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Meta-analysis of 375,000 individuals identifies 38 susceptibility 

loci for migraine 
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Migraine is a debilitating neurological disorder affecting around 1 in 7 people worldwide, 

but its molecular mechanisms remain poorly understood. Some debate exists over 

whether migraine is a disease of vascular dysfunction, or a result of neuronal 

dysfunction with secondary vascular changes. Genome-wide association (GWA) studies 

have thus far identified 13 independent loci associated with migraine. To identify new 

susceptibility loci, we performed the largest genetic study of migraine to date, 

comprising 59,674 cases and 316,078 controls from 22 GWA studies. We identified 45 

independent single nucleotide polymorphisms (SNPs) significantly associated with 

migraine risk (P < 5 × 10-8) that map to 38 distinct genomic loci, including 28 loci not 

previously reported and the first locus identified on chromosome X. Furthermore, a 

subset analysis for migraine without aura (MO) identified seven of the same loci as from 

the full sample, whereas no loci reached genome-wide significance in the migraine with 

aura (MA) subset. In subsequent computational analyzes, the identified loci showed 

enrichment for genes expressed in vascular and smooth muscle tissues, consistent with 

a predominant theory of migraine that highlights vascular etiologies.  

 

Migraine is currently ranked as the third most common disease worldwide, with a lifetime 

prevalence of 15-20%, affecting up to one billion people across the globe1,2. It ranks as the 7th 

most disabling of all diseases worldwide (or 1st most disabling neurological disease) in terms of 

years of life lost to disability1 and is the 3rd most costly neurological disorder after dementia and 

stroke3. There is an ongoing debate about whether migraine is a disease of vascular 

dysfunction, or a result of neuronal dysfunction with vascular changes representing downstream 

effects not themselves causative of migraine4,5. However, genetic evidence favoring one theory 

versus the other is lacking. At the phenotypic level, migraine is defined by diagnostic criteria 

from the International Headache Society6. There are two prevalent sub-forms: migraine without 

aura (MO) is characterized by recurrent attacks of moderate or severe headache associated 

with nausea or hypersensitivity to light and sound. Migraine with aura (MA) is characterized by 

transient visual and/or sensory and/or speech symptoms usually followed by a headache phase 

similar to MO. Some patients have both forms of attacks (MO or MA) concurrently or at different 

times in the disease course. Acute drug treatments are given to abort a migraine attack and 

daily prophylactic treatments are available to reduce the number of attacks but lack of efficacy 

or side effects often limit their use7. Identifying new molecular targets or mechanisms could lead 

to new treatments that are more specific and more effective with fewer side effects. 
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Family and twin studies estimate a heritability of 42% (95% confidence interval [CI] = 36-47%) 

for migraine8, pointing to a strong genetic component of the disease. Higher estimates have 

been observed for the migraine subtypes, with up to 61% (95%CI = 49-71%) for MO9,10 and 

65% (95%CI = 49-78%) for MA10–12. Despite this, genetic association studies have revealed 

relatively little about the molecular mechanisms that contribute to pathophysiology. 

Understanding has been limited partly because, to date, only 13 genome-wide significant risk 

loci have been identified for the prevalent forms of migraine13–16. In familial hemiplegic migraine 

(FHM), a rare Mendelian form of the disease, three ion transport-related genes (CACNA1A, 

ATP1A2 and SCN1A) have been implicated17–19. These findings suggest that mechanisms that 

regulate neuronal ion homeostasis might also be involved in MO and MA, however, no genes 

related to ion transport have yet been identified for these more prevalent forms of migraine20. 

 

We performed a meta-analysis of 22 genome-wide association (GWA) studies, consisting of 

59,674 cases and 316,078 controls collected from six tertiary headache clinics and 27 

population-based cohorts through our worldwide collaboration in the International Headache 

Genetics Consortium (IHGC). This combined dataset contained over 35,000 new migraine 

cases not included in previously published GWA studies. Here we present the findings of this 

new meta-analysis, including 38 genomic loci, harboring 45 independent association signals 

identified at levels of genome-wide significance, which support current theories of migraine 

pathophysiology and also offer new insights into the disease. 

 

Results 
Significant associations at 38 independent genomic loci 
The primary meta-analysis was performed on all migraine samples available through the IHGC, 

regardless of ascertainment. These case samples include both individuals diagnosed with 

migraine by a doctor as well as individuals with self-reported migraine via questionnaires. Study 

design and sample ascertainment for each individual study is outlined in the supplementary 

material (Supplementary Methods and Supplementary Table 1). The final combined sample 

for the main analysis consisted of 59,674 cases and 316,078 controls in 22 non-overlapping 

case-control samples (Table 1). All samples were of European ancestry.  

