
Prof. Dr. U. Görtz
Dr. F. Fité
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The goal of this Problem Set is to give two proofs (a geometric one and an
algebraic one) of the following result1:

Characterization of the Pythagorean Triplets (CPT). If x, y, z are posi-
tive integers satisfying

x2 + y2 = z2,

in which case (x, y, z) is called a Pythagorean triple, then there exists a positive
integer d and two relatively prime integers u and v such that

x = d(u2 − v2), y = 2duv, z = d(u2 + v2),

up to permutation of x and y.

Geometric proof. Consider, on the affine XY -plane, the circle

C : X2 + Y 2 = 1

and the line
Lm : Y +m(X + 1) = 0,

for m ∈ Q. Let Pm = (Am, Bm) denote the intersecting point of Lm and C
distinct from (−1, 0).

Exercise 1A. Show that for every P = (A,B) ∈ C with A,B ∈ Q and distinct
from (−1, 0), there exists m ∈ Q such that (A,B) = (Am, Bm).

Exercise 1B. Compute (Am, Bm) in terms of m.

Exercise 1C. Deduce (CPT) from the previous two exercises.

Algebraic proof. We will consider the field of rational Gauss numbers

Q(i) = {a+ ib | a, b ∈ Q},

where i =
√
−1. We define the norm of a rational Gauss number α = a+ ib as

N(α) = αᾱ = (a+ ib)(a− ib) = a2 + b2.

Exercise 2A. Show that for α ∈ Q(i):

N(α) = 1 if and only if α =
β

β̄
for some nonzero β ∈ Q(i).

(Hint: α(1 + ᾱ) = α+ αᾱ).

Exercise 2B. If (x, y, z) is Pythagorean a triple, define α = x
z + iyz . Deduce

(CPT) by applying the previous exercise to α.

1In a future Problem Set we will give a third proof of this result (an arithmetic proof).
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Exercise 1. Let F denote a finite field. Show that for every a ∈ F, there exist
x, y ∈ F such that a = x2 + y2.

Hint: Compute the cardinality of the sets {x2 |x ∈ F} and {a − y2 | y ∈ F}.
Distinguish whether F has characteristic 2 or 6= 2.

Exercise 2.

i) Let M be Z2 and M ′ ⊆M the submodule generated by

v1 = (2, 0) and v2 = (3, 2) .

Find a basis b1, b2 for M and α1, α2 ∈ Z with α1|α2 such that M ′ =
〈α1b1, α2b2〉Z.

ii) Let M be Z3 and M ′ ⊆M the submodule generated by

v1 = (4, 54, 0), v2 = (2, 0, 12), and v3 = (0, 24,−12) .

Find a basis b1, b2, b3 for M and α1, α2, α3 ∈ Z with α1|α2|α3 such that
M ′ = 〈α1b1, α2b2, α3b3〉Z.

Exercise 3. Let R be a PID and let A ∈ Mn×n(R) be a square matrix with
coefficients in R. Show that there exist α1, . . . , αn ∈ R with α1| . . . |αn and
invertible matrices S, T ∈ GLn(R) such that

α1 0 . . . 0
0 α2 . . . 0
...

...
...

0 0 . . . αn

 = SAT .

The diagonal matrix on the left is called the Smith normal form of A and the
elements αi ∈ R are called its invariant factors.

Hint: View A as a linear map Rn → Rn =: M , and denote its image by M ′.
Use the elementary divisor theorem to find a basis B = (b1, . . . , bn) of M and
α1, . . . , αq ∈ R with α1| . . . |αq such that M ′ is generated by the αibi, i = 1, . . . , q.
Set αi = 0 for i = q + 1, . . . , n.

Show that Rn ∼= ker(A) ⊕M ′, and that ker(A) is a free R-module of rank
s := n− q. Conclude by assembling everything into a commutative diagram

Rn //

∼=
��

M ′ //

∼=
��

M

∼=
��

Rq+s // Rq // Rn



where the map Rq+s → Rn in the lower row is given, with respect to the standard
bases, by a map of the desired form. Define the matrices S and T using the outer
column isomorphisms.

