Sato-Tate groups of abelian threefolds

Francesc Fité (MIT)

Joint work with Kiran Kedlaya and Andrew Sutherland

Barcelona Mathematical Days, 10/24/2020

Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E, let q = Nm(p) and set

$$a_{\mathfrak{p}} := q + 1 - \# E(\mathbb{F}_q)$$
.

It satisfies

$$Z(E_{\mathfrak{p}},T):=\exp\left(\sum_{n\geq 1}\#E(\mathbb{F}_{q^n})\frac{T^n}{n}\right)=\frac{1-a_{\mathfrak{p}}T+qT^2}{(1-T)(1-qT)}.$$

Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E, let q = Nm(p) and set

$$a_{\mathfrak{p}} := q + 1 - \# E(\mathbb{F}_q)$$
.

It satisfies

$$Z(E_{\mathfrak{p}},T):=\exp\left(\sum_{n\geq 1}\#E(\mathbb{F}_{q^n})\frac{T^n}{n}\right)=\frac{1-a_{\mathfrak{p}}T+qT^2}{(1-T)(1-qT)}.$$

By the Hasse-Weil bound:

$$\overline{a}_{\mathfrak{p}}:=rac{a_{\mathfrak{p}}}{q^{1/2}}\in\left[-2,2
ight].$$

What is the distribution of the \overline{a}_{p} on the interval I = [-2, 2]?

The Sato–Tate conjecture for elliptic curves

Sato-Tate conjecture for elliptic curves

The sequence $\{\overline{a}_{\mathfrak{p}}\}_{\mathfrak{p}}$ is equidistributed on *I* w.r.t a measure μ_I given by

1)
$$\frac{1}{2\pi}\sqrt{4-z^2}dz$$
 if *E* does not have CM.

2)
$$\frac{1}{\pi} \frac{dz}{\sqrt{4-z^2}}$$
 if *E* has CM by $M \subseteq k$.

3)
$$\frac{1}{2}\delta_0 + \frac{1}{2\pi}\frac{dz}{\sqrt{4-z^2}}$$
 if *E* has CM by $M \not\subseteq k$.

μ_I from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$\mathsf{SU}(2) := \left\{ egin{pmatrix} a & b \ -\overline{b} & \overline{a} \end{pmatrix} \in \mathsf{GL}_2(\mathbb{C}) \ : \ a\overline{a} + b\overline{b} = 1
ight\} \, .$$

μ_I from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$\mathsf{SU}(2) := \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \in \mathsf{GL}_2(\mathbb{C}) : a\overline{a} + b\overline{b} = 1 \right\} \,.$$

These subgroups are:

1) SU(2) itself.

2)
$$U(1) := \left\{ \begin{pmatrix} u & 0 \\ 0 & \overline{u} \end{pmatrix} : u \in \mathbb{C}, |u| = 1 \right\}.$$

3)
$$N_{SU(2)}(U(1)) = \left\langle U(1), \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle.$$

μ_I from a Haar measure

The measures of the previous slide come from real Lie subgroups of

$$\mathsf{SU}(2) := \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \in \mathsf{GL}_2(\mathbb{C}) : a\overline{a} + b\overline{b} = 1 \right\} \,.$$

These subgroups are:

1) SU(2) itself.

2)
$$U(1) := \left\{ \begin{pmatrix} u & 0 \\ 0 & \overline{u} \end{pmatrix} : u \in \mathbb{C}, |u| = 1 \right\}.$$

3)
$$N_{SU(2)}(U(1)) = \left\langle U(1), \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle.$$

Let G be as in 1), 2), 3). Note that

$$\mathsf{Tr}: \mathbf{G} o \mathbf{I} = [-2, 2].$$

Let μ be the Haar measure of *G*. The measure μ_I satisfies

$$\operatorname{Tr}_*(\mu) = \mu_I.$$

Restatement of the conjecture

Define the Sato-Tate group of E as

- 1) SU(2) if E does not have CM.
- 2) U(1) if *E* has CM by $M \subseteq k$.
- 3) $N_{SU(2)}(U(1))$ if *E* has CM by $M \not\subseteq k$.

Restatement of the conjecture

Define the Sato-Tate group of E as

- 1) SU(2) if E does not have CM.
- 2) U(1) if *E* has CM by $M \subseteq k$.

