682 |
“Size-dependent Ab Initio
Atomistic Thermodynamics from Cluster to Bulk: Application to Hydration of
Titania Nanoparticles”, M. Recio-Poo, Á. Morales-García, F. Illas, S. T.
Bromley, J. Phys. Chem. Lett., 15 (2024) 8240-8247 |
681 |
“Understanding the Chemical
Bond in Semiconductor/MXene Composites: TiO2 Clusters Anchored on
the Ti2C MXene Surface”, N. García-Romeral, M. Keyhanian, Á. Morales-García, F. Viñes,
F. Illas, Chem. Eur. J. 30 (2024) e202400255 (1-13) |
680 |
“Understanding the Reverse
Water Gas Shift Reaction over Mo2C MXene Catalyst: A Holistic
Computational Analysis”, D. Dolz, R. De Armas,
P. Lozano-Reis, Á. Morales-García, F. Viñes, R. Sayós, F. Illas, ChemCatChem 16
(2024) e202400122 (1-12) |
679 |
“On the Capabilities of
Transition Metal Carbides for Carbon Capture and Utilisation
Technologies”, H. Prats, A. Pajares, F. Viñes, P.
Ramirez de la Piscina, R. Sayos, N. Homs, F. Illas,
ACS Appl. Mater. Interfaces16 (2024) 28505-28516 |
678 |
“Properties of Co-doped In2O3
from Experiment and Theory”, M, Voccia, S. Kapse, R. Sayago-Carro, N. Gómez-Cerezo,
M. Fernández-García, A. Kubacka, F. Viñes, F.
Illas, ACS Appl. Mater. Interfaces., 16 (2024) 30157-30165 |
677 |
“Tuning electronic levels in
photoactive hydroxylated titania nanosystems:
combining the ligand dipole effect and quantum confinement”, M.
Recio-Poo, Á. Morales-García, F. Illas, S. T. Bromley, Nanoscale, 16 (2024) 8975–8985 |
676 |
“Chemical Bonding and Electronic
Properties along Group 13 Metal Oxides”, S. Kapse, M. Voccia, F. Viñes, F. Illas, J. Mol. Model, 30 (2024) 161 (1-10) |
675 |
“Surface Termination Dependent
Carbon Dioxide Reduction Reaction on Ti3C2 MXene”, L.
Meng, L. K. Yan, F. Viñes, F. Illas, J. Mater.
Chem. A, 12 (2024) 7856-7874 |
674 |
“Electrostatic Gating of
Phosphorene Polymorphs”, F. M. Malayee, R.
Bagheri, F. Nazari, F. Illas, J. Phys. Chem. C 128 (2024) 2997-3010 |
673 |
“Estimating Nonradiative
Excited-State Lifetimes in Photoactive Semiconducting Nanostructures”, R.
Valero, Á. Morales-Garcia, F. Illas, J. Phys. Chem. C, 128 (2024) 2713-2721 |
672 |
“Theoretical prediction of
core level binding energies: Analysis of Unexpected Errors”, C Sousa, P.
Bagus, F. Illas, J. Phys. Chem. A, 128 (2024) 895–901 |
671 |
“Computationally Screening
Non-Precious Single Atom Catalysts for Oxygen Reduction in Alkaline Media”,
T. J. Shaldehi, L. Meng, S. Rowshanzamir,
M. J. Parnian, K. Exner, F. Viñes, F. Illas, Catal. Today, 431 (2024) 114560 (1-8) |
670 |
“MXenes as Electrocatalysts
for the CO2 Reduction Reaction: Recent Advances and Future
Challenges”, L. Meng, E. Tayyebi, K. S. Exner,
F. Viñes, F. Illas, ChemElectroChem,
11 (2024) e202300598 (1-9) |
669 |
“Comprehensive Density Functional
and Kinetic Monte Carlo Study of CO2 Hydrogenation on a
Well-Defined Ni/CeO2 Model Catalyst: Role of Eley-Rideal Reactions”,
P. Lozano-Reis, P. Gamallo, R. Sayos, F. Illas, ACS
Catal., 14 (2024) 2284-2299 |
668 |
“Gas-Phase Errors in Computational
Electrocatalysis: A Review”, R. Urrego-Ortiz, S. Builes, F. Illas, F.