Exercise 4. Let k be a field.

i) Let g(T ) = T d + ad−1T
d−1 + · · · + a0 ∈ k[T ] be a monic polynomial with

coefficients in k. Denote by V the k-vector space k[T ]/(g). Consider the
endomorphism

φ : V → V

defined by φ(f) = fT . Give the matrix of Md×d(k) corresponding to the
endomorphism φ with respect to the basis 1, T, . . . , T d−1.

ii) Let V be a finite dimensional k-vector space and φ : V → V an endomor-
phism. Consider the ring homomorphism

k[T ]→ End(V )

that maps T to φ. It endows V with a structure of k[T ]-module. Show that
there exists a k-basis of V so that the matrix of φ with respect to this basis
is a block diagonal matrix all of whose blocks are of the form

0 0 0 . . . 0 ∗
1 0 0 . . . 0 ∗
0 1 0 . . . 0 ∗
...

...
...

...
...

0 0 0 . . . 0 ∗
0 0 0 . . . 1 ∗


.

Hint: Apply the structure theorem of finitely generated modules over PIDs
to the k[T ]-module V .
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Exercise 1. Let K be a field and G a finite subgroup of K×. Show that G is
cyclic.

Hint: Use that there exists z ∈ G such that ord(x)|ord(z) for every x ∈ G.

Exercise 2. Let Fq be the finite field of cardinality q. Show that the set

{(x, y, z) ∈ F3
q |x2 = yz}

has cardinality q2.

Exercise 3. Let p be a prime and a1, . . . , a2p−1 ∈ Z. Show that there exists a
subset I ⊆ {1, . . . , 2p− 1} of cardinality |I| = p such that∑

i∈I
ai ≡ 0 (mod p) .

Hint: Consider the polynomials
∑2p−1

i=1 xp−1
i ,

∑2p−1
i=1 aix

p−1
i ∈ Fp[x1, . . . , x2p−1].

Exercise 4. Show that the ring R = Q[X,Y ]/(Y 2 − X3) is a domain. Show
that there exists an element in Frac(R) which is integral over R, but not con-
tained in R.

Hint: Identify R with a subring of Q[T ] by giving a ring homomorphism Q[X,Y ]→
Q[T ] with kernel (Y 2 −X3).
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Exercise 1. Let A be an integrally closed domain and let K be its fraction
field.

i) Let L/K be a finite extension and let B be the integral closure of A in L.
Show that for every x ∈ L, there exists b ∈ B and a ∈ A such that x = b/a.

ii) Let f, g ∈ K[T ] be monic polynomials such that f · g ∈ A[T ]. Show that
f, g ∈ A[T ].

Exercise 2. Let Fq denote the finite field of cardinality q. Consider the norm
map

NFqn/Fq
: Fqn → Fq .

Fix a basis B of the n-dimensional Fq-vector space Fqn . Show that there exists
a homogenous polynomial N(y1, . . . , yn) ∈ Fq[y1, . . . , yn] of degree n and with
no non-trivial zero such that if (x1, . . . , xn) are the coordinates of x ∈ Fqn in
the basis B, then

NFqn/Fq
(x) = N(x1, . . . , xn) .

Exercise 3. Let L/K be a finite separable extension of degree n = [L : K].
By the primitive element theorem, L = K(x) for some x ∈ L. Let f denote the
minimal polynomial of x. Show that

D(1, x, . . . , xn) = (−1)
n(n−1)

2

∏
i 6=j

(xi − xj) = (−1)
n(n−1)

2 NL/K(f ′(x)) .

Compute the above expression in terms of a, b ∈ K in the case that f(T ) =
Tn + aT + b for n = 2, 3.

Hint: For n = 3, the result is −27b2 − 4a3.

Exercise 4.

i) Let K = Q(α), where α3 − α− 1 = 0. Show that the ring of integers of K
is OK = Z[α].

ii) Let K = Q(α), where α3 − d = 0 with d 6= ±1 a squarefree integer. Show
that [K : Q] = 3 and that OK ⊆ 1

3Z[α].

