Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 1

Delivery: 27/10/2015
The goal of this Problem Set is to give two proofs (a geometric one and an algebraic one) of the following result ${ }^{1}$:

Characterization of the Pythagorean Triplets (CPT). If x, y, z are positive integers satisfying

$$
x^{2}+y^{2}=z^{2}
$$

in which case (x, y, z) is called a Pythagorean triple, then there exists a positive integer d and two relatively prime integers u and v such that

$$
x=d\left(u^{2}-v^{2}\right), \quad y=2 d u v, \quad z=d\left(u^{2}+v^{2}\right),
$$

up to permutation of x and y.
Geometric proof. Consider, on the affine $X Y$-plane, the circle

$$
C: X^{2}+Y^{2}=1
$$

and the line

$$
L_{m}: Y+m(X+1)=0,
$$

for $m \in \mathbb{Q}$. Let $P_{m}=\left(A_{m}, B_{m}\right)$ denote the intersecting point of L_{m} and C distinct from $(-1,0)$.

Exercise 1A. Show that for every $P=(A, B) \in C$ with $A, B \in \mathbb{Q}$ and distinct from $(-1,0)$, there exists $m \in \mathbb{Q}$ such that $(A, B)=\left(A_{m}, B_{m}\right)$.

Exercise 1B. Compute $\left(A_{m}, B_{m}\right)$ in terms of m.
Exercise 1C. Deduce (CPT) from the previous two exercises.
Algebraic proof. We will consider the field of rational Gauss numbers

$$
\mathbb{Q}(i)=\{a+i b \mid a, b \in \mathbb{Q}\},
$$

where $i=\sqrt{-1}$. We define the norm of a rational Gauss number $\alpha=a+i b$ as

$$
N(\alpha)=\alpha \bar{\alpha}=(a+i b)(a-i b)=a^{2}+b^{2} .
$$

Exercise 2A. Show that for $\alpha \in \mathbb{Q}(i)$:

$$
N(\alpha)=1 \quad \text { if and only if } \quad \alpha=\frac{\beta}{\bar{\beta}} \text { for some nonzero } \beta \in \mathbb{Q}(i)
$$

(Hint: $\alpha(1+\bar{\alpha})=\alpha+\alpha \bar{\alpha})$.
Exercise 2B. If (x, y, z) is Pythagorean a triple, define $\alpha=\frac{x}{z}+i \frac{y}{z}$. Deduce (CPT) by applying the previous exercise to α.

[^0]Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 2

Delivery: 3/11/2015
Exercise 1. Let \mathbb{F} denote a finite field. Show that for every $a \in \mathbb{F}$, there exist $x, y \in \mathbb{F}$ such that $a=x^{2}+y^{2}$.

Hint: Compute the cardinality of the sets $\left\{x^{2} \mid x \in \mathbb{F}\right\}$ and $\left\{a-y^{2} \mid y \in \mathbb{F}\right\}$. Distinguish whether \mathbb{F} has characteristic 2 or $\neq 2$.

Exercise 2.

i) Let M be \mathbb{Z}^{2} and $M^{\prime} \subseteq M$ the submodule generated by

$$
v_{1}=(2,0) \quad \text { and } \quad v_{2}=(3,2) .
$$

Find a basis b_{1}, b_{2} for M and $\alpha_{1}, \alpha_{2} \in \mathbb{Z}$ with $\alpha_{1} \mid \alpha_{2}$ such that $M^{\prime}=$ $\left\langle\alpha_{1} b_{1}, \alpha_{2} b_{2}\right\rangle_{\mathbb{Z}}$.
ii) Let M be \mathbb{Z}^{3} and $M^{\prime} \subseteq M$ the submodule generated by

$$
v_{1}=(4,54,0), \quad v_{2}=(2,0,12), \quad \text { and } \quad v_{3}=(0,24,-12) .
$$

Find a basis b_{1}, b_{2}, b_{3} for M and $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{Z}$ with $\alpha_{1}\left|\alpha_{2}\right| \alpha_{3}$ such that $M^{\prime}=\left\langle\alpha_{1} b_{1}, \alpha_{2} b_{2}, \alpha_{3} b_{3}\right\rangle_{\mathbb{Z}}$.
Exercise 3. Let R be a PID and let $A \in \mathrm{M}_{n \times n}(R)$ be a square matrix with coefficients in R. Show that there exist $\alpha_{1}, \ldots, \alpha_{n} \in R$ with $\alpha_{1}|\ldots| \alpha_{n}$ and invertible matrices $S, T \in \mathrm{GL}_{n}(R)$ such that

$$
\left(\begin{array}{cccc}
\alpha_{1} & 0 & \ldots & 0 \\
0 & \alpha_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \alpha_{n}
\end{array}\right)=S A T .
$$

The diagonal matrix on the left is called the Smith normal form of A and the elements $\alpha_{i} \in R$ are called its invariant factors.

Hint: View A as a linear map $R^{n} \rightarrow R^{n}=: M$, and denote its image by M^{\prime}. Use the elementary divisor theorem to find a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of M and $\alpha_{1}, \ldots, \alpha_{q} \in R$ with $\alpha_{1}|\ldots| \alpha_{q}$ such that M^{\prime} is generated by the $\alpha_{i} b_{i}, i=1, \ldots, q$. Set $\alpha_{i}=0$ for $i=q+1, \ldots, n$.