3) $N_{SU(2)}(U(1))$ if *E* has CM by $M \not\subseteq k$. Recall the numerator of the Zeta function

$$L_\mathfrak{p}(E,T) := 1 - a_\mathfrak{p}T + qT^2$$

Set

$$\overline{L}_{\mathfrak{p}}(E,T) := L_{\mathfrak{p}}(E,T/q^{1/2}) = 1 - \overline{a}_{\mathfrak{p}}T + T^2.$$

Restatement of the conjecture

Define the Sato-Tate group of E as

- 1) SU(2) if E does not have CM.
- 2) U(1) if *E* has CM by $M \subseteq k$.

3) $N_{SU(2)}(U(1))$ if *E* has CM by $M \not\subseteq k$.

Recall the numerator of the Zeta function

$$L_{\mathfrak{p}}(E,T) := 1 - a_{\mathfrak{p}}T + qT^2$$

Set

$$\overline{L}_{\mathfrak{p}}(E,T) := L_{\mathfrak{p}}(E,T/q^{1/2}) = 1 - \overline{a}_{\mathfrak{p}}T + T^2.$$

Sato-Tate conjecture for elliptic curves

The sequence of $\{\overline{L}_{\mathfrak{p}}(E, T)\}_{\mathfrak{p}}$ is equidistributed on the space of charpolys of ST(E) w.r.t the Haar measure of ST(E) (projected on this space).

The Sato–Tate group of an abelian variety of dim \leq 3

Let A/k be an abelian variety of dimension $g \ge 1$. For a prime ℓ , define

$$T_{\ell}(A) = \varprojlim_{r} A[\ell^{r}](\overline{\mathbb{Q}}), \qquad V_{\ell}(A) = T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}.$$

Consider the *l*-adic representation attached to A

$$\varrho_\ell\colon G_k o \operatorname{Aut}(V_\ell(A))$$
.

The Sato–Tate group of an abelian variety of dim \leq 3

Let A/k be an abelian variety of dimension $g \ge 1$. For a prime ℓ , define

$$T_{\ell}(A) = \varprojlim_{r} A[\ell^{r}](\overline{\mathbb{Q}}), \qquad V_{\ell}(A) = T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}.$$

Consider the *l*-adic representation attached to A

$$\varrho_\ell\colon G_k\to \operatorname{Aut}(V_\ell(A))$$
.

Denote by $\mathcal{G}_\ell \subseteq GSp_{2g}/\mathbb{Q}_\ell$ the Zariski closure of the image of ϱ_ℓ . There is an injection

$$\operatorname{End}(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}_\ell \hookrightarrow \operatorname{End}_{\mathcal{G}^0_\ell}(V_\ell(A))$$

(by Faltings, in fact an isomorphism).

More conveniently

$$\mathcal{G}^{\mathsf{0}}_{\ell} \hookrightarrow \{ \gamma \in \mathsf{GSp}_{2g} \, / \mathbb{Q}_{\ell} \, | \, \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}$$

More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in G_k} \{ \gamma \in \mathsf{GSp}_{2g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$$

Building on the work of many, Banaszak and Kedlaya show that if $g \le 3$, then the above injection is an equality. From now on assume $g \le 3$.

More conveniently

$$\mathcal{G}^{\mathsf{0}}_{\ell} \hookrightarrow \{ \gamma \in \mathsf{GSp}_{2g} \, / \mathbb{Q}_{\ell} \, | \, \gamma \alpha \gamma^{-1} = \alpha \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{O}}}) \}$$

More accurately

$$\mathcal{G}_{\ell} \hookrightarrow \bigcup_{\sigma \in \mathcal{G}_k} \{ \gamma \in \mathsf{GSp}_{2g} / \mathbb{Q}_{\ell} \mid \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \mathsf{End}(A_{\overline{\mathbb{Q}}}) \}.$$

Building on the work of many, Banaszak and Kedlaya show that if $g \le 3$, then the above injection is an equality. From now on assume $g \le 3$.

Define the twisted Lefschetz group of A by

$$\mathsf{TL}(\mathcal{A}) := \bigcup_{\sigma \in \mathcal{G}_k} \left\{ \gamma \in \operatorname{Sp}_{2g} / \mathbb{Q} \, | \, \gamma \alpha \gamma^{-1} = \sigma(\alpha) \text{ for all } \alpha \in \operatorname{End}(\mathcal{A}_{\overline{\mathbb{Q}}}) \right\}.$$

The Sato–Tate group of *A* is a maximal compact subgroup of $TL(A) \times_{\mathbb{Q}} \mathbb{C}$. Denote it ST(A). It is a subgroup of $US_P(2g)$, well defined *up to conjugacy*.