Hint: Let θ = u+αv+wα2 with u, v, w ∈ Q be an element of OK . Compute

TrK/Q(θ) = 3u ∈ Z, TrK/Q(αθ) = 3wd ∈ Z, TrK/Q(α2θ) = 3vd ∈ Z,



NK/Q(θ) = u3 + v3d+ w3d2 − 3uvwd ∈ Z .

By considering 33 ·d ·NK/Q(θ) and 33 ·NK/Q(θ) deduce that 3u, 3v, 3w ∈ Z.

iii) Let K = Q(α), where α3 − 17 = 0. Show that the ring of integers of K is

OK = Z
[
1, α,

α2 − α+ 1

3

]
.

Hint: Combining Exercise 3 and Exercise 4 ii), first note that the discrim-
inant of K is either −33 · 172 or −3 · 172. Show that β := (α2 − α + 1)/3
satisfies β3 − β2 + 6β − 12 = 0. For this you may use that β = 6/(α+ 1).
Compute D(1, α, β) from D(1, α, α2) to deduce that the discriminant of K
is −3 · 172.
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Exercise 1. Let p be an odd prime and ζp a primitive pth root of unity in an
algebraic closure Q of Q.

i) Show that the discriminant D(1, ζp, . . . , ζ
p−2
p ) of the pth cyclotomic field

Q(ζp) is (−1)
p−1
2 pp−2.

Hint: Use Exercise 3 of Problem Set 4 and note that (ζp − 1)(Φ′p(ζp)) =
pζ−1p , where Φp denotes the pth cyclotomic polynomial.

ii) Show that

√
(−1)

p−1
2 p is an element of the ring of integers of Q(ζp). Which

is its expression with respect to the basis 1, ζp, . . . , ζ
p−2
p ?

Hint: You have already seen this in a different context.

iii) Deduce that Q(ζp) has a unique quadratic subfield, which is real if p ≡ 1
(mod 4) and imaginary if p ≡ 3 (mod 4).

Exercise 2. Let K be a number field of degree n. If α1, . . . , αn ∈ OK are
algebraic integers of K, show that

D(α1, . . . , αn) ≡ 0 (mod 4) or D(α1, . . . , αn) ≡ 1 (mod 4) .

Hint: Let An denote the alternating group, that is, the subgroup of the sym-
metric group Sn made of permutations of positive sign. Let σ1, . . . , σn be the
embeddings of K into Q. Show that if we set

P =
∑
π∈An

n∏
i=1

σi(απ(i)), N =
∑

π∈Sn\An

n∏
i=1

σi(απ(i)),

then PN,P + N ∈ Z. Conclude by expressing the discriminant in terms of P
and N in a suitable way.

Exercise 3.

i) Let p 6= q be primes. Show that the following are equivalent:

a) There exists a ∈ Z such that Φq(a) ≡ 0 (mod p).

b) p ≡ 1 (mod q).

ii) Let q be a prime number. Prove that there exist infinitely many primes p
such that

p ≡ 1 (mod q) .



Hint: Suppose that there exist only finitely many primes p with p ≡ 1 (mod q)
and let Π denote their product. Show that Φq(qΠ) > 1, that any prime dividing
Φq(qΠ) is ≡ 1 (mod q), and that this is a contradiction with the initial claim.

Exercise 4.

i) Give an example of a ring A, a finitely generated A-module M , and a
submodule N ⊆M which is not finitely generated.

ii) Give an example of a noetherian ring B and a subring A ⊆ B which is not
a noetherian ring.

iii) Let A be a ring, M an A-module, M ′ ⊆M a submodule, and M ′′ = M/M ′.
Show that M is noetherian if and only if so are M ′ and M ′′.
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Exercise 1. Let R be a Dedekind domain. Show that R is a UFD if and only
if R is a PID.

Exercise 2. Show that a Dedekind domain R with only finitely many non-zero
prime ideals p1, . . . , pr is a PID.