Show that $R^{n} \cong \operatorname{ker}(A) \oplus M^{\prime}$, and that $\operatorname{ker}(A)$ is a free R-module of rank $s:=n-q$. Conclude by assembling everything into a commutative diagram

where the map $R^{q+s} \rightarrow R^{n}$ in the lower row is given, with respect to the standard bases, by a map of the desired form. Define the matrices S and T using the outer column isomorphisms.

Exercise 4. Let k be a field.
i) Let $g(T)=T^{d}+a_{d-1} T^{d-1}+\cdots+a_{0} \in k[T]$ be a monic polynomial with coefficients in k. Denote by V the k-vector space $k[T] /(g)$. Consider the endomorphism

$$
\phi: V \rightarrow V
$$

defined by $\phi(f)=f T$. Give the matrix of $\mathrm{M}_{d \times d}(k)$ corresponding to the endomorphism ϕ with respect to the basis $1, T, \ldots, T^{d-1}$.
ii) Let V be a finite dimensional k-vector space and $\phi: V \rightarrow V$ an endomorphism. Consider the ring homomorphism

$$
k[T] \rightarrow \operatorname{End}(V)
$$

that maps T to ϕ. It endows V with a structure of $k[T]$-module. Show that there exists a k-basis of V so that the matrix of ϕ with respect to this basis is a block diagonal matrix all of whose blocks are of the form

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & * \\
1 & 0 & 0 & \ldots & 0 & * \\
0 & 1 & 0 & \ldots & 0 & * \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & * \\
0 & 0 & 0 & \ldots & 1 & *
\end{array}\right)
$$

Hint: Apply the structure theorem of finitely generated modules over PIDs to the $k[T]$-module V.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 3

Delivery: 10/11/2015
Exercise 1. Let K be a field and G a finite subgroup of K^{\times}. Show that G is cyclic.

Hint: Use that there exists $z \in G$ such that $\operatorname{ord}(x) \mid \operatorname{ord}(z)$ for every $x \in G$.
Exercise 2. Let \mathbb{F}_{q} be the finite field of cardinality q. Show that the set

$$
\left\{(x, y, z) \in \mathbb{F}_{q}^{3} \mid x^{2}=y z\right\}
$$

has cardinality q^{2}.
Exercise 3. Let p be a prime and $a_{1}, \ldots, a_{2 p-1} \in \mathbb{Z}$. Show that there exists a subset $I \subseteq\{1, \ldots, 2 p-1\}$ of cardinality $|I|=p$ such that

$$
\sum_{i \in I} a_{i} \equiv 0 \quad(\bmod p)
$$

Hint: Consider the polynomials $\sum_{i=1}^{2 p-1} x_{i}^{p-1}, \sum_{i=1}^{2 p-1} a_{i} x_{i}^{p-1} \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{2 p-1}\right]$.

Exercise 4. Show that the ring $R=\mathbb{Q}[X, Y] /\left(Y^{2}-X^{3}\right)$ is a domain. Show that there exists an element in $\operatorname{Frac}(R)$ which is integral over R, but not contained in R.

Hint: Identify R with a subring of $\mathbb{Q}[T]$ by giving a ring homomorphism $\mathbb{Q}[X, Y] \rightarrow$ $\mathbb{Q}[T]$ with kernel $\left(Y^{2}-X^{3}\right)$.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 4

Delivery: 17/11/2015
Exercise 1. Let A be an integrally closed domain and let K be its fraction field.
i) Let L / K be a finite extension and let B be the integral closure of A in L. Show that for every $x \in L$, there exists $b \in B$ and $a \in A$ such that $x=b / a$.
ii) Let $f, g \in K[T]$ be monic polynomials such that $f \cdot g \in A[T]$. Show that $f, g \in A[T]$.

Exercise 2. Let \mathbb{F}_{q} denote the finite field of cardinality q. Consider the norm map

$$
\mathrm{N}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q}
$$

Fix a basis B of the n-dimensional \mathbb{F}_{q}-vector space $\mathbb{F}_{q^{n}}$. Show that there exists a homogenous polynomial $N\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}\left[y_{1}, \ldots, y_{n}\right]$ of degree n and with no non-trivial zero such that if $\left(x_{1}, \ldots, x_{n}\right)$ are the coordinates of $x \in \mathbb{F}_{q^{n}}$ in the basis B, then

$$
\mathrm{N}_{\mathbb{F}_{q^{n} / \mathbb{F}_{q}}(x)=N\left(x_{1}, \ldots, x_{n}\right) . . . ~ . ~}
$$

Exercise 3. Let L / K be a finite separable extension of degree $n=[L: K]$. By the primitive element theorem, $L=K(x)$ for some $x \in L$. Let f denote the minimal polynomial of x. Show that

$$
D\left(1, x, \ldots, x^{n}\right)=(-1)^{\frac{n(n-1)}{2}} \prod_{i \neq j}\left(x_{i}-x_{j}\right)=(-1)^{\frac{n(n-1)}{2}} N_{L / K}\left(f^{\prime}(x)\right)
$$

Compute the above expression in terms of $a, b \in K$ in the case that $f(T)=$ $T^{n}+a T+b$ for $n=2,3$.