Calle-Vallejo, EES Catal., 2 (2024) 157-179 |
667 |
“The Nature of the Electronic Ground State of M2C (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes”, N. García-Romeral, Á. Morales-García, F. Viñes, I. de P. R. Moreira, F. Illas, Phys. Chem. Chem. Phys., 25 (2023) 31153–31164 |
666 |
“Structural and Electronic Properties of Metal/Oxide Nanostructures from first-principles: Ru13 supported on (TiO2)84 as a case study”, M. Allès, E. R. Remesal, F. Illas, Á. Morales-García, Adv. Theory Simul. 6 (2023) 2200670 (1-6) |
665 |
“Computational Pourbaix Diagrams for MXenes: A Key Ingredient towards Proper Theoretical Electrocatalytic Studies” M. López, K. S. Exner, F. Viñes, F. Illas, Adv. Theory Simul., 6 (2023) 2200217 (1-9) |
664 |
“Minimum Conditions for an Accurate Modelling of Urea Production via Co-electrolysis”, R. Urrego-Ortiz, S. Builes, F. Illas, S. T. Bromley, M. Costa Figueiredo, F. Calle-Vallejo, Commun. Chem. 6 (2023) 196 (1-10) |
663 |
“Role of N doping on the reduction of titania nanostructures: The (TiO2)84 nanoparticle as a case study”, E. R. Remesal, Á. Morales-García, F. Illas, J. Phys. Chem, C, 127 (2023) 20128–20136 |
662 |
“C1 Chemistry
on Metal Carbide Nanoparticles: Boosting the Conversion of CO2 and CH4”, J. A. Rodriguez, C. Jimenez-Orozco, E.
Flórez, F. Viñes, F. Illas, J. Phys.
Chem. C, J. Phys. Chem. C, 127 ( 2023) 16764−16780 |
661 |
“How Does Thickness Affect Magnetic Coupling on Ti-Based MXenes”, N García-Romeral, Á. Morales-García, F. Viñes, I. de P. R Moreira, F. Illas, Phys. Chem. Chem. Phys., 25 (2023) 17116 - 17127 |
660 |
“Theoretical modelling of the Hydrogen evolution reaction on MXenes: A critical review”, L. Meng, F. Viñes, F. Illas, Curr. Opin. Electrochem., 40 (2023) 101332 |
659 |
“Limitations
of free energy diagrams to predict
the catalytic activity:the reverse water gas
shift reaction catalyzed by Ni/TiC”, P. Lozano-Reis,
H. Prats, R. Sayós, F. Illas, J. Catal., 425 (2023) 203–211 |
658 |
“Importance of Broken Geometric Symmetry of Single-Atom Pt Sites for
Efficient Electrocatalysis”, J. Cho, T. Lim, H. Kim, L. Meng, J. Kim, J.
H. Lee, G. Y. Jung, F. Viñes, F. Illas, K. S. Exner, S. H. Joo, C. H Choi, Nat. Commun., 14 (2023) 3233 (1-10) |
657 |
Evaluating adsorbate-solvent interactions: are dispersion corrections necessary?”, E. Romeo, F. Illas, F. Calle-Vallejo, J. Phys. Chem, C, 127 (2023) 10134-10139 |
656 |
“Catalytic matrices to extract features of NO electroreduction on transition metal electrodes”, E. Romeo, M. F. Lezana-Muralles, F. Illas, F. Calle-Vallejo, ACS Appl. Mater. Interfaces, 15 (2023) 22176−22183 |
655 |
“Ethylene
Hydrogenation Molecular Mechanism
on MoCy Nanoparticles, C. Jimenez-Orozco,
E. Florez, F. Viñes, J.
A. Rodriguez, F. Illas, J. Phys.
Chem. C, 127 (2023) 7666-7673 |
654 |
“Toward
a Rigorous Theoretical Description of Photocatalysis Using Realistic Models”,
Á. Morales-García, F. Viñes, C. Sousa, F. Illas, J.
Phys. Chem. Lett., 14 (2023) 3712-3720 |
653 |
“Effect
of Terminations on the Hydrogen Evolution Reaction Mechanism on Ti3C2
MXene”, L. Meng, L. K. Yan, F. Viñes, F. Illas,
J. Mater. Chem. A, 11 (2023) 6886-6900 |
652 |
“Theoretical
Study of the Mechanism of the Hydrogen Evolution Reaction on the V2C
MXene: Thermodynamic and Kinetic Aspects”, M. López, K. S. Exner,
F. Viñes, F. Illas,, J. Catal. 421 (2023) 252–263 |
651 |
“A
general but still unknown characteristic of active oxygen evolution
electrocatalysts”, E. Romeo, F. Illas, F. Calle-Vallejo, Chem. Sci., 14
(2023) 3622-3629 |
650 |
“Crystal
properties without crystallinity? Influence of surface hydroxylation on the
structure and properties of small TiO2 nanoparticles”, M.
