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Coding vs complexity: 
a tale of two theories

Coding Computational Complexity

Goal: data transmission Goal: computation

Different channels Models of computation

“Big” questions are 
answered with theorems

“Big” questions are 
conjectures

“𝐵𝑆𝐶1/3 can transmit ≈

0.052 trits per application”

“One day, we’ll prove EXP
requires > 𝑛3 𝑁𝐴𝑁𝐷 gates”



A key difference

• Information theory is a very effective 
language: fits many coding situations 
perfectly

• Shannon’s channel coding theory is 
“continuous”: 

– Turn the channel into a continuous resource;

– Separate the communication channel from 
how it is used
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Theory of computation is “discrete”
• Von Neumann (~1948):

“…Thus formal logic is, by the nature of its 
approach, cut off from the best cultivated 
portions of mathematics, and forced onto the 
most difficult part of the mathematical terrain, 
into combinatorics.

The theory of automata, … will have to share this 
unattractive property of formal logic. It will have 
to be, from the mathematical point of view, 
combinatorial rather than analytical.”

4



Overview

• Today: Will discuss the extension of the 
information language to apply to problems 
in complexity theory. 
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Background: Shannon’s entropy

• Assume a lossless binary channel. 

• A message 𝑋 is distributed according to 
some prior 𝜇.

• The inherent amount of bits it takes to 
transmit 𝑋 is given by its entropy

𝐻 𝑋 =  𝜇 𝑋 = 𝑥 log2(1/𝜇[𝑋 = 𝑥]).
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communication channel
𝑋 ∼ 𝜇

A B



Shannon’s Noiseless Coding Theorem

• The cost of communicating many copies of 
𝑋 scales as 𝐻(𝑋). 

• Shannon’s source coding theorem:

– Let 𝐶𝑛 𝑋 be the cost of transmitting 𝑛
independent copies of 𝑋. Then the 
amortized transmission cost

lim
𝑛→∞

𝐶𝑛(𝑋)/𝑛 = 𝐻 𝑋 .

• Operationalizes 𝐻 𝑋 .
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• Sending a uniform trit 𝑇 in {1,2,3}. 

• Using the prefix-free encoding {0,10,11}
sending on trit 𝑇1 costs 𝐶1 = 5/3 ≈ 1.667 bits.

• Sending two trits (𝑇1𝑇2) costs 𝐶2 =
29

9
bits 

using the encoding 
{000,001,010,011,100,101,110,1110,1111}. 
The cost per trit is 29/18 ≈ 1.611 < 𝐶1.

• 𝐶1 + 𝐶1 ≠ 𝐶2. 

𝐻(𝑋) is nicer than 𝐶𝑛(𝑋)



𝐻(𝑋) is nicer than 𝐶𝑛(𝑋)
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• 𝐶1 =
15

9
, 𝐶2 =

29
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• 𝐶1 + 𝐶1 ≠ 𝐶2. 

• The entropy 𝐻(𝑇) = log23 ≈ 1.585.

• We have 𝐻 𝑇1𝑇2 = log2 9 = 𝐻 𝑇1 +𝐻(𝑇2).

• 𝐻 𝑇 is additive over independent variables.

• 𝐶𝑛 = 𝑛 ⋅ log2 3 ± 𝑜(𝑛).



Today
• We will discuss generalizing information 

and coding theory to interactive 
computation scenarios: 

“using interaction over a channel to solve a 
computational problem”

• In Computer Science, the amount of 
communication needed to solve a problem 
is studied by the area of communication 
complexity. 
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Communication complexity [Yao’79]

• Considers functionalities requiring  
interactive computation.

• Focus on the two party setting first.
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A B

X YA & B implement a 
functionality F(X,Y).

F(X,Y)

e.g. F(X,Y) = “X=Y?”



Communication complexity

A B

X Y

Goal: implement a functionality 𝐹(𝑋, 𝑌).
A protocol 𝜋(𝑋, 𝑌) computing 𝐹(𝑋, 𝑌):

F(X,Y)

m1(X,R)

m2(Y,m1,R)

m3(X,m1,m2,R)

Communication cost 𝐶𝐶 𝜋 = #of bits exchanged. 

