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Frobenius traces of elliptic curves

k a number field.

E/k an elliptic curve.

For a prime p of good reduction for E , let q = Nm(p) and set

ap := q + 1−#E(Fq) .

It satisfies

Z (Ep,T ) := exp

∑
n≥1

#E(Fqn)
T n

n

 =
1− apT + qT 2

(1− T )(1− qT )
.

By the Hasse-Weil bound:

ap :=
ap

q1/2 ∈ [−2,2] .

What is the distribution of the ap on the interval I = [−2,2]?
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The Sato–Tate conjecture for elliptic curves

Sato–Tate conjecture for elliptic curves
The sequence {ap}p is equidistributed on I w.r.t a measure µI given by

1)
1

2π

√
4− z2dz if E does not have CM.

2)
1
π

dz√
4− z2

if E has CM by M ⊆ k .

3)
1
2
δ0 +

1
2π

dz√
4− z2

if E has CM by M 6⊆ k .

1) 2) 3)
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µI from a Haar measure
The measures of the previous slide come from real Lie subgroups of

SU(2) :=
{(

a b
−b a

)
∈ GL2(C) : aa + bb = 1

}
.

These subgroups are:

1) SU(2) itself.

2) U(1) :=
{(

u 0
0 u

)
: u ∈ C, |u| = 1

}
.

3) NSU(2)(U(1)) =
〈
U(1),

(
0 1
−1 0

)〉
.

Let G be as in 1), 2), 3). Note that

Tr : G→ I = [−2,2] .

Let µ be the Haar measure of G. The measure µI satisfies

Tr∗(µ) = µI .
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Restatement of the conjecture
Define the Sato–Tate group of E as

1) SU(2) if E does not have CM.

2) U(1) if E has CM by M ⊆ k .

3) NSU(2)(U(1)) if E has CM by M 6⊆ k .

Recall the numerator of the Zeta function

Lp(E ,T ) := 1− apT + qT 2

Set
Lp(E ,T ) := Lp(E ,T/q1/2) = 1− apT + T 2 .

Sato–Tate conjecture for elliptic curves
The sequence of {Lp(E ,T )}p is equidistributed on the space of charpolys of
ST(E) w.r.t the Haar measure of ST(E) (projected on this space).
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The Sato–Tate group of an abelian variety of dim ≤ 3

Let A/k be an abelian variety of dimension g ≥ 1.

For a prime `, define

T`(A) = lim←−
r

A[`r ](Q) , V`(A) = T`(A)⊗Z`
Q` .

Consider the `-adic representation attached to A

%` : Gk → Aut(V`(A)) .

Denote by G` ⊆ GSp2g /Q` the Zariski closure of the image of %`.

There is an injection

End(AQ)⊗Q` ↪→ EndG0
`
(V`(A))

(by Faltings, in fact an isomorphism).
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More conveniently

G0
` ↪→ {γ ∈ GSp2g /Q` | γαγ−1 = α for all α ∈ End(AQ)} .

More accurately

G` ↪→
⋃
σ∈Gk

{γ ∈ GSp2g /Q` | γαγ−1 = σ(α) for all α ∈ End(AQ)} .

Building on the work of many, Banaszak and Kedlaya show that if g ≤ 3, then
the above injection is an equality. From now on assume g ≤ 3.

Define the twisted Lefschetz group of A by

TL(A) :=
⋃
σ∈Gk

{γ ∈ Sp2g /Q | γαγ−1 = σ(α) for all α ∈ End(AQ)} .

The Sato–Tate group of A is a maximal compact subgroup of TL(A)×Q C.
Denote it ST(A). It is a subgroup of USp(2g), well defined up to conjugacy.
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Sato–Tate conjecture for abelian varieties of dim ≤ 3

Let p be a prime of good reduction for A. Define

Lp(A,T ) = det(1− %`(Frobp)T |V`(A)) , Lp(A,T ) = Lp(A,T/q1/2) .

Along with ST(A), one can also define certain xp ∈ Conj(ST(A)) such that

Charpoly(xp) = Lp(A,T ) .

Sato–Tate conjecture for abelian varieties (Serre)
The sequence {xp}p is equidistributed on Conj(ST(A)) w.r.t the Haar measure
of ST(A) (projected on this space).

In general the map

Conj(ST(A))→ {Charpolys ofST(A)} , x 7→ Charpoly(x)

is not injective.
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Sato–Tate axioms
ST(A) satisfies has the following properties:

Hodge condition (ST1). ST(A)0 contains a Hodge circle and is topologically
generated by them (a Hodge circle is the image of a hom θ : U(1)→ ST(A)0

such that θ(u) has eigenvalues u,1/u with multiplicity g).