Recio-Poo, Á. Morales-García, F. Illas, S. T. Bromley, Nanoscale, 15 (2023)
4809-4820 |
649 |
“Artificial
Neural Network Derived Unified Six-Dimensional Potential Energy Surface for
Tetra Atomic Isomers of the biogenic [H, C, N, O] System”, F. Arab, F.
Nazari, F. Illas, J. Chem. Theory Comput., 19 (2023) 1186-1196 |
648 |
“A
Theoretical Analysis of Magnetic Coupling in the Ti2C bare MXene”,
N. García-Romeral, Á. Morales-García, F. Viñes, I.
de P. R Moreira, F. Illas, J. Phys. Chem. C, J. Phys. Chem. C 127 (2023)
3706-3714 |
647 |
“Gas-phase
errors affect DFT-based electrocatalysis models of oxygen reduction to
hydrogen peroxide”, M. de Oliveira Almeida, M. J. Kolb, M. R. de
Vasconcelos Lanza, F. Illas, F. Calle-Vallejo, ChemElectroChem,
9 (2022) e202200210 (1-7) |
646 |
“Molecular
Mechanism and Microkinetic Analysis of the Reverse Water Gas Shift Reaction
Heterogeneously Catalyzed by the Mo2C MXene”, A. Jurado, Á.
Morales-García, F. Viñes, F. Illas, ACS Catal., 12 (2022) 15658-15667 |
645 |
“On the
shifting summit of Sabatier-type activity plots calculated with density
functional theory”, E. Sargeant, F. Illas, P. Rodríguez, F.
Calle-Vallejo, Electrochim. Acta 426 (2022) 140799 |
644 |
“MXenes à la Carte: Tailoring the
Epitaxial Growth Alternating Nitrogen and Transition Metal Layers”, J. D. Gouveia, Á,
Morales-García, F. Viñes, J. R. B. Gomes, F. Illas,
ACS Nano, 16 (2022)
12541-12552 |
643 |
“Charting the Atomic C Interaction with Transition Metal Surfaces”,
O. Piqué, I. Z. Koleva, A. Bruix, F. Viñes, H. A. Aleksandrov, G. N. Vayssilov,
F. Illas, ACS Catal., 12 (2022) 9256-9269 |
642 |
“Effect
of Nanostructuring on the Activation of CO2 on Molybdenum Carbide
Nanoparticles”, C. Jiménez Orozco, M. Figueras, E. Flórez,
F. Viñes, J. A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys., 24 (2022)
16656-16565 |
641 |
“Understanding the effect of lattice polarisability on the electrochemical properties of lithium tetrahaloaluminates, LiAlX4 (X = Cl, Br, I)”, N. Flores-González, M. López, N. Minafra, J. Bohnenberger, F. Viñes, S. Rudić, I. Krossing, W. G. Zeier, F. Illas, D. H. Gregory, J. Mat. Chem. A10 (2022) 13467-13475 |
640 |
“Challenges for Modeling Nanostructured Materials for Photocatalytic Water Splitting”, B. Samanta, Á. Morales-García, F. Illas, N. Goga, J. A. Anta, S. Calero, A. Bieberle-Hütter, F. Libisch, A. B. Muñoz-García, M. Pavone, M. Caspary Toroker, Chem. Soc. Rev., 51 (2022) 3794-3818 |
639 |
“Effect of Oxygen Termination on the Interaction of First Row Transition Metals with M2C MXenes and the Feasibility of Single-Atom Catalysts”, M. Keyhanian, D. Farmanzadeh, Á. Morales-García, F. Illas, J. Mat. Chem. A, 10 (2022) 8846-8855 |
638 |
“The Catalytic Reduction of Carbon Dioxide on the (001), (011), and (111) surfaces of TiC and ZrC: a Computational Study”, F. Silveri, M. G. Quesne, F. Viñes, F. Illas, C. R. A. Catlow, N. H. de Leeuw, J. Phys. Chem. C, 126 (2022) 5138-5150 |
637 |
“XPS Binding Energy Shifts as a Function of Bond Distances: A Case Study of CO”, P. S. Bagus, C. Sousa, F. Illas, J. Phys. Condens. Matter, J. Phys.: Condens. Matter 34 (2022) 154004 (1-10) |
636 |
“Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides”, A. Mazheika, Y. Wang, R. Valero, F. Viñes , F. Illas, L. Ghiringhelli, S. Levchenko, M. Scheffler, Nat. Commun. 13 (2022) 419 |
635 |
“Identifying the Atomic Layer Stacking of Mo2C MXene by Probe Molecules Adsorption”, A. Jurado, Á. Morales-García, F. Viñes, F. Illas, J. Phys. Chem. C, 125 (2021) 26808-26813 |
634 |
“Adsorption and Activation of CO2 on Nitride MXenes:
Composition, Temperature, and Pressure effects”, A. Jurado, K. Ibarra, Á.