Hint: For $n=3$, the result is $-27 b^{2}-4 a^{3}$.

Exercise 4.

i) Let $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha-1=0$. Show that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
ii) Let $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}-d=0$ with $d \neq \pm 1$ a squarefree integer. Show that $[K: \mathbb{Q}]=3$ and that $\mathcal{O}_{K} \subseteq \frac{1}{3} \mathbb{Z}[\alpha]$.

Hint: Let $\theta=u+\alpha v+w \alpha^{2}$ with $u, v, w \in \mathbb{Q}$ be an element of \mathcal{O}_{K}. Compute

$$
\operatorname{Tr}_{K / \mathbb{Q}}(\theta)=3 u \in \mathbb{Z}, \quad \operatorname{Tr}_{K / \mathbb{Q}}(\alpha \theta)=3 w d \in \mathbb{Z}, \quad \operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{2} \theta\right)=3 v d \in \mathbb{Z}
$$

$$
\mathrm{N}_{K / \mathbb{Q}}(\theta)=u^{3}+v^{3} d+w^{3} d^{2}-3 u v w d \in \mathbb{Z}
$$

By considering $3^{3} \cdot d \cdot \mathrm{~N}_{K / \mathbb{Q}}(\theta)$ and $3^{3} \cdot \mathrm{~N}_{K / \mathbb{Q}}(\theta)$ deduce that $3 u, 3 v, 3 w \in \mathbb{Z}$.
iii) Let $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}-17=0$. Show that the ring of integers of K is

$$
\mathcal{O}_{K}=\mathbb{Z}\left[1, \alpha, \frac{\alpha^{2}-\alpha+1}{3}\right] .
$$

Hint: Combining Exercise 3 and Exercise 4 ii), first note that the discriminant of K is either $-3^{3} \cdot 17^{2}$ or $-3 \cdot 17^{2}$. Show that $\beta:=\left(\alpha^{2}-\alpha+1\right) / 3$ satisfies $\beta^{3}-\beta^{2}+6 \beta-12=0$. For this you may use that $\beta=6 /(\alpha+1)$. Compute $D(1, \alpha, \beta)$ from $D\left(1, \alpha, \alpha^{2}\right)$ to deduce that the discriminant of K is $-3 \cdot 17^{2}$.

Prof. Dr. U. Görtz
Dr. F. Fité
Wintersemester 2015/16

ALGEBRAIC NUMBER THEORY I

Problem Set 5

Delivery: 24/11/2015
Exercise 1. Let p be an odd prime and ζ_{p} a primitive p th root of unity in an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}.
i) Show that the discriminant $D\left(1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}\right)$ of the p th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ is $(-1)^{\frac{p-1}{2}} p^{p-2}$.
Hint: Use Exercise 3 of Problem Set 4 and note that $\left(\zeta_{p}-1\right)\left(\Phi_{p}^{\prime}\left(\zeta_{p}\right)\right)=$ $p \zeta_{p}^{-1}$, where Φ_{p} denotes the pth cyclotomic polynomial.
ii) Show that $\sqrt{(-1)^{\frac{p-1}{2}} p}$ is an element of the ring of integers of $\mathbb{Q}\left(\zeta_{p}\right)$. Which is its expression with respect to the basis $1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}$?
Hint: You have already seen this in a different context.
iii) Deduce that $\mathbb{Q}\left(\zeta_{p}\right)$ has a unique quadratic subfield, which is real if $p \equiv 1$ $(\bmod 4)$ and imaginary if $p \equiv 3(\bmod 4)$.

Exercise 2. Let K be a number field of degree n. If $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ are algebraic integers of K, show that

$$
D\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv 0 \quad(\bmod 4) \quad \text { or } \quad D\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv 1 \quad(\bmod 4)
$$

Hint: Let \mathfrak{A}_{n} denote the alternating group, that is, the subgroup of the symmetric group \mathfrak{S}_{n} made of permutations of positive sign. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K into $\overline{\mathbb{Q}}$. Show that if we set

$$
P=\sum_{\pi \in \mathfrak{A}_{n}} \prod_{i=1}^{n} \sigma_{i}\left(\alpha_{\pi(i)}\right), \quad N=\sum_{\pi \in \mathfrak{S}_{n} \backslash \mathfrak{A}_{n}} \prod_{i=1}^{n} \sigma_{i}\left(\alpha_{\pi(i)}\right),
$$

then $P N, P+N \in \mathbb{Z}$. Conclude by expressing the discriminant in terms of P and N in a suitable way.

