\begin{array}{ll}u & 0 \\ 0 & \bar{u}\end{array}\right): u \in \mathbb{C},|u|=1\right\}$.
3) $N_{S U(2)}(U(1))=\left\langle U(1),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle$.

$\mu_{\text {I }}$ from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$
\mathrm{SU}(2):=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{C}): a \bar{a}+b \bar{b}=1\right\} .
$$

These subgroups are:

1) $S U(2)$ itself.
2) $U(1):=\left\{\left(\begin{array}{ll}u & 0 \\ 0 & \bar{u}\end{array}\right): u \in \mathbb{C},|u|=1\right\}$.
3) $N_{\mathrm{SU}(2)}(\mathrm{U}(1))=\left\langle\mathrm{U}(1),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle$.

Let G be as in 1), 2), 3). Note that

$$
\operatorname{Tr}: G \rightarrow I=[-2,2] .
$$

Let μ be the Haar measure of G. The measure μ_{l} satisfies

$$
\operatorname{Tr}_{*}(\mu)=\mu_{I}
$$

Restatement of the conjecture

Define the Sato-Tate group of E as

1) $\operatorname{SU}(2)$ if E does not have CM.
2) $\mathrm{U}(1)$ if E has CM by $M \subseteq k$.
3) $N_{\mathrm{SU}(2)}(\mathrm{U}(1))$ if E has CM by $M \nsubseteq k$.

Restatement of the conjecture

Define the Sato-Tate group of E as

1) $\operatorname{SU}(2)$ if E does not have CM.
2) $\mathrm{U}(1)$ if E has CM by $M \subseteq k$.
3) $N_{\mathrm{SU}(2)}(\mathrm{U}(1))$ if E has CM by $M \nsubseteq k$.

Recall the numerator of the Zeta function

$$
L_{p}(E, T):=1-a_{p} T+q T^{2}
$$

Set

$$
\bar{L}_{p}(E, T):=L_{p}\left(E, T / q^{1 / 2}\right)=1-\bar{a}_{p} T+T^{2} .
$$

Restatement of the conjecture

Define the Sato-Tate group of E as

1) $\operatorname{SU}(2)$ if E does not have CM.
2) $U(1)$ if E has $C M$ by $M \subseteq k$.
3) $N_{\mathrm{SU}(2)}(\mathrm{U}(1))$ if E has CM by $M \nsubseteq k$.

Recall the numerator of the Zeta function

$$
L_{p}(E, T):=1-a_{p} T+q T^{2}
$$

Set

$$
\bar{L}_{\mathfrak{p}}(E, T):=L_{\mathfrak{p}}\left(E, T / q^{1 / 2}\right)=1-\bar{a}_{\mathfrak{p}} T+T^{2} .
$$

Sato-Tate conjecture for elliptic curves

The sequence of $\left\{\bar{L}_{\mathfrak{p}}(E, T)\right\}_{\mathfrak{p}}$ is equidistributed on the space of charpolys of $\mathrm{ST}(E)$ w.r.t the Haar measure of $\mathrm{ST}(E)$ (projected on this space).

The Sato-Tate group of an abelian variety of dim ≤ 3

Let A / k be an abelian variety of dimension $g \geq 1$.
For a prime ℓ, define

Consider the ℓ-adic representation attached to A

$$
\varrho_{\ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right)
$$

The Sato-Tate group of an abelian variety of dim ≤ 3

Let A / k be an abelian variety of dimension $g \geq 1$.
For a prime ℓ, define

Consider the ℓ-adic representation attached to A

$$
\varrho_{\ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right)
$$

Denote by $\mathcal{G}_{\ell} \subseteq \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$ the Zariski closure of the image of ϱ_{ℓ}.
There is an injection

$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow \operatorname{End}_{\mathcal{G}_{\ell}^{0}}\left(V_{\ell}(A)\right)
$$

(by Faltings, in fact an isomorphism).

More conveniently

$$
\mathcal{G}_{\ell}^{0} \hookrightarrow\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

Building on the work of many, Banaszak and Kedlaya show that if $g \leq 3$, then the above injection is an equality. From now on assume $g \leq 3$.

More conveniently

$$
\mathcal{G}_{\ell}^{0} \hookrightarrow\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\alpha \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

More accurately

$$
\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

Building on the work of many, Banaszak and Kedlaya show that if $g \leq 3$, then the above injection is an equality. From now on assume $g \leq 3$.