Morales-García, F. Viñes, F. Illas, ChemPhysChem, 22 (2021) 2456-2463 |
633 |
“Tuning the Interfacial Energetics in WO3/WO3 and WO3/TiO2 Heterojunctions by Nanostructure Morphological Engineering”, V. Diez-Cabanes, Á. Morales-García, F. Illas, M. Pastore, J. Phys. Chem. Lett., 12 (2021) 11528−11533 |
632 |
“Thermodynamics and Kinetics of Molecular
Hydrogen Adsorption and Dissociation on MXenes: Relevance to Heterogeneously
Catalyzed Hydrogenation Reactions”,
M. López, Á. Morales-García, F. Viñes, F.
Illas, ACS Catal., 11 (2021) 12850-12857 |
631 |
“Carbon capture and usage by MXenes”, R. Morales-Salvador, J. D. Gouveia, Á. Morales-García, F. Viñes, J. R. B. Gomes, F. Illas, ACS Catal., 11 (2021) 11248-11255 |
630 |
“Importance of the gas-phase error correction for O2 when using DFT to model the oxygen reduction and evolution reactions”, E. Sargeant, F. Illas, P. Rodríguez and F. Calle-Vallejo, J. Electroanal. Chem., 896 (2021) 115178 |
629 |
“Mo Single Atoms in the Cu(111) Surface as Improved Catalytic Active Centers for Deoxygenation Reactions”, B. Martínez, F. Viñes, P. H. McBreen, F. Illas, Catal. Sci. Technol., 11 (2021) 4969-4978 |
628 |
“Supported
Molybdenum Carbide Nanoparticles as Excellent Catalyst for CO2
Hydrogenation”, M. Figueras, R. A. Gutiérrez, F. Viñes,
P. J. Ramírez, J. A. Rodriguez, F. Illas, ACS Catal., 11 (2021) 9679-9687 |
627 |
“Assessing the activity of Ni clusters supported on TiC(001) towards CO2 and H2 dissociation”, P. Lozano-Reis, H. Prats, R. Sayós, J. A. Rodriguez, F. Illas, J. Phys. Chem. C, J. Phys. Chem. C 125 (2021) 12019-12027 |
626 |
“Understanding the Structural and Electronic Properties of Photoactive Tungsten Oxide Nanoparticles from Density Functional Theory and GW approaches”, V. Diez-Cabanes, Á. Morales-García, F. Illas, M. Pastore, J. Chem. Theory Comput. 17 (2021) 3462-3470 |
625 |
“Relating
X-Ray Photoelectron Spectroscopy Data to Chemical Bonding in MXenes”, N.
García-Romeral, M. Keyhanian, Á. Morales-García, F.
Illas, Nanoscale Adv., 3 (2021)
2793-2801 |
624 |
“Understanding
the Nature and Location of Hydroxyl Groups on Hydrated Titania Nanoparticles”,
L. Mino, Á. Morales-García, S. T. Bromley, F. Illas, Nanoscale 13 (2021)
6577-6585 |
623 |
“Concepts,
models and methods in computational heterogeneous catalysis illustrated
through CO2 conversion”, Á. Morales-García, F. Viñes, J. R. B. Gomes, F. Illas, WIREs Comput Mol Sci. (2021) e1530 |
622 |
“Size
and Stoichiometry Effects on the Reactivity of MoCy
Nanoparticles Towards Ethylene”, C. Jimenez Orozco, M. Figueras, E.
