Endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q}

Francesc Fité ${ }^{1}$ (UPC/BGSMath) and Xavier Guitart (UB)

Arithmetic Geometry, Number Theory, and Computation. MIT, 21st August 2018.

Based on the preprint: https://arxiv.org/abs/1807.10010

[^0]
A conjecture

- Let F be a number field and A / F an abelian variety.
- Call $\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}$ the algebra of $\overline{\mathbb{Q}}$-endomorphisms of A.
- For natural numbers g and d, consider

$$
\mathcal{A}_{g, d}=\left\{\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} \mid A / F \text { has dimension } g \text { and }[F: \mathbb{Q}]=d\right\} / \simeq
$$

Conjecture (Coleman)

The set $\mathcal{A}_{g, d}$ is finite.

Example

For $g=1$ and $d=1: \mathcal{A}_{1,1}$ is \mathbb{Q} and the 9 quadratic imaginary fields of class number 1 .

An open question

- We are interested in the case $g=2$ and $d=1$.
- Set

$$
\mathcal{A}_{2,1}=\mathcal{A}_{2,1}^{\text {simple }} \cup \mathcal{A}_{2,1}^{\text {split }}
$$

where

$$
\begin{aligned}
& \mathcal{A}_{2,1}^{\text {simple }}=\left\{\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} \in \mathcal{A}_{2,1} \mid A_{\overline{\mathbb{Q}}} \text { simple }\right\} \\
& \mathcal{A}_{2,1}^{\text {split }}=\left\{\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q} \in \mathcal{A}_{2,1} \mid A_{\overline{\mathbb{Q}}} \sim E \times E^{\prime}\right\}
\end{aligned}
$$

- Whether $\# \mathcal{A}_{2,1}^{\text {simple }}<\infty$ is widely open.
- The finiteness of $\mathcal{A}_{2,1}^{\text {split }}$ is known. But what is $\mathcal{A}_{2,1}^{\text {split }}$?

Main result

Theorem (F.-Guitart)

The set $\mathcal{A}_{2,1}^{\text {split }}$ is made of:
(1) $\mathbb{Q} \times \mathbb{Q}, \mathbb{Q} \times M$, or $M_{1} \times M_{2}$, where $M, M_{1} \not 千 M_{2}$ are quadratic imaginary fields of class number 1 ;
(1) $\mathrm{M}_{2}(\mathbb{Q})$ or $\mathrm{M}_{2}(M)$, where M is a quadratic imaginary field with class group $1, \mathbb{Z} / 2 \mathbb{Z}$, or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ distinct from

$$
\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760}) .
$$

- Case i): $1+9+\binom{9}{2}=46$ possibilities.
- Case ii): $1+9+18+(24-6)=46$ possibilities.

[^0]: ${ }^{1}$ Funded by Maria de Maeztu Grant (MDM-2014-0445). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 682152).