 

The 22 individual GWA studies completed standard quality control protocols summarized in 

Supplementary Table 2. After quality control, missing genotypes (SNPs and short insertion-
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deletions) were imputed into each sample using a common 1000 Genomes Project reference 

panel (Phase I, v3, March 2012 release)21. Association analyzes were performed within each 

sample using logistic regression on the imputed marker dosages while adjusting for sex and 

principal components (when necessary) to adjust for sub-European population structure. These 

association results were combined using an inverse-variance weighted fixed-effects meta-

analysis. Markers included in the final meta-analysis were also filtered based on individual study 

quality metrics (imputation INFO score ≥ 0.6, MAF ≥ 0.01) and combined quality metrics 

(heterogeneity index i2 < 0.75 and successfully genotyped/imputed in at least half of the 22 

GWA studies). This left 8,094,889 variants for consideration in our primary analysis. 

 

Among these variants in the primary analysis sample, we identified 45 genome-wide significant 

SNP associations (P < 5 × 10-8) that are independent (r2 < 0.1) with regards to linkage 

disequilibrium (LD). To help identify candidate risk genes from these, we defined an associated 

locus as the genomic region bounded by all markers in LD (r2 > 0.6 in 1000 Genomes, Phase I, 

EUR individuals) with each of the 45 index SNPs and in addition, all such regions in close 

proximity (< 250 kb) were merged. From these defined regions we implicate 38 distinct genomic 

loci in total for the prevalent forms of migraine, 28 of which have not previously been reported 

(see Figure 1), including the first genome-wide associated locus for migraine on chromosome 

X. 

 

These 38 loci replicate 10 of the 13 previously reported genome-wide associations to migraine 

(see Table 2 for a summary of the loci identified). At seven of the 10 replicated known loci we 

now find a more significant index SNP (rs4379368 to rs186166891 at C7orf10, rs13208321 to 

rs67338227 at FHL5, rs6790925 to rs6791480 at TGFBR2, rs7577262 to rs10166942 at 

TRPM8, rs2274316 to rs1925950 at MEF2D, rs12134493 to rs2078371 at TSPAN2, and 

rs2651899 to rs10218452 at PRDM16). Seven of the 38 loci contain a secondary genome-wide 

significant SNP (P < 5 × 10-8) that is not in LD (r2 < 0.1) with the top SNP in the locus (Table 2). 

Five of these secondary signals were found in known loci (at LRP1, PRDM16, FHL5, TRPM8, 

and TSPAN2), while the others were found within two of the 28 new loci (PLCE1 and ARMS2). 

Therefore, out of the 45 LD-independent SNPs reported here, 35 are new associations to 

migraine. Three previously reported loci that were associated to subtypes of migraine 

(rs1835740 near MTDH, rs10915437 near AJAP1, and rs10504861 near MMP16)13,16 show only 

nominal significance (P < 5 × 10-3) in the current meta-analysis (Supplementary Table 3), 

however, these loci have since been shown to be associated to specific phenotypic features of 
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migraine22 and therefore may require a more phenotypically homogeneous sample to be 

accurately assessed for association with migraine. Most of the effects at the 45 identified index 

SNPs were homogeneous, but four SNPs (at TRPM8, ZCCHC14, MRVI1, and CCM2L) 

exhibited some moderate heterogeneity across the individual GWA studies (Cochran’s Q test p-

value < 0.05, Supplementary Table 4). 

 

Characterization of the associated loci 
In total, 32 of 38 (84%) genomic loci overlap with transcripts from protein-coding genes, and 17 

(45%) of these regions contain just a single gene (see Supplementary Figure 1 for regional 

plots of the 38 genomic loci and Supplementary Table 5 for extended information on each 

locus). Among the 38 genomic loci, only two contain ion channel genes (KCNK523 and 

TRPM824). Hence, despite previous hypotheses of migraine as a potential channelopathy5,25, the 

loci identified to date do not support common variants in ion channel genes as strong 

susceptibility components in prevalent forms of migraine. However, three other loci do contain 

genes involved more generally in ion homeostasis (SLC24A326, ITPK127, and GJA128, 

Supplementary Table 6). 