Exercise 3.

i) Let $p \neq q$ be primes. Show that the following are equivalent:
a) There exists $a \in \mathbb{Z}$ such that $\Phi_{q}(a) \equiv 0(\bmod p)$.
b) $p \equiv 1(\bmod q)$.
ii) Let q be a prime number. Prove that there exist infinitely many primes p such that

$$
p \equiv 1 \quad(\bmod q) .
$$

Hint: Suppose that there exist only finitely many primes p with $p \equiv 1(\bmod q)$ and let Π denote their product. Show that $\Phi_{q}(q \Pi)>1$, that any prime dividing $\Phi_{q}(q \Pi)$ is $\equiv 1(\bmod q)$, and that this is a contradiction with the initial claim.

Exercise 4.

i) Give an example of a ring A, a finitely generated A-module M, and a submodule $N \subseteq M$ which is not finitely generated.
ii) Give an example of a noetherian ring B and a subring $A \subseteq B$ which is not a noetherian ring.
iii) Let A be a ring, M an A-module, $M^{\prime} \subseteq M$ a submodule, and $M^{\prime \prime}=M / M^{\prime}$. Show that M is noetherian if and only if so are M^{\prime} and $M^{\prime \prime}$.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 6

Delivery: 1/12/2015
Exercise 1. Let R be a Dedekind domain. Show that R is a UFD if and only if R is a PID.

Exercise 2. Show that a Dedekind domain R with only finitely many non-zero prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ is a PID.

Hint: For $i=1, \ldots, r$, consider $\pi_{i} \in \mathfrak{p}_{i} \backslash \mathfrak{p}_{i}^{2}$. Use the Chinese Remainder Theorem to find $z_{i} \in R$ such that $z_{i} \equiv \pi_{i}\left(\bmod \mathfrak{p}_{i}\right)$ and $z_{i} \equiv 1\left(\bmod \mathfrak{p}_{j}\right)$ for every $j \neq i$. Determine the factorization into prime ideals of $\left(z_{i}\right)$.

Exercise 3.

i) Show that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
ii) Give the factorization into prime ideals of $(6) \subseteq \mathbb{Z}[\sqrt{-5}]$.

Exercise 4. Let $K=\mathbb{Q}(\alpha)$, where $\alpha=\sqrt[3]{2}$. Let $R=\mathcal{O}_{K}$ denote the ring of integers of K.
i) Show that α and $\alpha+1$ are prime elements of R.
ii) Determine the factorization into prime ideals of (2) $\subseteq R$ and (3) $\subseteq R$.

Hint: Note that $3=(\alpha-1)(\alpha+1)^{3}$.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 7

Delivery: 8/12/2015
Exercise 1. Let K be a number field and let $2 r_{2}$ be the number of complex non-real embeddings of K. If x_{1}, \ldots, x_{n} is a \mathbb{Q}-basis of K, show that

$$
\operatorname{sign}\left(D\left(x_{1}, \ldots, x_{n}\right)\right)=(-1)^{r_{2}}
$$

Hint: Let $\sigma_{1}, \ldots, \sigma_{n}$ denote the embeddings of K into \mathbb{C}. What is the complex conjugate of $\operatorname{det}\left(\sigma_{j}\left(x_{i}\right)\right)$?

Exercise 2. (Minkowski's theorem on linear forms). Let

$$
\lambda_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

be real linear forms such that $\operatorname{det}\left(a_{i j}\right) \neq 0$, and let c_{1}, \ldots, c_{n} be positive real numbers such that $c_{1} \cdots c_{n}>\left|\operatorname{det}\left(a_{i j}\right)\right|$. Show that there exist integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ such that

$$
\left|\lambda_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i}, \quad i=1, \ldots, n .
$$

Exercise 3. Show that $\sum_{j \geq 1} 10^{-(j!)} \in \mathbb{R}$ is a transcendental number.
Hint: Apply Liouville's theorem.
Exercise 4. Let $K=\mathbb{Q}(\sqrt{-23})$ and let \mathcal{O}_{K} denote its ring of integers.
i) Determine prime ideals $\mathfrak{p}, \overline{\mathfrak{p}} \subset \mathcal{O}_{K}$ such that $\mathfrak{p p}=(2) \subset \mathcal{O}_{K}$. Deduce that \mathfrak{p} is not a principal ideal.
ii) Show that \mathfrak{p}^{3} is a principal ideal.

Hint: Consider the prime ideal factorization of $\left(\frac{3+\sqrt{-23}}{2}\right) \subset \mathcal{O}_{K}$.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 8

Delivery: 15/12/2015

Exercise 1.

i) Show that the quadratic fields

$$
\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{13}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-7})
$$

have class number 1.
Hint: Note that if K is a quadratic field, then the Minkowski bound is $\sqrt{|\operatorname{disc}(K)|} / 2$ if K is real and $2 \sqrt{|\operatorname{disc}(K)|} / \pi$ if K is imaginary.
ii) Compute the class number of $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}+\alpha+1=0$.