Sato–Tate conjecture for abelian varieties of dim \leq 3

Let p be a prime of good reduction for A. Define

 $L_{\mathfrak{p}}(A,T) = \det(1 - \varrho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T|V_{\ell}(A)), \qquad \overline{L}_{\mathfrak{p}}(A,T) = L_{\rho}(A,T/q^{1/2}).$

Along with ST(*A*), one can also define certain $x_p \in \text{Conj}(ST(A))$ such that $\text{Charpoly}(x_p) = \overline{L}_p(A, T)$.

Sato–Tate conjecture for abelian varieties of dim \leq 3

Let p be a prime of good reduction for A. Define

 $L_{\mathfrak{p}}(A,T) = \det(1 - \varrho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T|V_{\ell}(A)), \qquad \overline{L}_{\mathfrak{p}}(A,T) = L_{\rho}(A,T/q^{1/2}).$

Along with ST(*A*), one can also define certain $x_{\mathfrak{p}} \in \text{Conj}(ST(A))$ such that Charpoly $(x_{\mathfrak{p}}) = \overline{L}_{\mathfrak{p}}(A, T)$.

Sato–Tate conjecture for abelian varieties (Serre)

The sequence $\{x_p\}_p$ is equidistributed on Conj(ST(A)) w.r.t the Haar measure of ST(A) (projected on this space).

In general the map

$$\operatorname{Conj}(\operatorname{ST}(A)) \to {\operatorname{Charpolys} \text{ of } \operatorname{ST}(A)}, \qquad x \mapsto \operatorname{Charpoly}(x)$$

is not injective.

Sato-Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). $ST(A)^0$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom θ : $U(1) \rightarrow ST(A)^0$ such that $\theta(u)$ has eigenvalues u, 1/u with multiplicity g).

Sato-Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). $ST(A)^0$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom θ : $U(1) \rightarrow ST(A)^0$ such that $\theta(u)$ has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component $H \subseteq ST(A)$ and character χ , the expected value $\int_{H} \chi \mu$ is an integer (with $\mu(H) = 1$).

Sato–Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). $ST(A)^0$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom θ : $U(1) \rightarrow ST(A)^0$ such that $\theta(u)$ has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component $H \subseteq ST(A)$ and character χ , the expected value $\int_H \chi \mu$ is an integer (with $\mu(H) = 1$).

Lefschetz condition (ST3). The subgroup of USp(2g) fixing $(\mathbb{C}^{2g})^{ST(A)^0}$ is $ST(A)^0$.

Sato-Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). $ST(A)^0$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom θ : $U(1) \rightarrow ST(A)^0$ such that $\theta(u)$ has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component $H \subseteq ST(A)$ and character χ , the expected value $\int_H \chi \mu$ is an integer (with $\mu(H) = 1$).

Lefschetz condition (ST3). The subgroup of USp(2g) fixing $(\mathbb{C}^{2g})^{ST(A)^0}$ is $ST(A)^0$.

Serre condition (ST4). Let F/k be the minimal extension such that $End(A_F) \simeq End(A_{\overline{O}})$. We call F the endomorphism field of A. Then

 $\operatorname{ST}(A)/\operatorname{ST}(A)^0 \simeq \operatorname{Gal}(F/k)$.

Sato-Tate axioms

ST(A) satisfies has the following properties:

Hodge condition (ST1). $ST(A)^0$ contains a Hodge circle and is topologically generated by them (a Hodge circle is the image of a hom θ : $U(1) \rightarrow ST(A)^0$ such that $\theta(u)$ has eigenvalues u, 1/u with multiplicity g).

Rationality condition (ST2). For every connected component $H \subseteq ST(A)$ and character χ , the expected value $\int_H \chi \mu$ is an integer (with $\mu(H) = 1$).

Lefschetz condition (ST3). The subgroup of USp(2g) fixing $(\mathbb{C}^{2g})^{ST(A)^0}$ is $ST(A)^0$.

Serre condition (ST4). Let F/k be the minimal extension such that $End(A_F) \simeq End(A_{\overline{O}})$. We call F the endomorphism field of A. Then

$$\operatorname{ST}(A)/\operatorname{ST}(A)^0 \simeq \operatorname{Gal}(F/k)$$
.