 

Several of the genes have previous associations to vascular disease (PHACTR1,29,30 

TGFBR2,31  LRP1,32 PRDM16,33 RNF213,34 JAG1,35 HEY2,36 GJA137, ARMS238), or are 

involved in smooth muscle contractility and regulation of vascular tone (MRVI1,39 GJA1,40 

SLC24A3,41 NRP142). Two of the 45 migraine SNPs have previously reported associations in 

the National Human Genome Research Institute (NHGRI) GWAS catalog at exactly the same 

SNP (rs9349379 at PHACTR1 with coronary heart disease43–45 and coronary artery 

calcification46 and rs11624776 at ITPK1 with thyroid hormone levels47). Six of the loci harbor 

genes that are involved in nitric oxide signaling and oxidative stress (REST48, GJA149, YAP150, 

PRDM1651, LRP152, and MRVI153). 

 

From each locus we chose the nearest gene to the index SNP to assess gene expression 

activity in various tissues from the GTEx consortium (Supplementary Figure 2). While we 

found that most of the putative genes in the migraine loci were expressed in many different 

tissue types (including brain and vascular tissues), we could detect tissue specificity in certain 

instances whereby some genes appear to be more active in one particular tissue group relative 

to the others. For instance six genes were relatively more actively expressed in brain (ASTN2, 

CFDP1, DOCK4, ITPK1, MPPED2, and WSCD1) compared to other tissues, whereas two 
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genes were specifically active in vascular tissues (HEY2 and PRDM16). Many of the other 

putative genes in the migraine loci were actively expressed in more than one tissue group. 

 

Genomic inflation and LD-score regression analysis 
To assess whether the 38 independent genomic loci harbor true associations with migraine 

rather than reflecting systematic differences between cases and controls (such as population 

stratification) we analyzed the genome-wide inflation of test statistics in our primary meta-

analysis dataset. As expected for a complex polygenic trait, the distribution of test statistics 

deviates from the null (genomic inflation factor λGC = 1.24, Supplementary Figure 3) which is in 

line with other large GWA study meta-analyzes54–57. Since much of the inflation in a polygenic 

trait arises from LD between the causal SNPs and many other neighboring SNPs in the local 

region, we LD-pruned the meta-analysis results to create a set of essentially LD-independent 

markers. The LD-pruning was performed in PLINK58 using a sliding window (size 250-kb) that 

removes one marker from every pair that is in LD (r2 > 0.2). The resulting genomic inflation was 

reduced (λGC = 1.15, Supplementary Figure 4) and reflects the polygenic signal remaining from 

independent loci. 

 

In order to confirm that the deviation between our observed test statistics and the null 

distribution is primarily coming from true polygenic signal, we analyzed our meta-analysis 

results using LD-score regression59. This method tests for a linear relationship between marker 

test statistics and LD score, defined as the sum of r2 values between a marker and all other 

markers within a 1-Mb window. The primary analysis results show a linear relationship between 

association test statistics and LD-score (Supplementary Figure 5) suggesting that the 

deviation in test statistics consists mainly of true polygenic signal rather than population 

stratification or other confounders. These results are consistent with the theory of polygenic 

disease architecture shown previously by both simulation and real data for GWAS samples of 

similar size60.  

 

MA and MO subtype analyzes 
To elucidate the pathophysiological mechanisms underpinning the migraine aura, we performed 

a secondary analysis of the data by creating two subsets that included only samples with the 

subtypes MA and MO. These subsets only included those studies where sufficient information 

was available to assign a diagnosis of either subtype according to classification criteria 

standardized by the International Headache Society (IHS). Specific IHS diagnostic criteria used 
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to classify MA and MO can be found in the 2nd edition of the International Classification of 

Headache Disorders (ICHD-II)6. For the population-based study samples this involved 

questionnaires to assess the necessary criteria, whereas for the clinic-based study samples the 

diagnosis was assigned on the basis of a structured interview by telephone or in person. A 

stricter diagnosis is required for these migraine subtypes as the migraine aura specifically is 

challenging to distinguish from other neurological features that can present as symptoms from 

unrelated conditions. 

 

As a result, the migraine subtype analyzes consisted of considerably smaller sample sizes 

compared to the main analysis (6,332 cases vs. 144,883 controls for MA and 8,348 cases vs. 

139,622 controls for MO, see Table 1). As with the primary migraine analysis, the signals in the 

test statistics for MA or MO were consistent with underlying polygenic architecture rather than 

other potential sources of inflation (Supplementary Figure 6 and 7). For the MO subset 

analysis we found seven independent genomic loci (near TSPAN2, TRPM8, PHACTR1, FHL5, 

ASTN2, near FGF6, and LRP1) to be significantly associated with MO (Table 2 and 

Supplementary Figure 8). All seven of these loci were already identified in our primary analysis 

of ‘all migraine’ types, possibly reflecting the fact that MO is the most common form of migraine 

(around 2 in 3 cases) and likely drives the association signals in the primary analysis. Notably, 

no loci were associated to migraine with aura in the MA subset analysis (Supplementary 

Figure 9). 

