589
|
“Thickness Biased Capture of
CO2 on Carbide MXenes”, A. Morales-García, M. Mayans, F. Viñes, F. Illas, Phys. Chem. Chem. Phys., 21 (2019)
23136-23142
|
588
|
“MXenes
as promising catalysts for water dissociation”, J. D. Gouveia, A.
Morales-García, F. Viñes, F. Illas, J. R. B. Gomes,
Appl. Catal. B, 260 (2020) 118191
|
587
|
“Assessing the Usefulness of
Transition Metal Carbides for Hydrogenation Reactions”, H. Prats, J. J. Piñero, F. Viñes, S. T.
Bromley, R. Sayós, F. Illas, Chem. Comm., 55 (2019)
12797-12800.
|
586
|
“Electronic Properties of Realistic Anatase TiO2
Nanoparticles from G0W0
Calculations on a Gaussian and Plane Waves Based Scheme”, A. Morales-García,
R. Valero, F. Illas, J. Chem. Theory Comput., 15 (2019)
5024-5030
|
585
|
Kinetic Monte Carlo simulations unveil synergic
effects at work on bifunctional catalysts”,
H. Prats, S. Posada-Pérez, J. A. Rodriguez, R. Sayós,
F. Illas, ACS Catal. 9(2019) 9117-9126
|
584
|
“CeO2(111) electronic reducibility tuned by ultra-small
supported bimetallic Pt-Cu clusters”, L. O. Paz-Borbón.
F. Buendía, I. L. Garzón, A. Posada Amarillas, F. Illas, J. Li., Phys. Chem.
Chem. Phys., 21 (2019) 15286-15296
|
583
|
“Implicit Solvent Effect in the Determination of Brønsted-Evans-Polanyi Relationships for Heterogeneously
Catalyzed Reactions”, J. R. B. Gomes, F. Viñes,
F. Illas, J. Fajín, Phys. Chem. Chem. Phys., 21
(2019) 17687 - 17695
|
582
|
“Approaching Multiplet Splitting in X-Ray Photoelectron Spectra by
Density Functional Theory Methods: NO and O2 molecules as examples”,
C. Sousa, P. S. Bagus, F. Illas, Chem. Phys. Lett.,
731 (2019) 136617 (1-5)
|
581
|
“Efficient Preparation of TiO2 Nanoparticle Models using
Interatomic Potentials”, A. Macià Escatllar, Á. Morales-García, F. Illas, S. T. Bromley, J.
Chem. Phys., 150 (2019) 214305 (1-10)
|
580
|
“Double-well potential energy in the interaction between h-BN and Ni(111)”, J. Ontaneda, F. Viñes, F. Illas, R. Grau-Crespo, Phys. Chem. Chem. Phys.,
21 (2019) 10888-10894
|
579
|
“Understanding the Interplay between Size, Morphology and Energy Gap
in Photoactive TiO2 Nanoparticles”, A. Morales-García, A. Macia-Escatllar, F. Illas, S. T. Bromley, |Nanoscale 11 (2019)
9032–9041
|
578
|
“Effect of Electron Correlation in the Decomposition of Core Level
Binding Energy Shifts into Initial and Final State Contributions”, M. Figueras, C. Sousa, F. Illas, Phys. Chem. Chem. Phys., 21
(2019) 9399-9406
|
577
|
“Correcting Flaws in the Assignment of Nitrogen Chemical Environments
in N-Doped Graphene”, M. Figueras, I. J.
Villar-Garcia, F. Viñes, C. Sousa, V. A. de la Peña
O'Shea, F. Illas, J. Phys. Chem. C,
123 (2019) 11319-11327
|
576
|
“Differential Many-Body Effects for Initial and Core-Ion
States: Impact on XPS Spectra”, P. S. Bagus, C. Sousa, F. Illas, Theoret.
Chem. Acc., 138 (2019) 61
(1-9)
|
575
|
“Combining Theory and Experiment for a Multitechnique
Characterization of Activated CO2 on Transition Metal Carbide
(001) Surfaces” C. Kunkel, F. Viñes, P. J.
Ramírez, J. A. Rodriguez, F. Illas, J. Phys. Chem. C, 123 (2019) 7567-7576
|
574
|
“Room Temperature Methane Capture and Activation by
Ni Clusters Supported on TiC(001): Effects of
Metal-Carbide Interactions on the Cleavage of the C-H Bond”, H. Prats,
R. A. Gutiérrez, J. J. Piñero, F. Viñes, S. T. Bromley, P. J.
Ramírez, J. A. Rodriguez, F. Illas, J. Am. Chem. Soc., 141 (2019) 5303-5313.
|
573
|
“Affordable Estimation of Solvation
Contributions to the Adsorption Energies of Oxygenates at Metal Nanoparticles”, F. Calle-Vallejo, R.
Ferreira de Morais, F. Illas, D. Loffreda, P. Sautet, J. Phys. Chem.