Remarks:

- None of (ST3) and (ST4) are expected for $g \ge 4$.
- Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.

Sato-Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy in USp(4), there are 52 Sato–Tate groups of abelian surfaces over number fields.
- The 11 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups of abelian surfaces over Q.
- The degree of the endomorphism field of an abelian surface (defined over a number field) divides 48.

Sato–Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

- Up to conjugacy in USp(4), there are 52 Sato–Tate groups of abelian surfaces over number fields.
- The 11 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups of abelian surfaces over \mathbb{Q} .
- The degree of the endomorphism field of an abelian surface (defined over a number field) divides 48.

Only 34 occur as Sato-Tate groups of abelian surfaces over \mathbb{Q} (FKRS).

There exists a number field k_0 over which all 52 groups arise as the Sato-Tate group of an abelian surface defined over k_0 (F.-Guitart).

All 52 Sato–Tate groups occur as the Sato–Tate group of the Jacobian of a genus 2 curve defined over a number field (FKRS).

Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A/k as the isomorphism class of the \mathbb{R} -algebra

 $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{R}$ equipped with the action of $\operatorname{Gal}(F/k)$.

Example:

There are three Galois endomorphism types of elliptic curves.

They are \mathbb{R} , \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.

Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A/k as the isomorphism class of the \mathbb{R} -algebra

 $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{R}$ equipped with the action of $\operatorname{Gal}(F/k)$.

Example:

There are three Galois endomorphism types of elliptic curves.

They are \mathbb{R} , \mathbb{C} (both equipped with the trivial action), and \mathbb{C} equipped with the action of complex conjugation.

Theorem (FKRS)

- There are 52 Galois endomorphism types of abelian surfaces over number fields.
- The Sato–Tate group and the Galois endomorphism type of an abelian surface determine each other uniquely.

(ST1) allows 6 possibilities for $G^0 \subseteq USp(4)$ ((ST3) is redundant for g = 2).

G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}(G^0)/G^0$	$\#\mathcal{A}$
USp(4)	\mathbb{R}	C_1	1
$SU(2) \times SU(2)$	$\mathbb{R} \times \mathbb{R}$	C_2	2
SU(2) imes U(1)	$\mathbb{R}\times\mathbb{C}$	<i>C</i> ₂	2
U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}$	D_4	8
SU(2) ₂	$M_2(\mathbb{R})$	O(2)	10
U(1) ₂	$M_2(\mathbb{C})$	$SO(3) imes C_2$	32
			55

• $\mathcal{A} =$ set of finite subgroups of $N_{USp(4)}(G^0)/G^0$ for which (ST2) is satisfied.

(ST1) allows 6 possibilities for $G^0 \subseteq USp(4)$ ((ST3) is redundant for g = 2).

G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}(G^0)/G^0$	$\#\mathcal{A}$
USp(4)	\mathbb{R}	C_1	1
SU(2) imes SU(2)	$\mathbb{R} \times \mathbb{R}$	C_2	2
SU(2) imes U(1)	$\mathbb{R}\times\mathbb{C}$	<i>C</i> ₂	2
U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}$	D_4	8
SU(2) ₂	$M_2(\mathbb{R})$	O(2)	10
U(1) ₂	$M_2(\mathbb{C})$	$SO(3) imes C_2$	32
			55

- $\mathcal{A} =$ set of finite subgroups of $N_{USp(4)}(G^0)/G^0$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^0 = U(1) \times U(1)$ do not satisfy (ST4):
 - A is $\overline{\mathbb{Q}}$ -isogenous to a product of abelian varieties A_i with CM by M_i .

•
$$G/G^0 \simeq \operatorname{Gal}(F/k)$$

(ST1) allows 6 possibilities for $G^0 \subseteq USp(4)$ ((ST3) is redundant for g = 2).

G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}(G^0)/G^0$	$\#\mathcal{A}$
USp(4)	\mathbb{R}	C_1	1
SU(2) imes SU(2)	$\mathbb{R} \times \mathbb{R}$	<i>C</i> ₂	2
SU(2) imes U(1)	$\mathbb{R}\times\mathbb{C}$	C_2	2
U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}$	D_4	8
SU(2) ₂	$M_2(\mathbb{R})$	O(2)	10
U(1) ₂	$M_2(\mathbb{C})$	$SO(3) imes C_2$	32
			55

- $\mathcal{A} =$ set of finite subgroups of $N_{USp(4)}(G^0)/G^0$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^0 = U(1) \times U(1)$ do not satisfy (ST4):
 - A is $\overline{\mathbb{Q}}$ -isogenous to a product of abelian varieties A_i with CM by M_i .