Define the twisted Lefschetz group of A by

$$
\mathrm{TL}(A):=\bigcup_{\sigma \in G_{k}}\left\{\gamma \in \mathrm{Sp}_{2 g} / \mathbb{Q} \mid \gamma \alpha \gamma^{-1}=\sigma(\alpha) \text { for all } \alpha \in \operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)\right\} .
$$

The Sato-Tate group of A is a maximal compact subgroup of $\operatorname{TL}(A) \times_{\mathbb{Q}} \mathbb{C}$. Denote it $\mathrm{ST}(A)$. It is a subgroup of $\mathrm{USp}(2 g)$, well defined up to conjugacy.

Sato-Tate conjecture for abelian varieties of dim ≤ 3

Let \mathfrak{p} be a prime of good reduction for A. Define

$$
L_{p}(A, T)=\operatorname{det}\left(1-\varrho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T \mid V_{\ell}(A)\right), \quad \bar{L}_{\mathfrak{p}}(A, T)=L_{p}\left(A, T / q^{1 / 2}\right)
$$

Along with $\mathrm{ST}(A)$, one can also define certain $x_{\mathrm{p}} \in \operatorname{Conj}(\mathrm{ST}(A))$ such that

$$
\operatorname{Charpoly}\left(x_{\mathfrak{p}}\right)=\bar{L}_{p}(A, T)
$$

Sato-Tate conjecture for abelian varieties of dim ≤ 3

Let \mathfrak{p} be a prime of good reduction for A. Define

$$
L_{p}(A, T)=\operatorname{det}\left(1-\varrho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T \mid V_{\ell}(A)\right), \quad \bar{L}_{p}(A, T)=L_{p}\left(A, T / q^{1 / 2}\right)
$$

Along with $\mathrm{ST}(A)$, one can also define certain $x_{\mathrm{p}} \in \operatorname{Conj}(\mathrm{ST}(A))$ such that

$$
\operatorname{Charpoly}\left(x_{\mathfrak{p}}\right)=\bar{L}_{\mathfrak{p}}(A, T) .
$$

Sato-Tate conjecture for abelian varieties (Serre)

The sequence $\left\{x_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ is equidistributed on $\operatorname{Conj}(\mathrm{ST}(A))$ w.r.t the Haar measure of $S T(A)$ (projected on this space).

In general the map

$$
\operatorname{Conj}(\mathrm{ST}(A)) \rightarrow\{\text { Charpolys of } \mathrm{ST}(A)\}, \quad x \mapsto \operatorname{Charpoly}(x)
$$

is not injective.

Sato-Tate axioms

$\mathrm{ST}(A)$ satisfies has the following properties:
Hodge condition (ST1). $\mathrm{ST}(A)^{0}$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom $\theta: \mathrm{U}(1) \rightarrow \mathrm{ST}(A)^{0}$ such that $\theta(u)$ has eigenvalues $u, 1 / u$ with multiplicity $g)$.

Sato-Tate axioms

$\mathrm{ST}(A)$ satisfies has the following properties:
Hodge condition (ST1). $\mathrm{ST}(A)^{0}$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom $\theta: \mathrm{U}(1) \rightarrow \mathrm{ST}(A)^{0}$ such that $\theta(u)$ has eigenvalues $u, 1 / u$ with multiplicity $g)$.
Rationality condition (ST2). For every connected component $H \subseteq \mathrm{ST}(A)$ and character χ, the expected value $\int_{H} \chi \mu$ is an integer (with $\mu(H)=1$).

Sato-Tate axioms

$\mathrm{ST}(A)$ satisfies has the following properties:
Hodge condition (ST1). $\mathrm{ST}(A)^{0}$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom $\theta: \mathrm{U}(1) \rightarrow \mathrm{ST}(A)^{0}$ such that $\theta(u)$ has eigenvalues $u, 1 / u$ with multiplicity $g)$.
Rationality condition (ST2). For every connected component $H \subseteq \mathrm{ST}(A)$ and character χ, the expected value $\int_{H} \chi \mu$ is an integer (with $\mu(H)=1$).
Lefschetz condition (ST3). The subgroup of USp $(2 g)$ fixing $\left(\mathbb{C}^{2 g}\right)^{\mathrm{ST}(A)^{0}}$ is $\mathrm{ST}(A)^{0}$.