Hint: For i = 1, . . . , r, consider πi ∈ pi \ p2i . Use the Chinese Remainder
Theorem to find zi ∈ R such that zi ≡ πi (mod pi) and zi ≡ 1 (mod pj) for
every j 6= i. Determine the factorization into prime ideals of (zi).

Exercise 3.

i) Show that Z[
√
−5] is not a UFD.

ii) Give the factorization into prime ideals of (6) ⊆ Z[
√
−5].

Exercise 4. Let K = Q(α), where α = 3
√

2. Let R = OK denote the ring of
integers of K.

i) Show that α and α+ 1 are prime elements of R.

ii) Determine the factorization into prime ideals of (2) ⊆ R and (3) ⊆ R.

Hint: Note that 3 = (α− 1)(α+ 1)3.
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Exercise 1. Let K be a number field and let 2r2 be the number of complex
non-real embeddings of K. If x1, . . . , xn is a Q-basis of K, show that

sign(D(x1, . . . , xn)) = (−1)r2 .

Hint: Let σ1, . . . , σn denote the embeddings of K into C. What is the complex
conjugate of det(σj(xi))?

Exercise 2. (Minkowski’s theorem on linear forms). Let

λi(x1, . . . , xn) =

n∑
j=1

aijxj , i = 1, . . . , n,

be real linear forms such that det(aij) 6= 0, and let c1, . . . , cn be positive
real numbers such that c1 · · · cn > |det(aij)|. Show that there exist integers
m1, . . . ,mn ∈ Z such that

|λi(m1, . . . ,mn)| < ci, i = 1, . . . , n.

Exercise 3. Show that
∑

j≥1 10−(j!) ∈ R is a transcendental number.

Hint: Apply Liouville’s theorem.

Exercise 4. Let K = Q(
√
−23) and let OK denote its ring of integers.

i) Determine prime ideals p, p ⊂ OK such that pp = (2) ⊂ OK . Deduce that
p is not a principal ideal.

ii) Show that p3 is a principal ideal.

Hint: Consider the prime ideal factorization of
(

3+
√
−23
2

)
⊂ OK .
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Exercise 1.

i) Show that the quadratic fields

Q(
√

2), Q(
√

3), Q(
√

5), Q(
√

13), Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7)

have class number 1.

Hint: Note that if K is a quadratic field, then the Minkowski bound is√
|disc(K)|/2 if K is real and 2

√
|disc(K)|/π if K is imaginary.

ii) Compute the class number of K = Q(α), where α3 + α+ 1 = 0.

Exercise 2. Let K be a quadratic field and let OK be its ring of integers. Let
α ∈ OK be such thatOK = Z[α] and let q(x) denote its minimal polynomial. Let
q(x) ∈ Fp[x] be the reduction of q(x) modulo p. Show that the decomposition
of the ideal generated by a rational prime p in OK , denoted pOK , is as follows:

i) If q(x) is the product of two distinct linear polynomials in Fp[x], then
pOK = p1p2, where p1 and p2 are distinct prime ideals of OK .

ii) If q(x) is irreducible over Fp[x], then pOK is a prime ideal of OK .

iii) If q(x) is the square of a linear polynomial in Fp[x], then pOK = p2, where
p is a prime ideal of OK .

Hint: Note that OK/pOK ' (Z[x]/q(x))/(p) ' Fp[x]/q(x).

Exercise 3.

i) Show that K = Q(
√
−5) has class group isomorphic to Z/2Z.

Hint: Show that the class group is generated by the prime ideal dividing
2OK and that it is non principal.

ii) Show that K = Q(
√
−23) has class group isomorphic to Z/3Z.

Hint: Show that the class group is generated by the prime ideals dividing
2OK and 3OK , show that they are non principal, and find relations among

them by looking at the prime ideal decomposition of
(

3+
√
−23
2

)
OK and(

1+
√
−23
2

)
OK .

Exercise 4. Show that, for every number field K, there is a finite extension
L/K such that, for every ideal a of OK , the ideal aOL of OL is principal.