 

To investigate whether excess heterogeneity could be contributing to the lack of associations in 

MA, we performed a heterogeneity analysis between the two subgroups. First we created two 

subsets of the MA and MO datasets from which none of the case or control individuals were 

overlapping (Supplementary Table 7). Then we selected the 45 LD-independent SNPs 

associated from the primary analysis and used a random-effects model to combine the MA and 

MO samples in a meta-analysis that allows for heterogeneity between the two migraine 

groups61. We found little heterogeneity with only seven of the 45 SNPs (at REST, MPPED2, 

PHACTR1, ASTN2, MEF2D, PLCE1, and MED14) exhibiting some signs of heterogeneity 

between the two groups (Supplementary Table 8). 

 

Credible sets of markers within each locus 
For each of the 38 migraine-associated loci, we defined a credible set of markers that could 

plausibly be considered as causal using a Bayesian-likelihood based approach62. This method 
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incorporates evidence from association test statistics and the LD structure between SNPs in a 

locus (for a full description, see Supplementary Methods). We found three instances (in the 

RNF213, PLCE1, and MRVI1 loci) where the association signal could be credibly attributed to 

exonic missense polymorphisms (Supplementary Table 9). However, most of the credible 

markers at each locus were either intronic or intergenic, which is consistent with the theory that 

most variants detected by GWA studies involve regulatory effects on gene expression rather 

than disrupting protein structure63,64. 

 

Overlap with eQTLs in brain and blood 
To try to identify specific migraine loci that might influence gene expression, we used previously 

published datasets that catalog expression quantitative trait loci (eQTLs) in either of two studies 

from peripheral venous blood (N1 = 3,754 and N2 = 2,360) or a third study from human brain 

cortex tissue (N3 = 550). Using these datasets we applied two methods to identify eQTLs that 

could explain associations at the 38 migraine loci (Supplementary Methods). The first 

approach tested whether the migraine index SNP at each locus was a significant cis-eQTL after 

conditioning on the best local eQTL to transcripts within a 1-Mb window (Supplementary Table 

10). The second more stringent approach merged the migraine credible sets defined above with 

credible sets from cis-eQTL signals within a 1-Mb window and tested if the association signals 

between the migraine and eQTL credible sets were correlated (Supplementary Tables 11-12 

and Supplementary Figure 10). After adjusting for multiple testing we found only two plausible 

eQTL associations in peripheral blood, rs7684253 (at the REST locus) as an eQTL to NOA1 

and rs6693567 (at the ADAMTSL4 locus) as an eQTL to MLLT11 (Supplementary Table 10). 

This low number (2 out of 38) is consistent with previous studies which have observed that 

available eQTL catalogues currently lack sufficient tissue specificity and developmental diversity 

to provide enough power to provide meaningful biological insight56. No plausibly causal eQTLs 

were observed in expression data from brain. 

 

Gene expression enrichment in specific tissues 
To understand if the 38 migraine loci as a group are enriched for expression in certain tissue 

groups, we analyzed RNA-seq data (from 1,641 samples in 175 individuals across 42 tissues 

and three cell lines) generated as part of the pilot phase of the Genotype-Tissue Expression 

(GTEx) project65. Using this data on gene expression, we tested whether genes near to credibly 

causal SNPs at the 38 migraine loci were significantly enriched in certain tissues 
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(Supplementary Methods). We found four tissues that were significantly enriched (after 

Bonferroni correction) for expression of the migraine genes (Figure 2). The two most strongly 

enriched tissues were part of the cardiovascular system; the aorta and tibial artery. Two other 

significant tissues were from the digestive system; esophagus muscularis and esophageal 

mucosa. We replicated these enrichment results in an independent dataset using a component 

of the DEPICT66 tool that conducts a tissue-specific enrichment analysis on microarray-based 

gene expression data  (Supplementary Methods). DEPICT highlighted four tissues (Figure 3 

and Supplementary Table 13) with significant enrichment of the genes within the migraine loci; 

arteries (P = 1.58 × 10-5), the upper gastrointestinal tract (P = 2.97 × 10-3), myometrium (P = 

3.03 × 10-3), and stomach (P = 3.38 × 10-3). 