Shared randomness R



Communication complexity
• (Distributional) communication complexity with 

input distribution 𝜇 and error 𝜀: 𝐶𝐶 𝐹, 𝜇, 𝜀 .
Error ≤ 𝜀 w.r.t. 𝜇:

𝐶𝐶 𝐹, 𝜇, 𝜀 ≔ min
𝜋:𝜇 𝜋 𝑋,𝑌 ≠𝐹 𝑋,𝑌 ≤𝜀

𝐶𝐶(𝜋)

• (Randomized/worst-case) communication 
complexity: 𝐶𝐶(𝐹, 𝜀). Error ≤ 𝜀 on all inputs.

• Yao’s minimax:

𝐶𝐶 𝐹, 𝜀 = max
𝜇
𝐶𝐶(𝐹, 𝜇, 𝜀).
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A tool for unconditional lower 
bounds about computation

• Streaming; 

• Data structures; 

• Distributed computing;

• VLSI design lower bounds; 

• Circuit complexity;

• One of two main tools for unconditional lower 
bounds. 

• Connections to other problems in complexity 
theory (e.g. hardness amplification). 14



Set disjointness and intersection
Alice and Bob each given a set 𝑋 ⊆ 1,… , 𝑛 , 𝑌 ⊆
{1, … , 𝑛} (can be viewed as vectors in 0,1 𝑛).

• Intersection 𝐼𝑛𝑡𝑛 𝑋, 𝑌 = 𝑋 ∩ 𝑌.

• Disjointness 𝐷𝑖𝑠𝑗𝑛 𝑋, 𝑌 = 1 if 𝑋 ∩ 𝑌 = ∅, and 0
otherwise

• A non-trivial theorem [Kalyanasundaram-Schnitger’87, 

Razborov’92]: 𝐶𝐶 𝐷𝑖𝑠𝑗𝑛, 1/4 = Ω(𝑛).

• Exercise: Solve 𝐷𝑖𝑠𝑗𝑛 with error → 0 (say, 1/𝑛) in 
0.9𝑛 bits of communication. Can you do 0.6𝑛? 
0.4𝑛?



Direct sum

• 𝐼𝑛𝑡𝑛 is just 𝑛 times 2-bit 𝐴𝑁𝐷.

• ¬𝐷𝑖𝑠𝑗𝑛 is a disjunction of 2-bit 𝐴𝑁𝐷s. 

• What is the connection between the 
communication cost of one 𝐴𝑁𝐷 and the 
communication cost of 𝑛 𝐴𝑁𝐷s?

• Understanding the connection between the 
hardness of a problem and the hardness of 
its pieces. 

• A natural approach to lower bounds. 
16



How does CC scale with copies?
• 𝐶𝐶 𝐹𝑛, 𝜇𝑛, 𝜀 /𝑛 →?

Recall:

• lim
𝑛→∞

𝐶𝑛(𝑋)/𝑛 = 𝐻 𝑋

• Information complexity is the corresponding 
scaling limit for 𝐶𝐶 𝐹𝑛, 𝜇𝑛, 𝜀 /𝑛.

• Helps understand problems composed of 
smaller problems. 

17

𝐶𝐶 𝐹, 𝜇, 𝜀 ?



Interactive information complexity

• Information complexity :: 

communication complexity

as

• Shannon’s entropy ::

transmission cost
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Information theory in two slides

• For two (potentially correlated) variables 
𝑋, 𝑌, the conditional entropy of 𝑋 given 𝑌 is 
the amount of uncertainty left in 𝑋 given 𝑌: 

𝐻 𝑋 𝑌 ≔ 𝐸𝑦~𝑌H X Y = y .

• One can show 𝐻 𝑋𝑌 = 𝐻 𝑌 + 𝐻(𝑋|𝑌).

• This important fact is knows as the chain 
rule. 

• If 𝑋 ⊥ 𝑌, then 
𝐻 𝑋𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋 = 𝐻 𝑋 + 𝐻 𝑌 .
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Mutual information
• The mutual information is defined as
𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

• “How much knowing 𝑋 reduce the 
uncertainty of 𝑌?”

• Conditional mutual information:
𝐼 𝑋; 𝑌 𝑍 ≔ 𝐻 𝑋 𝑍 − 𝐻(𝑋|𝑌𝑍)

• Simple intuitive interpretation. 
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The information cost of a protocol 

• Prior distribution: 𝑋, 𝑌 ∼ 𝜇.

A B

X Y

Protocol π
Protocol 

transcript Π

𝐼𝐶(𝜋, 𝜇) = 𝐼(Π; 𝑌|𝑋) + 𝐼(Π; 𝑋|𝑌)

what Alice learns about Y + what Bob learns about X

Depends 
on both 
Π and 𝜇



Example
•𝐹 is “𝑋 = 𝑌? ”.
•𝜇 is a distribution where 𝑋 = 𝑌 w.p. ½ and 
(𝑋, 𝑌) are random w.p. ½. 