Exercise 2. Let K be a quadratic field and let \mathcal{O}_{K} be its ring of integers. Let $\alpha \in \mathcal{O}_{K}$ be such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ and let $q(x)$ denote its minimal polynomial. Let $\bar{q}(x) \in \mathbb{F}_{p}[x]$ be the reduction of $q(x)$ modulo p. Show that the decomposition of the ideal generated by a rational prime p in \mathcal{O}_{K}, denoted $p \mathcal{O}_{K}$, is as follows:
i) If $\bar{q}(x)$ is the product of two distinct linear polynomials in $\mathbb{F}_{p}[x]$, then $p \mathcal{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}$, where \mathfrak{p}_{1} and \mathfrak{p}_{2} are distinct prime ideals of \mathcal{O}_{K}.
ii) If $\bar{q}(x)$ is irreducible over $\mathbb{F}_{p}[x]$, then $p \mathcal{O}_{K}$ is a prime ideal of \mathcal{O}_{K}.
iii) If $\bar{q}(x)$ is the square of a linear polynomial in $\mathbb{F}_{p}[x]$, then $p \mathcal{O}_{K}=\mathfrak{p}^{2}$, where \mathfrak{p} is a prime ideal of \mathcal{O}_{K}.
Hint: Note that $\mathcal{O}_{K} / p \mathcal{O}_{K} \simeq(\mathbb{Z}[x] / q(x)) /(p) \simeq \mathbb{F}_{p}[x] / \bar{q}(x)$.

Exercise 3.

i) Show that $K=\mathbb{Q}(\sqrt{-5})$ has class group isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

Hint: Show that the class group is generated by the prime ideal dividing $2 \mathcal{O}_{K}$ and that it is non principal.
ii) Show that $K=\mathbb{Q}(\sqrt{-23})$ has class group isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$.

Hint: Show that the class group is generated by the prime ideals dividing $2 \mathcal{O}_{K}$ and $3 \mathcal{O}_{K}$, show that they are non principal, and find relations among them by looking at the prime ideal decomposition of $\left(\frac{3+\sqrt{-23}}{2}\right) \mathcal{O}_{K}$ and $\left(\frac{1+\sqrt{-23}}{2}\right) \mathcal{O}_{K}$.
Exercise 4. Show that, for every number field K, there is a finite extension L / K such that, for every ideal \mathfrak{a} of \mathcal{O}_{K}, the ideal $\mathfrak{a} \mathcal{O}_{L}$ of \mathcal{O}_{L} is principal.

Hint: Use the finiteness of the class group.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 9

Delivery: 12/1/2016

Exercise 1.

i) Show that $K=\mathbb{Q}(\sqrt{-14})$ has class group isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$.

Hint: Show that the class group is generated by the prime ideals dividing $2 \mathcal{O}_{K}$ and $3 \mathcal{O}_{K}$, show that they are non principal, and find relations among them by looking at the prime ideal decomposition of $(2+\sqrt{-14}) \mathcal{O}_{K}$.
ii) Show that $K=\mathbb{Q}(\sqrt{-30})$ has class group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Hint: Show that the class group is generated by the prime ideals dividing $2 \mathcal{O}_{K}, 3 \mathcal{O}_{K}$, and $5 \mathcal{O}_{K}$, show that they are non principal, and find relations among them by finding a principal ideal of norm 30.
iii) Show that $K=\mathbb{Q}(\sqrt{-26})$ has class group isomorphic to $\mathbb{Z} / 6 \mathbb{Z}$.

Exercise 2. Show that if K is a quadratic imaginary field, then
i) $\mu_{K}=\{1,-1, i,-i\}$ if $K=\mathbb{Q}(i)$, where $i=\sqrt{-1}$.
ii) $\mu_{K}=\left\{\omega^{j} \mid 0 \leq j \leq 5\right\}$ if $K=\mathbb{Q}(\omega)$, where $\omega=\frac{1+\sqrt{-3}}{2}$.
iii) $\mu_{K}=\{ \pm 1\}$, otherwise.

Exercise 3. Let $K=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be a number field of degree 4. Prove that the cardinality of μ_{K} is $2,4,6,8$, or 12 . Give examples of K showing that all these values can occur.

Hint: Use that if ζ_{n} denotes a primitive n-th root of unity, then $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=$ $\varphi(n)$, where $\varphi(n):=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$denotes the Euler φ-function. Note that by the Chinese Remainder Theorem, we have that $\varphi(n m)=\varphi(n) \varphi(m)$ if $(n, m)=1$. From the easy fact that $\varphi\left(p^{i}\right)=p^{i-1}(p-1)$ if p is a prime and $i \geq 1$, one has

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product runs over primes p dividing n.
Exercise 4. Let p be an odd prime, ζ_{p} a primitive p th root of unity, and $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$ the ring of integers of $K=\mathbb{Q}\left(\zeta_{p}\right)$.
i) Show that if k is an integer such that $0 \leq k \leq p-1$, then

$$
\xi=1+\zeta_{p}+\zeta_{p}^{2}+\cdots+\zeta_{p}^{k-1} \in \mathcal{O}_{K}^{\times}
$$

Hint: Recall that $\left|N_{K / \mathbb{Q}}\left(1-\zeta_{p}\right)\right|=\left|N_{K / \mathbb{Q}}\left(1-\zeta_{p}^{k}\right)\right|=p$ and note that $\xi\left(1-\zeta_{p}\right)=1-\zeta_{p}^{k}$.
ii) Show that the roots of unity of K are of the form $\pm \zeta_{p}^{k}$ for $0 \leq k \leq p-1$.