Florez, F. Viñes, J. A. Rodriguez, F. Illas, J.
Phys. Chem. C, 125 (2021) 6287-6297 |
621 |
“Interaction of First Row Transition Metals with M2C
(M=Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) MXenes: A Quest for Single-Atom Catalysts”, H. Oschinski,
Á. Morales-García, F. Illas, J. Phys. Chem. C, 125 (2021) 2477-2484 |
620 |
“Assigning
XPS features in B,N-doped graphene: Input from ab initio quantum chemical
calculations”, R. Costa, Á. Morales-García, M. Figueras, F. Illas, Phys. Chem. Chem. Phys., 23 (2021)
1558-1665 |
619 |
“The Ti2CO2
MXene as a nucleobase 2D sensor: a first-principles study”, J. D.
Gouveia, G. Novell-Leruth, F. Viñes,
F. Illas, J. R. B. Gomes, Appl. Surf. Sci., 544 (2021) 148946 (1-7) |
618 |
“Exfoliation
Energy as a Descriptor of MXenes Synthesizability and Surface Chemical
Activity”, D. Dolz, Á. Morales-García, F. Viñes, F. Illas, Nanomaterials, 11 (2021) 127 (1-12) |
617 |
“Insights
on Aklylidene Formation on Mo2C. A
Potential Overlap Between Direct Deoxygenation and Olefin Metathesis”, B.
Martínez, F. Viñes, P. McBreen, F. Illas, J. Catal., 393 (2021) 381-389 |
616 |
“Structural, Electronic and Magnetic Properties of Ni Nanoparticles Supported on the TiC(001) Surface”, P. Lozano-Reis, R. Sayós, J. A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys., 22 (2020) 26145-26154 |
615 |
“MXenes: New Horizons
in Catalysis”, Á. Morales-García, F.
Calle-Vallejo, F. Illas, ACS Catal., 10 (2020)
13487-13503 |
614 |
“Limitations
of the Equivalent Core Model for Understanding Core-Level Spectroscopies”,
P. S. Bagus, C. Sousa, F. Illas, Phys. Chem. Chem.
Phys., 22 (2020) 22617-22626 |
613 |
“First-principles
calculations on the adsorption behavior of amino acids on a titanium carbide
MXene”, J. Gouveia, G. Novell-Leruth, P. Reis,
F. Viñes, F. Illas, J. Gomes, ACS Appl. Bio Mater., 3 (2020) 5913-5921 |
612 |
“Supported
Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic
Applications” M. Figueras, R. A. Gutiérrez, P. J. Ramírez, J. A.
Rodriguez, F. Illas, J. Phys. Chem. Lett., 11 (2020) 8437-8441 |
611 |
“Bulk
(in)stability as a possible source of surface reconstruction”, M.
Figueras, A. Jurado, Á. Morales-García, F. Viñes,
F. Illas, Phys. Chem. Chem. Phys., 22 (2020) 19249-19253 |
610 |
“Elucidating the structure of ethanol-producing active sites at oxide-derived Cu electrocatalysts”, O. Piqué, F. Viñes, F. Illas, F. Calle-Vallejo, ACS Catal., 10 (2020) 10488-10494 |
609 |
“Predicting the Effect of Dopants on CO2 Adsorption on Transition Metal Carbides: Case Study on TiC (001)”, M. López, F. Viñes, M. Nolan, F. Illas, J. Phys. Chem. C, 124 (2020) 15969-15976 |
608 |
“Orbitals
Permit the Interpretation of Core-Level Spectroscopies in Terms of Chemistry”,
P. S. Bagus, F. Illas, Catal. Letters, 150 (2020) 2457-2463 |
607 |
“A Multiscale Study of the Mechanism of the Catalytic CO2
hydrogenation: the Role of the Ni(111) Facets”, P. Lozano-Reis, H. Prats,
P. Gamallo, F. Illas, R. Sayós,
ACS.
Catal., 10 (2020) 8077-8099 |
606 |
“Comprehensive
Analysis of the Influence of Dispersion on Rutile-type Solids”, A.
Morales-Garcia, F. Illas, Phys. Rev. Mater., 4
(2020) 073601 (1-7) |
605 |
“On the
use of DFT+U to describe the electronic structure of TiO2
nanoparticles: (TiO2)35 as a case study”, Á.