A B

X Y

𝐼𝐶(𝜋, 𝜇) = 𝐼(Π; 𝑌|𝑋) + 𝐼(Π; 𝑋|𝑌) ≈

what Alice learns about Y + what Bob learns about X

SHA-256(X) [256 bits]

X=Y? [1 bit]

129 = 130 bits1 +



The information complexity of a 
problem

• Communication complexity:

𝐶𝐶 𝐹, 𝜇, 𝜀 ≔ min
𝜋 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠

𝐹 𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟 ≤𝜀

𝐶𝐶(𝜋).

• Analogously:

𝐼𝐶 𝐹, 𝜇, 𝜀 ≔ inf
𝜋 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠

𝐹 𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟 ≤𝜀

𝐼𝐶(𝜋, 𝜇).

• (Easy) fact: 𝐼𝐶 𝐹, 𝜇, 𝜀 ≤ 𝐶𝐶 𝐹, 𝜇, 𝜀 .

23

Needed!



Information = amortized 
communication

• Recall: lim
𝑛→∞

𝐶𝑛(𝑋)/𝑛 = 𝐻 𝑋

Theorem: [B.-Rao’11]

• lim
𝑛→∞

𝐶𝐶(𝐹𝑛, 𝜇𝑛, 𝜀)/𝑛 = 𝐼𝐶 𝐹, 𝜇, 𝜀 .

• Corollary:
lim
𝑛→∞

𝐶𝐶(𝐼𝑛𝑡𝑛, 0
+)/𝑛 = 𝐼𝐶 𝐴𝑁𝐷, 0



The two-bit AND

• Alice and Bob each have a bit 𝑋, 𝑌 ∈ {0,1}
distributed according to some 𝜇 on 0,1 2.

• Want to compute 𝑋 ∧ 𝑌, while revealing to 
each other as little as possible to each 
others’ inputs (w.r.t. the worst 𝜇). 

• Answer 𝐼𝐶(𝐴𝑁𝐷, 0) is a number between 1
and 2.
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The two-bit AND
Results [B.-Garg-Pankratov-Weinstein’13]: 

• 𝐼𝐶 𝐴𝑁𝐷, 0 ≈ 1.4922 bits.

• Find the value of 𝐼𝐶 𝐴𝑁𝐷, 𝜇, 0 for all 
priors 𝜇 and exhibit the information-
theoretically optimal protocol for 
computing the 𝐴𝑁𝐷 of two bits. 

• Studying 𝐼𝐶 𝐴𝑁𝐷, 𝜇, 0 as a function 
ℝ+4/ℝ+ → ℝ+ is a functional minimization 
problem subject to a family of constraints 
(cf. construction of harmonic functions). 
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The two-bit AND

• Studying 𝐼𝐶 𝐴𝑁𝐷, 𝜇, 0 as a function 
ℝ+4/ℝ+ → ℝ+ is a functional minimization 
problem subject to a family of constraints 
(cf. construction of harmonic functions). 

• We adopt a “guess and verify” strategy, 
although the general question of 
computing the information complexity of a 
function from its truth table is a very 
interesting one. 
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The optimal protocol for AND

A B

𝑋 ∈ {0,1} 𝑌 ∈ {0,1}

If X=1, A=1
If X=0, A=U[0,1]

If Y=1, B=1
If Y=0, B=U[0,1]

0

1



The optimal protocol for AND

A B

If X=1, A=1
If X=0, A=U[0,1]

If Y=1, B=1
If Y=0, B=U[0,1]

0

1

“Raise your hand when your number is reached”

𝑋 ∈ {0,1} 𝑌 ∈ {0,1}



Corollary: communication 
complexity of intersection 

• Corollary: 
lim
𝜀→0

𝐶𝐶 𝐼𝑛𝑡𝑛, 𝜀 ≈ 1.4922 ⋅ 𝑛 ± 𝑜 𝑛 .

• Specifically, e.g. 

𝐶𝐶 𝐼𝑛𝑡𝑛,
1

𝑛
≈ 1.4922 ⋅ 𝑛 ± 𝑜 𝑛 .

• Note: Require 𝜔(1) rounds of interaction. 