•
$$G/G^0 \simeq \operatorname{Gal}(F/k) \simeq \prod \operatorname{Gal}(kM_i^*/k)$$

(ST1) allows 6 possibilities for $G^0 \subseteq USp(4)$ ((ST3) is redundant for g = 2).

G^0	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(4)}(G^0)/G^0$	$\#\mathcal{A}$
USp(4)	\mathbb{R}	C_1	1
SU(2) imes SU(2)	$\mathbb{R} \times \mathbb{R}$	<i>C</i> ₂	2
SU(2) imes U(1)	$\mathbb{R}\times\mathbb{C}$	<i>C</i> ₂	2
U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}$	D_4	8
SU(2) ₂	$M_2(\mathbb{R})$	O(2)	10
U(1) ₂	$M_2(\mathbb{C})$	$SO(3) imes C_2$	32
			55

- $\mathcal{A} =$ set of finite subgroups of $N_{USp(4)}(G^0)/G^0$ for which (ST2) is satisfied.
- 3 of the groups in the case $G^0 = U(1) \times U(1)$ do not satisfy (ST4):
 - A is $\overline{\mathbb{Q}}$ -isogenous to a product of abelian varieties A_i with CM by M_i .
 - $G/G^0 \simeq \operatorname{Gal}(F/k) \simeq \prod \operatorname{Gal}(kM_i^*/k) \subseteq C_2 \times C_2, C_4.$

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato–Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups of abelian threefolds over ℚ or ℚ(√3).
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato–Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups of abelian threefolds over Q or Q(√3).
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: [F : k] | Lcm(192, 336, 432). That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland.

Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

- Up to conjugacy in USp(6), there are 410 Sato–Tate groups of abelian threefolds over number fields.
- The 33 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups of abelian threefolds over ℚ or ℚ(√3).
- The degree of the endomorphism field of an abelian threefold (defined over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: [F : k] | Lcm(192, 336, 432). That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland. How many over \mathbb{Q} ?

Is there a k_0 over which all 410 groups can be realized?

Do they all occur among Jacobians of genus 3 curves?

De they all occur among principally polarized abelian threefolds?

G^{0}	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{R}$	$N_{\mathrm{USp}(6)}(G^0)/G^0$	$\#\mathcal{A}$
USp(6)	\mathbb{R}	<i>C</i> ₁	1
U(3)	\mathbb{C}	C_2	2
SU(2) imes USp(4)	$\mathbb{R} \times \mathbb{R}$	C_1	1
U(1) imes USp(4)	$\mathbb{C} imes \mathbb{R}$	C_2	2
U(1) imes SU(2) imes SU(2)	$\mathbb{C}\times\mathbb{R}\times\mathbb{R}$	$\mathit{C}_{2} imes \mathit{C}_{2}$	5
SU(2) imes U(1) imes U(1)	$\mathbb{R}\times\mathbb{C}\times\mathbb{C}$	D_4	8
$SU(2) \times SU(2)_2$	$\mathbb{R} imes M_2(\mathbb{R})$	O(2)	10
$SU(2) imes U(1)_2$	$\mathbb{R} imes M_2(\mathbb{C})$	${ m SO(3)} imes {\it C}_2$	32
$U(1) \times SU(2)_2$	$\mathbb{C} imes M_2(\mathbb{R})$	$C_2 imes { m O}(2)$	31
$U(1) \times U(1)_2$	$\mathbb{C} imes M_2(\mathbb{C})$	$\mathit{C}_{2} imes { m SO}(3) imes \mathit{C}_{2}$	122
$SU(2) \times SU(2) \times SU(2)$	$\mathbb{R}\times\mathbb{R}\times\mathbb{R}$	S_3	4
U(1) imes U(1) imes U(1)	$\mathbb{C}\times\mathbb{C}\times\mathbb{C}$	$(C_2 imes C_2 imes C_2) times S_3$	33
SU(2) ₃	$M_3(\mathbb{R})$	SO(3)	11
U(1) ₃	$M_3(\mathbb{C})$	$PSU(3) \rtimes C_2$	171

 $\mathcal{A} =$ set of finite subgroups of $N_{USp(6)}(G^0)/G^0$ for which (ST2) is satisfied.