Sato-Tate axioms

$\mathrm{ST}(A)$ satisfies has the following properties:
Hodge condition (ST1). $\mathrm{ST}(A)^{0}$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom $\theta: \mathrm{U}(1) \rightarrow \mathrm{ST}(A)^{0}$ such that $\theta(u)$ has eigenvalues $u, 1 / u$ with multiplicity $g)$.
Rationality condition (ST2). For every connected component $H \subseteq \mathrm{ST}(A)$ and character χ, the expected value $\int_{H} \chi \mu$ is an integer (with $\mu(H)=1$).
Lefschetz condition (ST3). The subgroup of USp $(2 g)$ fixing $\left(\mathbb{C}^{2 g}\right)^{\mathrm{ST}(A)^{0}}$ is $\mathrm{ST}(A)^{0}$.
Serre condition (ST4). Let F / k be the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\bar{Q}}\right)$. We call F the endomorphism field of A. Then

$$
\mathrm{ST}(A) / \operatorname{ST}(A)^{0} \simeq \operatorname{Gal}(F / k) .
$$

Sato-Tate axioms

$\mathrm{ST}(A)$ satisfies has the following properties:
Hodge condition (ST1). $\mathrm{ST}(A)^{0}$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom $\theta: \mathrm{U}(1) \rightarrow \mathrm{ST}(A)^{0}$ such that $\theta(u)$ has eigenvalues $u, 1 / u$ with multiplicity $g)$.
Rationality condition (ST2). For every connected component $H \subseteq \mathrm{ST}(A)$ and character χ, the expected value $\int_{H} \chi \mu$ is an integer (with $\mu(H)=1$).
Lefschetz condition (ST3). The subgroup of $\mathrm{USp}(2 g)$ fixing $\left(\mathbb{C}^{2 g}\right)^{\mathrm{ST}(A)^{0}}$ is $\mathrm{ST}(A)^{0}$.

Serre condition (ST4). Let F / k be the minimal extension such that $\operatorname{End}\left(A_{F}\right) \simeq \operatorname{End}\left(A_{\bar{Q}}\right)$. We call F the endomorphism field of A. Then

$$
\mathrm{ST}(A) / \operatorname{ST}(A)^{0} \simeq \operatorname{Gal}(F / k) .
$$

Remarks:

- None of (ST3) and (ST4) are expected for $g \geq 4$.
- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.

Sato-Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy in USp(4), there are 52 Sato-Tate groups of abelian surfaces over number fields.
- The 11 maximal groups (w.r.t finite inclusions) occur as Sato-Tate groups of abelian surfaces over \mathbb{Q}.
- The degree of the endomorphism field of an abelian surface (defined over a number field) divides 48.

Sato-Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy in USp(4), there are 52 Sato-Tate groups of abelian surfaces over number fields.
- The 11 maximal groups (w.r.t finite inclusions) occur as Sato-Tate groups of abelian surfaces over \mathbb{Q}.
- The degree of the endomorphism field of an abelian surface (defined over a number field) divides 48.

Only 34 occur as Sato-Tate groups of abelian surfaces over \mathbb{Q} (FKRS).
There exists a number field k_{0} over which all 52 groups arise as the Sato-Tate group of an abelian surface defined over k_{0} (F.-Guitart).
All 52 Sato-Tate groups occur as the Sato-Tate group of the Jacobian of a genus 2 curve defined over a number field (FKRS).

Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A / k as the isomorphism class of the \mathbb{R}-algebra
$\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{R} \quad$ equipped with the action of $\operatorname{Gal}(F / k)$.
Example:
There are three Galois endomorphism types of elliptic curves.
They are \mathbb{R}, \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.

Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A / k as the isomorphism class of the \mathbb{R}-algebra

$$
\operatorname{End}\left(A_{\bar{Q}}\right) \otimes \mathbb{R} \quad \text { equipped with the action of } \operatorname{Gal}(F / k) .
$$

Example:
There are three Galois endomorphism types of elliptic curves.
They are \mathbb{R}, \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.
Theorem (FKRS)

- There are 52 Galois endomorphism types of abelian surfaces over number fields.
- The Sato-Tate group and the Galois endomorphism type of an abelian surface determine each other uniquely.

Comments on the classification $g=2$

(ST1) allows 6 possibilities for $G^{0} \subseteq \operatorname{USp}(4)$ ((ST3) is redundant for $g=2$).