 

Taken together, the expression analyzes implicate arterial and gastrointestinal (GI) tissues. To 

try to determine whether the enrichment signature of arterial and gastrointestinal tissues could 

be attributed to a more specific type of smooth muscle, we examined the expression of the 

nearest protein-coding genes at migraine loci in a panel of 60 different types of human smooth 

muscle tissue drawn from gastrointestinal, genitourinary, arterial, venous, and bronchial 

sources67. Overall, migraine loci genes were not significantly enriched in a particular class of 

smooth muscle, although anecdotal examples such as TGFBR2 demonstrated striking vascular 

expression (Supplementary Figures 11-13). This suggests that the enrichment of migraine 

disease variants in genes expressed in tissues with a smooth muscle component is not specific 

to blood vessels, the stomach or GI tract, but rather appears to be generalizable across 

vascular and visceral smooth muscle types. Future studies will be required to be able to identify 

any specific tissues that are involved. 

 

Combined, these results suggest that some of the genes affected by migraine-associated 

variants are highly expressed in vascular tissues and their dysfunction could play a role in 

migraine. Furthermore, the enrichment results suggest that other tissue types (e.g. smooth 

muscle) could also play a role and this may become evident once more migraine loci are 

discovered. 

 

Enrichment in tissue-specific enhancers 
To assess, from a different perspective, the hypothesis that migraine variants might operate via 

effects on gene-regulation, we investigated the degree of overlap with histone modifications. We 

identified candidate causal variants underlying the 38 migraine loci, and examined their 
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enrichment within cell-type specific enhancers from 56 primary human tissues and cell types 

from the Roadmap Epigenomics68 and ENCODE projects69 (Supplementary Methods). 

Candidate causal variants showed highest enrichment in tissues from the mid-frontal lobe and 

duodenum smooth muscle, but these enrichments were not significant after adjusting for 

multiple testing (Figure 4).   

 

Gene set enrichment analyzes 
To implicate underlying biological pathways involved in migraine, we applied a Gene Ontology 

(GO) over-representation analysis of the 38 migraine loci (Supplementary Methods). We found 

nine vascular-related biological function categories that are significantly enriched after 

correction for multiple testing, including circulatory system development (GO:0072359) and 

blood vessel development (GO:0001568) (Supplementary Table 14). Interestingly, we found 

little statistical support from the identified loci for some molecular processes that have been 

previously linked to migraine, e.g. ion homeostasis, glutamate signaling, serotonin signaling, 

nitric oxide signaling, and oxidative stress (Supplementary Table 15). However, it is possible 

that the lack of enrichment for these functions may be explained by recognizing that current 

annotations for many genes and pathways are still far from comprehensive, or that larger 

numbers of migraine loci need to be identified before we have sensitivity to detect enrichment in 

these mechanisms.  

 

For a comprehensive pathway analysis tool we used DEPICT, which incorporates co-expression 

information from gene expression microarray data to implicate additional, functionally less well-

characterized genes in known biological pathways, protein-protein complexes and mouse 

phenotypes66 (by forming so-called ‘reconstituted gene sets’). From DEPICT we identified 67 

reconstituted gene sets that are significantly enriched (FDR < 5%) for genes found among the 

38 migraine associated loci (Supplementary Table 16). Because the reconstituted gene sets 

had genes in common, we clustered them into 10 distinct groups of gene sets (Figure 5 and 

Supplementary Methods). Several gene sets, including the most significantly enriched 

reconstituted gene set (Abnormal Vascular Wound Healing; P = 1.86 × 10-6), were grouped into 

clusters related to cell-cell interactions (ITGB1 PPI, Adherens Junction, Integrin Complex). 

Several of the other gene set clusters were related to vascular-biology (Blood Vessel 

Development, Cellular Response To Vascular Endothelial Growth Factor Stimulus, Figure 5 

and Supplementary Table 16). 
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Discussion 
In what is the largest genetic study of migraine to date, we identified 38 distinct genomic loci 

harboring 45 independent susceptibility markers for the prevalent forms of migraine. We provide 

evidence that migraine-associated genes identified through variants of small effect are involved 

both in arterial and smooth muscle function. Two separate analyzes, the DEPICT and the GTEx 

gene-expression enrichment analyzes, together point to vascular and smooth muscle tissues 

being involved in common variant susceptibility to migraine. The vascular finding is consistent 

with known co-morbidities and previously reported shared polygenic risk between migraine, 

stroke and cardiovascular diseases70,71. Furthermore, a recent GWA study of Cervical Artery 

Dissection (CeAD) identified a genome-wide significant association at exactly the same index 

SNP (rs9349379) as is associated to migraine in the PHACTR1 locus, suggesting the possibility 

of partially shared genetic components between migraine and CeAD30. These results suggest 

that vascular dysfunction and possibly also other smooth muscle dysfunction likely play roles in 

migraine pathogenesis.  