Hint: Let $G \subseteq K^{\times}$be the subgroup generated by the roots of unity of K. Thus $G=\left\langle\zeta_{n}\right\rangle$ for a certain primitive n-th root of unity ζ_{n}. Note that $2 p \mid n$ and $\varphi(n)=\varphi(2 p)$.
iii) Take an embedding $K \subseteq \mathbb{C}$. Show that any unit $u \in \mathcal{O}_{K}^{\times}$can be written as $u=\zeta_{p}^{i} v$, where $0 \leq i \leq p-1$ and $v \in \mathbb{R} \cap \mathcal{O}_{K}^{\times}$.

Hint: Let c denote complex conjugation and note that it restricts to an automorphism of K. Show that $u / c(u)$ is a root of unity in K by noting that the absolute value of all of its Galois conjugates is 1. Note that $\mathfrak{p}=$ $\left(1-\zeta_{p}\right)=\left(1-c\left(\zeta_{p}\right)\right) \subseteq \mathcal{O}_{K}$ by $\left.i\right)$, and this is a prime ideal by the hint in $i)$. Rule out the possibility $u / c(u)=-\zeta_{p}^{j}$, for some $0 \leq j \leq p-1$, by finding a contradiction by reducing modulo \mathfrak{p}. Deduce the statement from $u / c(u)=\zeta_{p}^{j}$.
iv) Show that the fundamental unit of $\mathbb{Q}(\sqrt{5})$ is $\frac{1+\sqrt{5}}{2}$.
v) Let now $p=5, \zeta=\zeta_{5}$. Show that

$$
\mathcal{O}_{K}^{\times}=\left\{ \pm \zeta^{i}(1+\zeta)^{j} \mid 0 \leq i \leq 4, j \in \mathbb{Z}\right\} .
$$

Hint: Use that $-\zeta^{2}(1+\zeta)=(1+\sqrt{5}) / 2$ (see Ex.1.ii) of PS5, for example) and also take iii) and iv) into consideration.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 10

Delivery: 19/1/2016
Exercise 1. Let A be a Dedekind ring and let K be its fraction field. Let L / K be a finite extension and let B be the integral closure of A in L. Given an ideal $\mathfrak{b} \subseteq B$, let $N_{L / K}(\mathfrak{b}) \subseteq A$ be the ideal generated by all the elements $N_{L / K}(b)$, where $b \in \mathfrak{b}$. The ideal $N_{L / K}(\mathfrak{b})$ is called the relative norm of \mathfrak{b}.
i) Show that $N_{L / K}(b B)=N_{L / K}(b) A$ for all $b \in B$.
ii) Let $S \subseteq A$ be a multiplicative set. If $\mathfrak{a} \subseteq A$ (resp. $\mathfrak{b} \subseteq B$) is an ideal, denote by \mathfrak{a}_{S} (resp. \mathfrak{b}_{S}) the ideal in $S^{-1} \bar{A}$ (resp. $S^{-1} B$) generated by \mathfrak{a} (resp. $\mathfrak{b})$. Prove that $N_{L / K}(\mathfrak{b})_{S}=N_{L / K}\left(\mathfrak{b}_{S}\right)$.
iii) Show that $N_{L / K}\left(\mathfrak{b}_{1} \mathfrak{b}_{2}\right)=N_{L / K}\left(\mathfrak{b}_{1}\right) N_{L / K}\left(\mathfrak{b}_{2}\right)$ for all ideals $\mathfrak{b}_{1}, \mathfrak{b}_{2} \in B$.

Hint: Check the equality of ideals locally. For a maximal ideal $\mathfrak{p} \subseteq A$, write $S=A \backslash \mathfrak{p}$. Note that A_{S} is a DVR and that B_{S} is a PID by Ex. 2 of PS6.

Exercise 2. Let A be a DVR with uniformizer π and let K be its fraction field. Let L / K be a finite Galois extension and let B be the integral closure of A in L. Then B is a PID with only finitely many prime ideals $\left(\Pi_{1}\right), \ldots,\left(\Pi_{q}\right)$, where $\Pi_{i} \in B$ are such that

$$
\pi=u \cdot \Pi_{1}^{e_{1}} \cdots \Pi_{q}^{e_{q}}
$$

for some $u \in A^{\times}$and some integers $e_{i} \geq 1$. Show that $\operatorname{Gal}(L / K)$ acts transitively on the set $\left\{\left(\Pi_{1}\right), \ldots,\left(\Pi_{q}\right)\right\}$ and deduce that $e_{1}=\cdots=e_{q}$ and that $N_{L / K}\left(\Pi_{1}\right)=\cdots=N_{L / K}\left(\Pi_{q}\right)$.