G^{0}	$\operatorname{End}\left(A_{\mathbb{Q}}\right) \otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(4)$	\mathbb{R}	C_{1}	1
$\mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R}$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2)_{2}$	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{O}(2)$	10
$\mathrm{U}(1)_{2}$	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32
			55

- $\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.

Comments on the classification $g=2$

(ST1) allows 6 possibilities for $G^{0} \subseteq \operatorname{USp}(4)$ ((ST3) is redundant for $g=2$).

G^{0}	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(4)$	\mathbb{R}	C_{1}	1
$\mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R}$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2)_{2}$	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{O}(2)$	10
$\mathrm{U}(1)_{2}$	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32

- $\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^{0}=U(1) \times U(1)$ do not satisfy (ST4):
- A is $\overline{\mathbb{Q}}$-isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k)$

Comments on the classification $g=2$

(ST1) allows 6 possibilities for $G^{0} \subseteq \operatorname{USp}(4)$ ((ST3) is redundant for $g=2$).

G^{0}	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(4)$	\mathbb{R}	C_{1}	1
$\mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R}$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2)_{2}$	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{O}(2)$	10
$\mathrm{U}(1)_{2}$	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32

- $\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^{0}=U(1) \times U(1)$ do not satisfy (ST4):
- A is $\overline{\mathbb{Q}}$-isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k) \simeq \prod \operatorname{Gal}\left(k M_{i}^{*} / k\right)$

Comments on the classification $g=2$

(ST1) allows 6 possibilities for $G^{0} \subseteq \operatorname{USp}(4)$ ((ST3) is redundant for $g=2$).

G^{0}	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(4)$	\mathbb{R}	C_{1}	1
$\mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R}$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2)_{2}$	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{O}(2)$	10
$\mathrm{U}(1)_{2}$	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32

- $\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(4)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^{0}=U(1) \times U(1)$ do not satisfy (ST4):
- A is $\overline{\mathbb{Q}}$-isogenous to a product of abelian varieties A_{i} with CM by M_{i}.
- $G / G^{0} \simeq \operatorname{Gal}(F / k) \simeq \prod \operatorname{Gal}\left(k M_{i}^{*} / k\right) \subseteq C_{2} \times C_{2}, C_{4}$.

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato-Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato-Tate groups of abelian threefolds over \mathbb{Q} or $\mathbb{Q}(\sqrt{3})$.
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato-Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato-Tate groups of abelian threefolds over \mathbb{Q} or $\mathbb{Q}(\sqrt{3})$.
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: $[F: k] \mid \operatorname{Lcm}(192,336,432)$.
That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland.

Sato-Tate groups for $g=3$

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato-Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato-Tate groups of abelian threefolds over \mathbb{Q} or $\mathbb{Q}(\sqrt{3})$.
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: $[F: k] \mid \operatorname{Lcm}(192,336,432)$.
That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland.
How many over \mathbb{Q} ?
Is there a k_{0} over which all 410 groups can be realized?
Do they all occur among Jacobians of genus 3 curves?
De they all occur among principally polarized abelian threefolds?

Comments on the classification $g=3$

G^{0}	$\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{R}$	$N_{\mathrm{USp}(6)}\left(G^{0}\right) / G^{0}$	$\# \mathcal{A}$
$\mathrm{USp}(6)$	\mathbb{R}	C_{1}	1
$\mathrm{U}(3)$	\mathbb{C}	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{USp}(4)$	$\mathbb{R} \times \mathbb{R}$	C_{1}	1
$\mathrm{U}(1) \times \mathrm{USp}(4)$	$\mathbb{C} \times \mathbb{R}$	C_{2}	2
$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$C_{2} \times C_{2}$	5
$\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{R} \times \mathbb{C} \times \mathbb{C}$	D_{4}	8
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{O}(2)$	10
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SO}(3) \times C_{2}$	32
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$C_{2} \times \mathrm{O}(2)$	31
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$C_{2} \times \mathrm{SO}(3) \times C_{2}$	122
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	S_{3}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes S_{3}$	33
$\mathrm{SU}(2)_{3}$	$\mathrm{M}(\mathbb{R})$	$\mathrm{SO}(3)$	11
$\mathrm{U}(1)_{3}$	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{PSU}(3) \times C_{2}$	171

$\mathcal{A}=$ set of finite subgroups of $N_{\mathrm{USp}(6)}\left(G^{0}\right) / G^{0}$ for which (ST2) is satisfied.