 

The support for vascular and smooth muscle enrichment of the loci is strong, with multiple lines 

of evidence from independent methods and independent datasets. However, it remains likely 

that neurogenic mechanisms are also involved in migraine. For example, several lines of 

evidence from previous studies have pointed to neurogenic mechanisms in migraine5,72–75. We 

found some support for this when looking at gene expression of individual genes at the 38 loci 

(Supplementary Figure 2), where many specific genes were active in brain tissues and 

therefore could have neuronal function. While we did not observe statistically significant 

enrichment in brain across all loci, it may be that more associated loci are needed to detect this. 

Alternatively, it could be due to difficulties in collecting appropriate brain tissue samples with 

enough specificity, or other technical challenges. An additional limiting factor is that there is less 

clarity of the biological mechanisms for a brain disease like migraine compared to some other 

common diseases, e.g. autoimmune diseases or cardio-metabolic diseases where intermediate 

risk factors and underlying mechanisms are better understood.  

 

Interestingly, some of the analyzes highlight gastrointestinal tissues. Although migraine attacks 

may include gastrointestinal symptoms (e.g. nausea, vomiting, diarrhea)76 it is likely that the 

signals observed here broadly represent smooth muscle signals rather than gastrointestinal 

specificity. Smooth muscle is a predominant tissue of the intestine, yet specific smooth muscle 

subtypes were not available to test this hypothesis in our primary enrichment analyzes. We 
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showed instead in a range of 60 smooth muscle subtypes, that the migraine loci are expressed 

in many types of smooth muscle, including vascular (Supplementary Figure 12 and 13). These 

results, while not conclusive, suggest that the enrichment of the migraine loci in smooth muscle 

is not specific to the stomach and GI tract.  

 

Our results identify specific cellular pathways and provide an opportunity to determine whether 

the genomic data supports previously presented hypotheses of pathways linked to migraine. 

One prevailing hypothesis stimulated by findings in familial hemiplegic migraine (FHM) has been 

that migraine is a channelopathy5,25. Among the 38 migraine loci only two harbor known ion 

channels (KCNK523 and TRPM824), while three additional loci (SLC24A326, ITPK127, and 

GJA128) can be linked to ion homeostasis. This further supports the findings of previous studies 

that in common forms of migraine, ion channel dysfunction is not the major pathophysiological 

mechanism20. However, more generally, genes involved in ion homeostasis could be a 

component of the genetic susceptibility. Moreover, we cannot exclude that ion channels could 

still be important contributors in MA, the form most closely resembling FHM, as our ability to 

identify loci in this subgroup is more challenging.  Another suggested hypothesis relates to 

oxidative stress and nitric oxide (NO) signaling. Nitroglycerine and sodium nitroprusside, two 

pro-drugs delivering NO to tissues can both induce headache in normal patients and migraine in 

migraine patients77,78. Animal experiments have shown relations to superoxide and oxidative 

stress79. Six genes with known links to oxidative stress and NO, within these 38 loci were 

identified (REST48, GJA149, YAP150, PRDM1651, LRP152, and MRVI153). This is in line with 

previous findings16, however, in the DEPICT pathway analysis we found that NO-related 

reconstituted gene sets were not significantly associated with migraine (FDR > 0.54)  

(Supplementary Table 15).  

 

In conclusion, the 38 genomic loci identified in this study support the notion that factors in 

vascular and smooth muscle tissues contribute to migraine pathophysiology and that the two 

major subtypes of migraine, MO and MA, have a partially shared underlying genetic 

susceptibility profile.
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Table 1. Individual IHGC GWA studies listed with cases and control numbers used in the primary analysis (all migraine) and in the 

sub-analyzes (MA and MO subtypes). Note that chromosome X genotype data was unavailable from three of the individual GWA 

studies (EGCUT, Rotterdam III, and TwinsUK) and also one of the German MO control studies (GSK) meaning that the number of 

samples analyzed on chromosome X was 57,756 cases and 299,109 controls. Complete data was available on the autosomes for all 

samples. 