Rationality condition (ST2). For every connected component H ⊆ ST(A) and
character χ, the expected value

∫
H χµ is an integer (with µ(H) = 1).

Lefschetz condition (ST3). The subgroup of USp(2g) fixing (C2g)ST(A)
0

is
ST(A)0.

Serre condition (ST4). Let F/k be the minimal extension such that
End(AF ) ' End(AQ). We call F the endomorphism field of A. Then

ST(A)/ST(A)0 ' Gal(F/k) .

Remarks:
None of (ST3) and (ST4) are expected for g ≥ 4.
Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.
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Sato–Tate groups of abelian surfaces

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)
Up to conjugacy in USp(4), there are 52 Sato–Tate groups of abelian
surfaces over number fields.
The 11 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups
of abelian surfaces over Q.
The degree of the endomorphism field of an abelian surface (defined over
a number field) divides 48.

Only 34 occur as Sato-Tate groups of abelian surfaces over Q (FKRS).

There exists a number field k0 over which all 52 groups arise as the Sato-Tate
group of an abelian surface defined over k0 (F.-Guitart).

All 52 Sato–Tate groups occur as the Sato–Tate group of the Jacobian of a
genus 2 curve defined over a number field (FKRS).
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Galois endomorphism type

Define the Galois endomorphism type of an abelian variety A/k as the
isomorphism class of the R-algebra

End(AQ)⊗ R equipped with the action of Gal(F/k).

Example:

There are three Galois endomorphism types of elliptic curves.

They are R, C (both equipped with the trivial action), and C equipped with the
action of complex conjugation.

Theorem (FKRS)
There are 52 Galois endomorphism types of abelian surfaces over
number fields.
The Sato–Tate group and the Galois endomorphism type of an abelian
surface determine each other uniquely.
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Comments on the classification g = 2
(ST1) allows 6 possibilities for G0 ⊆ USp(4) ((ST3) is redundant for g = 2).

G0 End(AQ)⊗ R NUSp(4)(G0)/G0 #A

USp(4) R C1 1

SU(2)× SU(2) R× R C2 2

SU(2)× U(1) R× C C2 2

U(1)× U(1) C× C D4 8

SU(2)2 M2(R) O(2) 10

U(1)2 M2(C) SO(3)× C2 32

55

A = set of finite subgroups of NUSp(4)(G0)/G0 for which (ST2) is satisfied.

3 of the groups in the case G0 = U(1)× U(1) do not satisfy (ST4):
I A is Q-isogenous to a product of abelian varieties Ai with CM by Mi .

I G/G0 ' Gal(F/k)

'
∏

Gal(kM∗
i /k) ⊆ C2 × C2,C4.
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Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)
Up to conjugacy in USp(6), there are 410 Sato–Tate groups of abelian
threefolds over number fields.
The 33 maximal groups (w.r.t finite inclusions) occur as Sato–Tate groups
of abelian threefolds over Q or Q(

√
3).

The degree of the endomorphism field of an abelian threefold (defined
over a number field) divides 192, 336, or 432.

Guralnick-Kedlaya had shown: [F : k ] | Lcm(192,336,432).
That 192 and 336 can be achieved was shown in F.-Lorenzo-Sutherland.

How many over Q?

Is there a k0 over which all 410 groups can be realized?

Do they all occur among Jacobians of genus 3 curves?

De they all occur among principally polarized abelian threefolds?
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Comments on the classification g = 3

G0 End(AQ)⊗ R NUSp(6)(G0)/G0 #A
USp(6) R C1 1
U(3) C C2 2
SU(2)× USp(4) R× R C1 1
U(1)× USp(4) C× R C2 2
U(1)× SU(2)× SU(2) C× R× R C2 × C2 5
SU(2)× U(1)× U(1) R× C× C D4 8
SU(2)× SU(2)2 R×M2(R) O(2) 10
SU(2)× U(1)2 R×M2(C) SO(3)× C2 32
U(1)× SU(2)2 C×M2(R) C2 × O(2) 31
U(1)× U(1)2 C×M2(C) C2 × SO(3)× C2 122
SU(2)× SU(2)× SU(2) R× R× R S3 4
U(1)× U(1)× U(1) C× C× C (C2 × C2 × C2)o S3 33
SU(2)3 M3(R) SO(3) 11
U(1)3 M3(C) PSU(3)o C2 171

A = set of finite subgroups of NUSp(6)(G0)/G0 for which (ST2) is satisfied.
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