Using 𝑟 rounds results in +Θ
𝑛

𝑟2
cost!
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Communication complexity of Disjointness

• With some additional work, obtain a tight 
bound on the communication complexity of 
𝐷𝑖𝑠𝑗𝑛 with tiny error:

lim
𝜀→0

𝐶𝐶 𝐷𝑖𝑠𝑗𝑛, 𝜀 = 𝐶𝐷𝐼𝑆𝐽 ⋅ 𝑛 ± 𝑜(𝑛), 

where
𝐶𝐷𝐼𝑆𝐽 ≔ max

𝜇:𝜇 1,1 =0
𝐼𝐶 𝐴𝑁𝐷, 𝜇, 0 ≈ 0.4827…

• Intuition: 𝐷𝑖𝑠𝑗𝑛 is an 𝑛-wise repetition of 
𝐴𝑁𝐷, where the probability of a (1,1) is 
very low (≪ 1).
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Beyond two parties

• Disjointness in the 
coordinator model [B.-Ellen-

Oshman-Pitassi- Vaikuntanathan’13].

• 𝑘 players. 

• Each 𝑝𝑖 holding a subset 
Si ⊂ {1,… , 𝑛}

• Want to decide whether the 
intersection  𝑆𝑖 is empty.

32

𝑘



𝐷𝑖𝑠𝑗 in the coordinator model

• 𝑘 players, input length 𝑛.

• Naïve protocol: 𝑂(𝑛 ⋅ 𝑘) communication.

• Turns out to be asymptotically optimal!

• The argument uses information complexity.

– The hard part is to design the hard distribution 
and the “right” information cost measure. 
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The “hard” distribution

• Si ⊂ {1,… , 𝑛}. Want to decide whether the 
intersection  𝑆𝑖 is empty.

• Should have very few (close to 0) 
intersections. 

34



• Attempt #1: 

– Plant many 0’s (e.g. 50%):

35

1 0 0 … 1 0 1

1 0 0 … 0 1 0

0 1 1 … 0 0 1

1 0 0 … 1 0 1

𝑘

𝑛

The “hard” distribution
Coordinator keeps querying 

players until she finds a 0: 

~𝑂 𝑛 communication



The “hard” distribution

• Attempt #2: 

– Plant one zero in each coordinate

36

1 0 0 … 1 1 1

1 1 1 … 0 1 0

0 1 1 … 1 1 1

1 1 1 … 1 0 1

𝑘

𝑛

Each player sends its 

0’s: still 𝑂 𝑛 log 𝑛
communication



• “Mix” the two attempts. 

– Each coordinate has an RV 𝑀𝑖 ∼ 𝐵1/3.

– If 𝑀𝑖 = 0, plant many 0’s (e.g. 50%).

– If 𝑀𝑖 = 1, plant a single 0.

37

0 1 0 … 0 1 0

1 1 0 … 1 1 1

1 1 0 … 0 0 0

0 1 1 … 0 1 1

1 0 0 … 1 1 0

𝑘

𝑛

The “hard” distribution

𝑀𝑖



The information cost notion

• Assume the coordinator knows the 𝑀𝑖’s, 
player 𝑗 knows the 𝑋𝑖𝑗. 

• The information cost:

– what the coordinator learns about the 𝑋𝑖𝑗 ’s+

– what each player learns about the 𝑀𝑖’s

• Proving that the sum total is Ω(𝑛 ⋅ 𝑘)
requires some work, but the hardest part 
are the definitions. 
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Intuition for hardness

• Focus on a single 𝑖, 𝑗 pair: 𝑖’th coordinate, 𝑗’th
player. 

• (𝑀𝑖 , 𝑋𝑖𝑗) are equally likely to be (0,0), (0,1) and 

(1,1)

• If Mi = 1, then the coordinator needs to know Xij
(which is almost certainly 1 in this case). 

• Either 𝑃𝑖 will learn about 𝑀𝑖, or will reveal too 
much about 𝑋𝑖𝑗 when 𝑀𝑖 = 0.

39

𝑀𝑖 𝑋𝑖𝑗



Multiparty information 
complexity

• We don’t have a multiparty information 
complexity theory for general distributions. 

• There is a fair chance that the difficulty is 
conceptual. 

• One key difference between 2 players and 
3+ players is the existence of secure 
multiparty computation.
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Beyond communication

• Many applications to other interactive 
communication regimes:

– Distributed joint computation & estimation;

– Streaming;

– Noisy coding…

• We will briefly discuss a non-
communication application: two prover 
games. 
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Two-prover games

• Closely connected to hardness of 
approximation: 

– Probabilistically Checkable Proofs and the 
Unique Games Conjecture.