 

GWA Study ID Full Name of GWA Study 
All migraine MA subtype MO subtype 

Cases Controls Cases Controls Cases Controls 

23andMe 23andMe Inc. 30,465 143,147 - - - - 

ALSPAC Avon Longitudinal Study of Parents and Children 3,134 5,103 - - - - 

ATM Australian Twin Migraine 1,683 2,383 - - - - 

B58C 1958 British Birth Cohort 1,165 4,141 - - - - 

Danish HC Danish Headache Center 1,771 1,000 775 1,000 996 1,000 

DeCODE deCODE Genetics Inc. 3,135 95,585 366 95,585 608 95,585 

Dutch MA Dutch migraine with aura 734 5,211 734 5,211 - - 

Dutch MO Dutch migraine without aura 1,115 2,028 - - 1,115 2,028 

EGCUT Estonian Genome Center, University of Tartu 813 9,850 76 9,850 94 9,850 

Finnish MA Finnish migraine with aura 933 2,715 933 2,715 - - 

German MA German migraine with aura 1,071 1,010 1,071 1,010 - - 

German MO German migraine without aura 1,160 1,647* - - 1,160 1,647* 
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Health 2000 Health 2000 136 1,764 - - - - 

HUNT Nord-Trøndelag Health Study 1,395 1,011 290 1,011 980 1,011 

NFBC Northern Finnish Birth Cohort 756 4,393 - - - - 

NTR/NESDA Netherlands Twin Register and the Netherlands 
Study of Depression and Anxiety 1,636 3,819 544 3,819 615 3,819 

Rotterdam III Rotterdam Study III 487 2,175 106 2,175 381 2,175 

Swedish Twins Swedish Twin Registry 1,307 4,182 - - - - 

Tromsø The Tromsø Study 660 2,407 - - - - 

Twins UK Twins UK 618 2,334 202 2,334 416 2,334 

WGHS Women’s Genome Health Study 5,122 18,108 1,177 18,108 1,826 18,108 

Young Finns Young Finns 378 2,065 58 2,065 157 2,065 

  Total: 59,674 316,078 6,332 144,883 8,348 139,622 
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Figure 1. Manhattan plot from the primary meta-analysis of all migraine (59,674 cases vs. 316,078 controls). A fixed-effects meta-

analysis was used to combine the association statistics from all 22 clinic and population-based studies from the IHGC. The x-axis 

shows the chromosomal position and the y-axis shows the significance of tested markers from logistic regression. Markers with test 

statistics that reach genome-wide significance (P < 5 × 10-8) are shown in red. 
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Table 2. Summary of the 38 genomic loci associated with the prevalent types of migraine. Ten loci were previously reported 

(PubMed IDs listed) and 28 are newly found in this study. For each locus, the nearest coding gene to the index SNP is given. For loci 

that contain a secondary LD-independent signal passing genome-wide significance, the secondary index SNP and P-value is given. 

For the seven loci reaching genome-wide significance in the MO sub-type analysis, the corresponding index SNP and P-value are 

also given. 

 

Locus 
Rank 

Nearest 
coding gene Chr Index SNP Minor 

Allele MAF 
All Migraine Secondary signal MO subtype Previous 

Publication 
PMID OR [95% CI] P Index SNP P Index SNP P 

1 LRP1 12 rs11172113 C 0.42 0.90 [0.89-0.91] 5.6 x 10-49 rs7961602 2.08 x 10-11 rs11172113 4.27 x 10-16 21666692 
2 PRDM16 1 rs10218452 G 0.22 1.11 [1.10-1.13] 5.3 x 10-38 rs12135062 3.67 x 10-10 - - 21666692 
3 FHL5 6 rs67338227 T 0.23 1.09 [1.08-1.11] 2.0 x 10-27 rs2223239 3.15 x 10-10 rs7775721 1.08 x 10-12 23793025 

4 TRPM8 2 rs10166942 C 0.20 0.91 [0.89-0.92] 2.2 x 10-27 rs566529 2.48 x 10-09 rs6724624 1.08 x 10-09 21666692 
5 TSPAN2 1 rs2078371 C 0.12 1.11 [1.09-1.13] 4.1 x 10-24 rs7544256 8.70 x 10-09 rs2078371 7.41 x 10-09 23793025 
6 PHACTR1 6 rs9349379 G 0.41 0.93 [0.92-0.95] 5.8 x 10-22 - - rs9349379 2.10 x 10-09 22683712 
7 MEF2D 1 rs1925950 G 0.35 1.07 [1.06-1.09] 9.1 x 10-22 - - - - 22683712 

8 SLC24A3 20 rs4814864 C 0.26 1.07 [1.06-1.09] 2.2 x 10-19 - - - - - 
9 FGF6 12 rs1024905 G 0.47 1.06 [1.04-1.08] 2.1 x 10-17 - - rs1024905 2.53 x 10-09 - 

10 C7orf10 7 rs186166891 T 0.11 1.09 [1.07-1.12] 9.7 x 10-16 - - - - 23793025 
11 PLCE1 10 rs10786156 G 0.45 0.95 [0.94-0.96] 2.0 x 10-14 rs75473620 5.80 x 10-09 - - - 