Exercise 3. Let A be a Dedekind ring and let K be its fraction field. Let L / K be a finite Galois extension and let B be the integral closure of A in L. Let \mathfrak{P} be a nonzero prime ideal of B and $\mathfrak{p}=\mathfrak{P} \cap A$. Prove that

$$
N_{L / K}(\mathfrak{P})=\mathfrak{p}^{f},
$$

where f is the residue degree of \mathfrak{P} over K.
Exercise 4. Let K be a number field. For an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$, recall that we have defined the absolute norm

$$
\mathcal{N}(\mathfrak{a})=\# \mathcal{O}_{K} / \mathfrak{a}
$$

Show that there is an equality $N_{K / \mathbb{Q}}(\mathfrak{a})=(\mathcal{N}(\mathfrak{a}))$ of ideals of \mathbb{Z}.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 11

Delivery: 26/1/2016
Exercise 1. Show that $L=\mathbb{Q}\left(\zeta_{23}\right)$ is not a PID.
Hint: By Ex. 1 of PS5, $K=\mathbb{Q}(\sqrt{-23})$ is a subfield of L. By Ex. 4 of PST, $2 \mathcal{O}_{K}=\mathfrak{p} \overline{\mathfrak{p}}$, where \mathfrak{p} and $\overline{\mathfrak{p}}$ are two distinct non principal prime ideals of \mathcal{O}_{K} such that \mathfrak{p}^{3} and $\overline{\mathfrak{p}}^{3}$ are principal. Let $\mathfrak{P} \subseteq \mathcal{O}_{L}$ be a prime ideal lying above $\mathfrak{p} \subseteq \mathcal{O}_{K}$. Show that \mathfrak{P} is non principal. For this, argue that $N_{L / K}(\mathfrak{P})$ cannot be a principal ideal of \mathcal{O}_{K} by using Ex. 3 of PS10, and conclude by applying Ex. 1 of PS10.

Exercise 2.

i) Let p be a prime number, and let K / \mathbb{Q} be a number field such that $[K$: $\mathbb{Q}]>p$. Show that if (p) splits completely in \mathcal{O}_{K}, then \mathcal{O}_{K} can not be of the form $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_{K}$.
ii) Let $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}+\alpha^{2}-2 \alpha+8=0$. Show that $\beta=\left(\alpha+\alpha^{2}\right) / 2=$ $(\alpha-4) / \alpha$ is in \mathcal{O}_{K}, that $2 \mathcal{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$ with

$$
\mathfrak{p}_{1}=(2,1+\alpha), \quad \mathfrak{p}_{2}=(2, \beta), \quad \mathfrak{p}_{3}=(2,1+\alpha+\beta),
$$

and that the \mathfrak{p}_{i} are primes pairwise coprime (and in particular distinct). Deduce that $\mathcal{O}_{K} \neq \mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_{K}$.

Hint: Note that first $\beta^{3}-2 \beta^{2}+3 \beta-10=0$. Deduce the required equality of ideals from the formulas

$$
\begin{aligned}
& \supseteq: \quad(1+\alpha) \beta(1+\alpha+\beta)=-2(2 a+7) \\
& \subseteq: \quad-2 \cdot 2 \cdot 2-(1+\alpha) \beta(1+\alpha+\beta)-2 \cdot 2 \cdot(1+\alpha)=2
\end{aligned}
$$

Note that checking coprimality of the \mathfrak{p}_{i} amounts to showing that $(2,1+$ $\alpha, \beta)=\mathcal{O}_{K}$. For this note that $(1+\alpha)(\beta-1)-\beta=5$.

Exercise 3.

i) Show that for every integer $d<-11$, the ring of integers \mathcal{O}_{K} of $K=$ $\mathbb{Q}(\sqrt{-d})$ is not a euclidean ring.
ii) Show that the ring of integers of $\mathbb{Q}(\sqrt{-163})$ is a PID but not a euclidean ring.

Hint: You may show that $\mathbb{Q}(\sqrt{-163})$ has class number 1 , using the same method as in Ex. 3 of PS8 or Ex. 1 of PS9.

Exercise 4. Let R be an artinian ring. Denote by $\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{n}$ its maximal ideals. Prove that the natural homomorphism $R \rightarrow \prod_{i=1}^{n} R_{\mathfrak{M}_{i}}$ is an isomorphism.

Hint: You may use the fact without proof that an artinian ring is noetherian.

Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 12

Delivery: 2/2/2016
Exercise 1. Show that if A is a local noetherian ring with maximal ideal \mathfrak{m} generated by a non-nilpotent element π, then A is a DVR.

Hint: You may use without proof ${ }^{1}$ that $\cap_{i=0}^{\infty} \mathfrak{m}^{i}=0$.
Exercise 2. Let R be a discrete valuation ring with maximal ideal $\mathfrak{m}=(\pi)$ and residue class field $k=R / \mathfrak{m}$. Let $f \in R[x]$ be an Eisenstein polynomial ${ }^{2}$ and $R^{\prime}=R[x] /(f)$. Let K and K^{\prime} be the fraction fields of R and R^{\prime}, respectively. Prove that R^{\prime} is a discrete valuation ring, that R^{\prime} is equal to the integral closure of R in K^{\prime} and that \mathfrak{M} is totally ramified in R^{\prime}, that is, that the ramification index of the maximal ideal \mathfrak{M}^{\prime} of R^{\prime} is $\left[K^{\prime}: K\right]$.