Hint: Use the finiteness of the class group.
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Exercise 1.

i) Show that K = Q(
√
−14) has class group isomorphic to Z/4Z.

Hint: Show that the class group is generated by the prime ideals dividing
2OK and 3OK , show that they are non principal, and find relations among
them by looking at the prime ideal decomposition of (2 +

√
−14)OK .

ii) Show that K = Q(
√
−30) has class group isomorphic to Z/2Z× Z/2Z.

Hint: Show that the class group is generated by the prime ideals dividing
2OK , 3OK , and 5OK , show that they are non principal, and find relations
among them by finding a principal ideal of norm 30.

iii) Show that K = Q(
√
−26) has class group isomorphic to Z/6Z.

Exercise 2. Show that if K is a quadratic imaginary field, then

i) µK = {1,−1, i,−i} if K = Q(i), where i =
√
−1.

ii) µK = {ωj | 0 ≤ j ≤ 5} if K = Q(ω), where ω = 1+
√
−3

2 .

iii) µK = {±1}, otherwise.

Exercise 3. Let K = Q(
√
a,
√
b) be a number field of degree 4. Prove that the

cardinality of µK is 2, 4, 6, 8, or 12. Give examples of K showing that all these
values can occur.

Hint: Use that if ζn denotes a primitive n-th root of unity, then [Q(ζn) : Q] =
ϕ(n), where ϕ(n) := #(Z/nZ)× denotes the Euler ϕ-function. Note that by the
Chinese Remainder Theorem, we have that ϕ(nm) = ϕ(n)ϕ(m) if (n,m) = 1.
From the easy fact that ϕ(pi) = pi−1(p− 1) if p is a prime and i ≥ 1, one has

ϕ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product runs over primes p dividing n.

Exercise 4. Let p be an odd prime, ζp a primitive pth root of unity, and
OK = Z[ζp] the ring of integers of K = Q(ζp).

i) Show that if k is an integer such that 0 ≤ k ≤ p− 1, then

ξ = 1 + ζp + ζ2p + · · ·+ ζk−1p ∈ O×K .

Hint: Recall that |NK/Q(1 − ζp)| = |NK/Q(1 − ζkp )| = p and note that

ξ(1− ζp) = 1− ζkp .



ii) Show that the roots of unity of K are of the form ±ζkp for 0 ≤ k ≤ p− 1.

Hint: Let G ⊆ K× be the subgroup generated by the roots of unity of K.
Thus G = 〈ζn〉 for a certain primitive n-th root of unity ζn. Note that 2p|n
and ϕ(n) = ϕ(2p).

iii) Take an embedding K ⊆ C. Show that any unit u ∈ O×K can be written as
u = ζipv, where 0 ≤ i ≤ p− 1 and v ∈ R ∩ O×K .

Hint: Let c denote complex conjugation and note that it restricts to an
automorphism of K. Show that u/c(u) is a root of unity in K by noting
that the absolute value of all of its Galois conjugates is 1. Note that p =
(1 − ζp) = (1 − c(ζp)) ⊆ OK by i), and this is a prime ideal by the hint
in i). Rule out the possibility u/c(u) = −ζjp, for some 0 ≤ j ≤ p − 1, by
finding a contradiction by reducing modulo p. Deduce the statement from
u/c(u) = ζjp.

iv) Show that the fundamental unit of Q(
√

5) is 1+
√
5

2 .

v) Let now p = 5, ζ = ζ5. Show that

O×K = {±ζi(1 + ζ)j | 0 ≤ i ≤ 4, j ∈ Z}.