Morales-Garcia, S. Rhatigan, M. Nolan, F. Illas, J. Chem. Phys., 152
(2020) 244107 (1-8) |
604 |
“Ultra-highly
selective biogas upgrading through porous MXenes”, H. Prats, H. McAloone, F. Viñes, F. Illas, J. Mat. Chem. A, 8 (2020) 12296-12300 |
603 |
Mechanisms
of carbon dioxide reduction on strontium titanate perovskites”, U. Terranova, F. Viñes, N. H. de Leeuw, .F. Illas, J. Mat. Chem. A, 8
(2020) 9392–9398 |
602 |
“A
semiempirical method to detect and correct DFT-based gas-phase errors and its
application in electrocatalysis”, L. Granda-Marulanda, A. Rendon-Calle,
S. Builes, F. Illas, F. Calle-Vallejo, M. T. M. Koper, ACS Catal. 10 (2020) 6900-6907 |
601 |
“Critical
Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC (001): An Ab Initio Thermodynamic and
Kinetic Study”,
C. Jiménez Orozco, E. Florez, F. Viñes, J. A.
Rodriguez, F. Illas, ACS Catal., 10 (2020)
6213-6222 |
600 |
“Morphology
of TiO2 Nanoparticles as Fingerprint for the Transient Absorption
Spectra: Implications for Photocatalysis”, A. Morales-García, R. Valero,
F. Illas, J. Phys. Chem. C, 124 (2020) 11819-11824 |
599 |
“Neutral Organic Radical Formation by Chemisorption on Metal Surfaces”, M. R. Ajayakumar,
C. Moreno, I. Alcón, F. Illas, C. Rovira, J. Veciana, S. T. Bromley, A. Mugarza,
M. Mas-Torrent, J. Phys. Chem. Lett., 11 (2020) 3897-3904 |
598 |
“MXenes Atomic Layer Stacking Phase Transitions and their Chemical
Activity Consequences”, J. D. Gouveia, F.
Viñes, F. Illas, J. R. B. Gomes, Phys. Rev. Mater., 4 (2020) 054003
(1-9) |
597 |
“Nature
of SrTiO3/TiO2 Heterostructure from Hybrid Density
Functional Theory Calculations”, G. Di Liberto, S. Tosoni,
F. Illas, G. Pacchioni, J. Chem. Phys., 152 (2020) 184704 (1-10) |
596 |
“Towards Understanding the Role
of Carbon Atoms on Transition Metal Surfaces: Implications for Catalysis”, B. Martínez, O. Piqué, H. Prats,
F. Viñes, F. Illas, Appl. Surf. Sci., 513 (2020)
145765 (1-7) |
595 |
“Facile
Heterogeneously Catalyzed Nitrogen Fixation by MXenes”, J. D. Gouveia, Á.
Morales-García, F. Viñes, J. R. B. Gomes, F. Illas,
ACS Catal. 10 (2020) 5049-5056 |
594 |
“Boosting
the activity of transition metal carbides towards methane activation by
nanostructuring”, M. Figueras, R. Gutierrez, H. Prats, F. Viñes, P. J. Ramirez, F. Illas, J. A. Rodriguez, Phys. Chem.
Chem. Phys., 22 (2020) 7110-7118 |
593 |
“Designing
water splitting catalysts using rules of thumb: advantages, dangers and
alternatives”, O. Piqué, F. Illas, F. Calle-Vallejo, Phys. Chem. Chem. Phys., 22 (2020) 6797-
6803 |
592 |
“MXenes as promising catalysts for water dissociation”, J. D.
Gouveia, A. Morales-García, F. Viñes, F. Illas, J. R. B. Gomes, Appl. Catal. B:
Environ., 260 (2020) 118191 |
591 |
“Investigating the Character of
Excited States in TiO2 Nanoparticles from Topological Descriptors:
Implications for Photocatalysis”, R. Valero, Á. Morales-García, F. Illas, Phys. Chem. Chem. Phys., 22
(2020) 3017-3029 |
590 |
“Critical Effect of Carbon Vacancies on the Reverse Water Gas Shift
Reaction over Vanadium Carbide”, A. Pajares, H. Prats, A. Romero, F. Viñes, P. Ramírez de la Piscina, R. Sayós,
N. Homs, F. Illas, Appl. Catal. B: Environmental,
262 (2020) 118719 (1-10) |