12 MRVI1 11 rs4910165 C 0.33 0.95 [0.93-0.96] 3.7 x 10-14 - - - - - 
13 KCNK5 6 rs10456100 T 0.28 1.06 [1.04-1.07] 6.9 x 10-13 - - - - - 
14 ASTN2 9 rs6478241 A 0.36 1.05 [1.04-1.07] 1.2 x 10-12 - - rs6478241 1.15 x 10-10 22683712 
15 HPSE2 10 rs12260159 A 0.07 0.92 [0.89-0.94] 3.2 x 10-10 - - - - - 

16 CFDP1 16 rs77505915 T 0.45 1.05 [1.03-1.06] 3.3 x 10-10 - - - - - 
17 RNF213 17 rs17857135 C 0.17 1.06 [1.04-1.08] 5.2 x 10-10 - - - - - 
18 NRP1 10 rs2506142 G 0.17 1.06 [1.04-1.07] 1.5 x 10-09 - - - - - 
19 GPR149 3 rs13078967 C 0.03 0.87 [0.83-0.91] 1.8 x 10-09 - - - - - 

20 JAG1 20 rs111404218 G 0.34 1.05 [1.03-1.07] 2.0 x 10-09 - - - - - 
21 REST 4 rs7684253 C 0.45 0.96 [0.94-0.97] 2.5 x 10-09 - - - - - 
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22 HEY2 6 rs1268083 C 0.48 0.96 [0.95-0.97] 5.3 x 10-09 - - - - - 
23 WSCD1 17 rs75213074 T 0.03 0.89 [0.86-0.93] 7.1 x 10-09 - - - - - 

24 GJA1 6 rs28455731 T 0.16 1.06 [1.04-1.08] 7.3 x 10-09 - - - - - 
25 TGFBR2 3 rs6791480 T 0.31 1.04 [1.03-1.06] 7.8 x 10-09 - - - - 22683712 
26 ITPK1 14 rs11624776 C 0.31 0.96 [0.94-0.97] 7.9 x 10-09 - - - - - 
27 ADAMTSL4 1 rs6693567 C 0.27 1.05 [1.03-1.06] 1.2 x 10-08 - - - - - 

28 YAP1 11 rs10895275 A 0.33 1.04 [1.03-1.06] 1.6 x 10-08 - - - - - 
29 MED14 X rs12845494 G 0.27 0.96 [0.95-0.97] 1.7 x 10-08 - - - - - 
30 DOCK4 7 rs10155855 T 0.05 1.08 [1.05-1.12] 2.1 x 10-08 - - - - - 
31 LRRIQ3 1 rs1572668 G 0.48 1.04 [1.02-1.05] 2.1 x 10-08 - - - - - 

32 CARF 2 rs138556413 T 0.03 0.88 [0.84-0.92] 2.3 x 10-08 - - - - - 
33 ZCCHC14 16 rs4081947 G 0.34 1.04 [1.03-1.06] 2.5 x 10-08 - - - - - 
34 ARMS2 10 rs2223089 C 0.08 0.93 [0.91-0.95] 3.0 x 10-08 rs2672599 3.04 x 10-08 - - - 
35 IGSF9B 11 rs561561 T 0.12 0.94 [0.92-0.96] 3.4 x 10-08 - - - - - 

36 MPPED2 11 rs11031122 C 0.24 1.04 [1.03-1.06] 3.5 x 10-08 - - - - - 
37 NOTCH4 6 rs140002913 A 0.06 0.91 [0.88-0.94] 3.8 x 10-08 - - - - - 
38 CCM2L 20 rs144017103 T 0.02 0.83 [0.78-0.89] 4.3 x 10-08 - - - - - 
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Figure 2. Gene expression enrichment in specific tissues using genes at the 38 migraine loci 

and RNAseq data from the GTEx consortium.  
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Figure 3. Gene expression enrichment in various tissues of the 38 migraine loci using 

microarray data from DEPICT.
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Figure 4. Enrichment of the migraine loci in sets of tissue-specific enhancers. We mapped 

credible sets from the 38 genome-wide significant loci to sets of enhancers under active 

expression in 56 different tissues and cell lines (identified by enrichment of H3K27ac histone 

marks in the roadmapepigenomics.org data). The dashed line represents the Bonferroni-

corrected p-value threshold for 56 separate test
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Figure 5. DEPICT network of the reconstituted gene sets that were significantly enriched (FDR < 0.05) for genes at the migraine loci. 

a) Shows 10 groups of the reconstituted gene sets clustered by similarity. b) Shows an example of the significant gene sets inside 

the ITGB1 PPI cluster. A full list of the 67 significantly enriched gene sets can be found in Supplementary Table 12.
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