Hint: Use that −ζ2(1 + ζ) = (1 +
√

5)/2 (see Ex.1.ii) of PS5, for example)
and also take iii) and iv) into consideration.
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Dr. F. Fité
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Exercise 1. Let A be a Dedekind ring and let K be its fraction field. Let L/K
be a finite extension and let B be the integral closure of A in L. Given an ideal
b ⊆ B, let NL/K(b) ⊆ A be the ideal generated by all the elements NL/K(b),
where b ∈ b. The ideal NL/K(b) is called the relative norm of b.

i) Show that NL/K(bB) = NL/K(b)A for all b ∈ B.

ii) Let S ⊆ A be a multiplicative set. If a ⊆ A (resp. b ⊆ B) is an ideal,
denote by aS (resp. bS) the ideal in S−1A (resp. S−1B) generated by a
(resp. b). Prove that NL/K(b)S = NL/K(bS).

iii) Show that NL/K(b1b2) = NL/K(b1)NL/K(b2) for all ideals b1, b2 ∈ B.

Hint: Check the equality of ideals locally. For a maximal ideal p ⊆ A, write
S = A \ p. Note that AS is a DVR and that BS is a PID by Ex. 2 of PS6.

Exercise 2. Let A be a DVR with uniformizer π and let K be its fraction field.
Let L/K be a finite Galois extension and let B be the integral closure of A in
L. Then B is a PID with only finitely many prime ideals (Π1), . . . , (Πq), where
Πi ∈ B are such that

π = u ·Πe1
1 · · ·Πeq

q ,

for some u ∈ A× and some integers ei ≥ 1. Show that Gal(L/K) acts tran-
sitively on the set {(Π1), . . . , (Πq)} and deduce that e1 = · · · = eq and that
NL/K(Π1) = · · · = NL/K(Πq).

Exercise 3. Let A be a Dedekind ring and let K be its fraction field. Let L/K
be a finite Galois extension and let B be the integral closure of A in L. Let P
be a nonzero prime ideal of B and p = P ∩A. Prove that

NL/K(P) = pf ,

where f is the residue degree of P over K.

Exercise 4. Let K be a number field. For an ideal a ⊆ OK , recall that we
have defined the absolute norm

N (a) = #OK/a .

Show that there is an equality NK/Q(a) = (N (a)) of ideals of Z.
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Exercise 1. Show that L = Q(ζ23) is not a PID.

Hint: By Ex. 1 of PS5, K = Q(
√
−23) is a subfield of L. By Ex. 4 of PS7,

2OK = pp, where p and p are two distinct non principal prime ideals of OK

such that p3 and p3 are principal. Let P ⊆ OL be a prime ideal lying above
p ⊆ OK . Show that P is non principal. For this, argue that NL/K(P) cannot
be a principal ideal of OK by using Ex. 3 of PS10, and conclude by applying
Ex. 1 of PS10.

Exercise 2.

i) Let p be a prime number, and let K/Q be a number field such that [K :
Q] > p. Show that if (p) splits completely in OK , then OK can not be of
the form OK = Z[α] for any α ∈ OK .

ii) Let K = Q(α), where α3 + α2 − 2α+ 8 = 0. Show that β = (α+ α2)/2 =
(α− 4)/α is in OK , that 2OK = p1p2p3 with

p1 = (2, 1 + α), p2 = (2, β), p3 = (2, 1 + α+ β),

and that the pi are primes pairwise coprime (and in particular distinct).
Deduce that OK 6= Z[α] for any α ∈ OK .

Hint: Note that first β3 − 2β2 + 3β − 10 = 0. Deduce the required equality
of ideals from the formulas

⊇: (1 + α)β(1 + α+ β) = −2(2a+ 7)

⊆: −2 · 2 · 2− (1 + α)β(1 + α+ β)− 2 · 2 · (1 + α) = 2

Note that checking coprimality of the pi amounts to showing that (2, 1 +
α, β) = OK . For this note that (1 + α)(β − 1)− β = 5.

Exercise 3.

i) Show that for every integer d < −11, the ring of integers OK of K =
Q(
√
−d) is not a euclidean ring.

ii) Show that the ring of integers of Q(
√
−163) is a PID but not a euclidean

ring.

Hint: You may show that Q(
√
−163) has class number 1, using the same

method as in Ex. 3 of PS8 or Ex. 1 of PS9.