• A nice way of looking at constraint 
satisfaction problems. 
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The odd cycle game

• Alice and Bob want to convince Victoria 
that the 7-cycle is 2-colorable. 

• Asks them to color the same or adjacent 
vertices. Accepts if consistent. 

43
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The odd cycle game
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A B

V

𝑉𝑎

𝑉𝑏

OK

𝑉𝑎 𝑉𝑏



The odd cycle game
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A B

V

𝑉𝑎𝑉𝑏

OK

𝑉𝑎 𝑉𝑏



The odd cycle game

46

A B

V

𝑉𝑎

𝑉𝑏
𝑉𝑎 𝑉𝑏



The odd cycle game

• An example of a “unique game”.

• If the cycle is even: Alice and Bob win with 
probability 1.

• For odd cycle of length 𝑚, win with 

probability 𝑝1 = 1 −
1

2𝑚
.

• What about winning many copies of the 
game simultaneously?
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Simultaneous challenges

• Alice gets 𝑉𝑎
1, 𝑉𝑎

2, 𝑉𝑎
3, … , 𝑉𝑎

𝑘 and returns a 
vector of colors. 

• Bob gets 𝑉𝑏
1, 𝑉𝑏

2, 𝑉𝑏
3, … , 𝑉𝑏

𝑘 and returns a 
vector of colors. 

• Avoid jail if all color pairs are consistent.

𝑉𝑎
1

𝑉𝑏
1

𝑉𝑎
2
𝑉𝑏
2

𝑉𝑏
3

𝑉𝑎
𝑘

𝑉𝑏
𝑘

𝑉𝑎
3



Parallel repetition

• Play 𝑘 = 𝑚2 copies.

• A naïve strategy: 1 −
1

2𝑚

𝑚2

= 𝑒−Θ 𝑚 ≪ 1

• Can one do better?

49



Parallel repetition

• Play 𝑘 = 𝑚2 copies.

• A naïve strategy: 1 −
1

2𝑚

𝑚2

= 𝑒−Θ 𝑚 ≪ 1

• It turns out that one can win 𝑚2 copies of the 
odd cycle game with a constant probability 
[Raz’08].

• Proof by exhibiting a strategy.

50



Connection to foams
• Connected to “foams”: tilings of ℝ𝑑 with a 

shape 𝐴 so that 𝐴 + ℤ𝑑 = ℝ𝑑.

• What can the smallest surface area of A
be?

51

[Feige-Kindler-O’Donnell’07]



Connection to foams

• Obvious upper bound: 𝑂(𝑑).

• Obvious lower bound (sphere of volume 1): 

Ω( 𝑑).

• [Feige-Kindler-O’Donnell’07]: Noticed a 
connection between the problems. 

• [Kindler-O’Donnel-Rao-Wigderson’08]: a 
construction of foams of surface area 

𝑂( 𝑑) based on Raz’s strategy. 
52



An information-theoretic view

53

A B
𝑉𝑎

𝑉𝑏

• “Advice” on where to cut the cycle wins the 
game with probability 1 if the cut does not 
pass through the challenge edge. 



An information-theoretic view

54

A B
𝑉𝑎

𝑉𝑏

• Merlin can give such advice at “information 

cost” 𝑂
1

𝑚2
.



𝑉𝑎 𝑉𝑏

The distribution

55

𝑉𝑏′

• KL-divergence between the two 

distributions is Θ
1

𝑚2

• Statistical distance is Θ
1

𝑚



Taking 𝑚2 copies

• Total information revealed by Merlin:     

𝑚2 ⋅ 𝑂
1

𝑚2
= 𝑂 1 .

• Can be simulated successfully with 𝑂 1
communication, or with no communication 
with probability Ω(1). 



Parallel repetition
• Using similar intuition (but more technical work) 

can obtain a general tight parallel repetition 
problem in the “small value” regime. [B.-Garg’15]

• If one copy of a game 𝐺 has success probability 
𝛿 < 1/2, then 𝑚 copies have success probability 

< 𝛿Ω 𝑚 (*for “projection games”; for general 
games tight bound a bit more complicated)

• [Dinur-Steurer’14] obtained the result for 
projection games using spectral techniques.
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Challenges

• Information complexity beyond two 
communicating parties. 

• Continuous measures of complexity. 
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Thank You!