Hint: Use Exercise 1.
Exercise 3. Let $K \subseteq K^{\prime} \subseteq K^{\prime \prime}$ be number fields. Let $\mathfrak{P}^{\prime \prime}$ be a maximal ideal of $\mathcal{O}_{K^{\prime \prime}}$ and $\mathfrak{P}^{\prime}=\mathfrak{P}^{\prime \prime} \cap \mathcal{O}_{K^{\prime}}$. Prove that
$f_{K^{\prime \prime} / K}\left(\mathfrak{P}^{\prime \prime}\right)=f_{K^{\prime \prime} / K^{\prime}}\left(\mathfrak{P}^{\prime \prime}\right) \cdot f_{K^{\prime} / K}\left(\mathfrak{P}^{\prime}\right), \quad e_{K^{\prime \prime} / K}\left(\mathfrak{P}^{\prime \prime}\right)=e_{K^{\prime \prime} / K^{\prime}}\left(\mathfrak{P}^{\prime \prime}\right) \cdot e_{K^{\prime} / K}\left(\mathfrak{P}^{\prime}\right)$.
Exercise 4. Let α be a root of $x^{3}-13 x+7$ and L the normal closure of $K=\mathbb{Q}(\alpha)$. Show that:
i) $\mathcal{O}_{K}=Z[\alpha]$.
ii) $5 \mathcal{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$ for certain prime ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ of \mathcal{O}_{K}.
iii) $\mathfrak{p}_{1} \mathcal{O}_{L}=\mathfrak{P}_{1}^{2}$ and $\mathfrak{p}_{2} \mathcal{O}_{L}=\mathfrak{P}_{2} \mathfrak{P}_{3}$ for certain prime ideals $\mathfrak{P}_{1}, \mathfrak{P}_{2}, \mathfrak{P}_{3}$ of \mathcal{O}_{L}.
iv) K is the subfield of L fixed by the decomposition group of \mathfrak{P}_{1}.

Hint: 1493 is a prime number.

[^1]Prof. Dr. U. Görtz
Dr. F. Fité

ALGEBRAIC NUMBER THEORY I

Problem Set 13

Delivery: 9/2/2016
Exercise 1. Let $L=\mathbb{Q}(\sqrt{5}, \sqrt{-1})$.
i) Show that the ring of integers of L is $\mathbb{Z}\left[\sqrt{-1}, \frac{1+\sqrt{5}}{2}\right]$. Compute the absolute discriminant of L.
ii) Show that the only primes that ramify in L are 2 and 5 , and that the corresponding ramification indices are both 2 .
iii) Compute the Frobenius automorphism $\left(\frac{L / \mathbb{Q}}{p}\right)$ for every prime p distinct from 2 and 5 . Determine the inertia and decomposition groups of 2 and 5.
iv) Show that no prime ideal of $\mathbb{Q}(\sqrt{-5})$ ramifies in L.

Exercise 2. Let p be a prime and $n>2$ an integer such that $p \nmid n$. Prove that (p) splits completely in $\mathbb{Q}\left(\zeta_{n}\right)$ if and only if $p \equiv 1(\bmod n)$.

Exercise 3. .

i) Let k be a finite field and $|\cdot|: k \rightarrow \mathbb{R}_{\geq 0}$ an absolute value. Prove that $|x|=1$ for every $x \in k^{\times}$.
ii) Let k be a field of characteristic p. Show that there does not exist an archimedean absolute value on k.
iii) Give two non-equivalent archimedean absolute values on $\mathbb{Q}(\sqrt{2})$.

Exercise 4. Let k be a field with a non-archimedean absolute value $|\cdot|$. For $x, y \in k$, define $d(x, y)=|x-y|$.
i) Show that if $|x| \neq|y|$, then $|x+y|=\max \{|x|,|y|\}$.
ii) For $a \in k$ and $r \in \mathbb{R}_{>0}$, let $D(a, r)=\{x \in k \mid d(x, a) \leq r\}$ be the "closed" disc of center a and radius r. Show that $D(a, r)$ is open and closed in k.
iii) Show that two discs D and D^{\prime} are either disjoint or concentric (that is, there exists $a \in k$ and $r, r^{\prime} \in \mathbb{R}_{>0}$ such that $D=D(a, r)$ and $\left.D^{\prime}=D\left(a, r^{\prime}\right)\right)$.
iv) Show that every triangle is isosceles: if for $x, y, z \in k$ one has $d(x, z)<$ $d(y, z)$, then $d(y, z)=d(x, y)$.

[^0]: ${ }^{1}$ In a future Problem Set we will give a third proof of this result (an arithmetic proof).

[^1]: ${ }^{1}$ In fact, for every ideal \mathfrak{a} in a noetherian ring, the intersection $\cap_{i=0}^{\infty} \mathfrak{a}^{i}$ is $=0$, AtiyahMcDonald, An introduction to commutative algebra, Corollary 10.18. For a simpler proof in the situation at hand, see Serre, Local fields, Springer, Proposition 2, Chapter 1.
 ${ }^{2}$ I.e., the leading coefficient is 1 , all other coefficients are in \mathfrak{m}, and the constant coefficient is not in \mathfrak{m}^{2}. This implies that f is irreducible.