Exercise 4. Let R be an artinian ring. Denote by M1, . . . ,Mn its maximal
ideals. Prove that the natural homomorphism R →

∏n
i=1RMi

is an isomor-
phism.

Hint: You may use the fact without proof that an artinian ring is noetherian.
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Exercise 1. Show that if A is a local noetherian ring with maximal ideal m
generated by a non-nilpotent element π, then A is a DVR.

Hint: You may use without proof1 that ∩∞i=0m
i = 0.

Exercise 2. Let R be a discrete valuation ring with maximal ideal m = (π)
and residue class field k = R/m. Let f ∈ R[x] be an Eisenstein polynomial2 and
R′ = R[x]/(f). Let K and K ′ be the fraction fields of R and R′, respectively.
Prove that R′ is a discrete valuation ring, that R′ is equal to the integral closure
of R in K ′ and that M is totally ramified in R′, that is, that the ramification
index of the maximal ideal M′ of R′ is [K ′ : K].

Hint: Use Exercise 1.

Exercise 3. Let K ⊆ K ′ ⊆ K ′′ be number fields. Let P′′ be a maximal ideal
of OK′′ and P′ = P′′ ∩ OK′ . Prove that

fK′′/K(P′′) = fK′′/K′(P′′)·fK′/K(P′), eK′′/K(P′′) = eK′′/K′(P′′)·eK′/K(P′).

Exercise 4. Let α be a root of x3 − 13x + 7 and L the normal closure of
K = Q(α). Show that:

i) OK = Z[α].

ii) 5OK = p1p
2
2 for certain prime ideals p1, p2 of OK .

iii) p1OL = P2
1 and p2OL = P2P3 for certain prime ideals P1,P2,P3 of OL.

iv) K is the subfield of L fixed by the decomposition group of P1.

Hint: 1493 is a prime number.

1In fact, for every ideal a in a noetherian ring, the intersection ∩∞
i=0a

i is = 0, Atiyah-
McDonald, An introduction to commutative algebra, Corollary 10.18. For a simpler proof in
the situation at hand, see Serre, Local fields, Springer, Proposition 2, Chapter 1.

2I.e., the leading coefficient is 1, all other coefficients are in m, and the constant coefficient
is not in m2. This implies that f is irreducible.
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Exercise 1. Let L = Q(
√

5,
√
−1).

i) Show that the ring of integers of L is Z
[√
−1, 1+

√
5

2

]
. Compute the absolute

discriminant of L.

ii) Show that the only primes that ramify in L are 2 and 5, and that the
corresponding ramification indices are both 2.

iii) Compute the Frobenius automorphism
(

L/Q
p

)
for every prime p distinct

from 2 and 5. Determine the inertia and decomposition groups of 2 and 5.

iv) Show that no prime ideal of Q(
√
−5) ramifies in L.

Exercise 2. Let p be a prime and n > 2 an integer such that p - n. Prove that
(p) splits completely in Q(ζn) if and only if p ≡ 1 (mod n).

Exercise 3. .

i) Let k be a finite field and | · | : k → R≥0 an absolute value. Prove that
|x| = 1 for every x ∈ k×.

ii) Let k be a field of characteristic p. Show that there does not exist an
archimedean absolute value on k.

iii) Give two non-equivalent archimedean absolute values on Q(
√

2).

Exercise 4. Let k be a field with a non-archimedean absolute value | · |. For
x, y ∈ k, define d(x, y) = |x− y|.

i) Show that if |x| 6= |y|, then |x+ y| = max{|x|, |y|}.

ii) For a ∈ k and r ∈ R>0, let D(a, r) = {x ∈ k | d(x, a) ≤ r} be the “closed”
disc of center a and radius r. Show that D(a, r) is open and closed in k.

iii) Show that two discs D and D′ are either disjoint or concentric (that is, there
exists a ∈ k and r, r′ ∈ R>0 such that D = D(a, r) and D′ = D(a, r′)).

iv) Show that every triangle is isosceles: if for x, y, z ∈ k one has d(x, z) <
d(y, z), then d(y, z) = d(x, y).