C, 123 (2019) 557-5582
|
572
|
“Surface Activity of Early Transition Metal Oxycarbides:
CO2 Adsorption Case Study”, C. Kunkel, F. Viñes,
F. Illas, J. Phys. Chem. C, 123 (2019) 3664-3671
|
571
|
“Subsurface Carbon – a General Feature of
Noble Metals”, O. Piqué, I. Z. Koleva, F. Viñes, H. A. Aleksandrov, G. N. Vayssilov, F.
Illas Angew. Chem. Int. Ed., 58 (2019) 1744-1748
|
570
|
“Diversity of Adsorbed Hydrogen on TiC (001)
Surface at High Coverages”, J. J. Piñero, P. J.
Ramirez, S. T. Bromley, F. Illas, F. Viñes, J. A
Rodríguez, J. Phys. Chem. C, 122 (2018) 28013−28020
|
569
|
“Assessing the Performance of Cobalt-Phthalocyanine Nanoflakes as
Molecular Catalysts for Li-Promoted Oxalate Formation in Li-CO2-Oxalate
Batteries”, M. Goodarzi, F. Nazari, F. Illas,
J. Phys. Chem. C, 122 (2018) 25776-267884
|
568
|
Two-Dimensional
Nitrides as Highly Efficient Potential Candidates for CO2 Capture
and Activation”,
R. Morales-Salvador, A. Morales-García, F. Viñes,
F. Illas, Phys. Chem. Chem. Phys. 20 (2018)
17117-17124
|
567
|
“Tuning Transition Metal Carbides Activity by Surface Metal Alloying:
Case Study on CO2 Capture and Activation”, M. López, L. Broderick,
J. J. Carey, F. Viñes, M. Nolan, F. Illas, Phys. Chem. Chem. Phys., 20 (2018) 22179 -
22186
|
566
|
“Electronic and structural properties of Lin@Be2B8
(n=1-14) and Lin@Be2B36 (n=1-21)
nanoflakes shed light on possible anode materials for Li based batteries”,
M. Goodarzi, F. Nazari, F. Illas, J. Comput. Chem., 39
(2018) 1795-1805
|
565
|
“Understanding W Doping in Wurtzite ZnO”, F. Viñes,
A. Iglesias-Juez, M. Fernández-García, F. Illas, J.
Phys. Chem. C, 122 (2018) 19082-1908
|
564
|
“Theoretical Modeling of Electronic Excitations of Gas-Phase and
Solvated TiO2 Nanoclusters and Nanoparticles of Interest in
Photocatalysis”, R. Valero, A.
Morales-García, F. Illas, J. Chem. Theory Comput.,
14 (2018) 4391-440
|
563
|
“CO2 Interaction with Violarite (FeNi2S4)
Surfaces: a Dispersion-Corrected DFT Study”,
S.
Posada-Pérez, D. Santos-Carballal, U.
Terranova, A. Roldan, F. Illas, N. H. de Leeuw, Phys. Chem. Chem.
Phys., 20 (2018) 20439-20446
|
562
|
“Robustness of Surface Activity Electronic-Structure Based Descriptors
of Transition Metals”, L. Vega, B. Martínez , F. Viñes, F. Illas, Phys. Chem. Chem. Phys., 20 (2018) 20548-20554
|
561
|
“Reliable and Computationally Affordable Prediction of the Energy Gap
of TiO2 Nanoparticles from Density Functional Theory”, Á.
Morales-García, R. Valero, F. Illas, Phys. Chem. Chem. Phys., 20 (2018) 18907-18911.
|
560
|
“Biogas upgrading by transition metal
carbides”, C. Kunkel, F. Viñes, F. Illas, ACS
Appl. Energy Mater., 1 (2018) 43-47
|
559
|
“General concepts, assumptions, drawbacks
and misuses in Kinetic Monte Carlo and microkinetic modelling simulations
applied to computational heterogeneous catalysis”, H. Prats, F. Illas, R.
Sayós, Int. J. Quantum Chem., 118 (2018) e25518
(1-14)
|
558
|
“Post-B3LYP functionals do not improve the
description of magnetic coupling in Cu(II) dinuclear
complexes”, R. Costa, D. Reta, I. de P. R. Moreira, F. Illas, J. Phys. Chem. A, 122 (2018) 3423-3432
|
557
|
“On the prediction of core level binding energies in
molecules, surfaces and solids”, F. Viñes,
C. Sousa, F. Illas, Phys. Chem. Chem. Phys., 20 (2018) 8403 -
8410
|
556
|
“CO2 abatement by
two-dimensional MXene carbides”, A. Morales-García, A. Fernández-
Fernández, F. Viñes, F. Illas, J. Mater. Chem. A, 6
(2018) 3381-3385
|
555
|
“Assessing
GW approaches for predicting core
level binding energies”, M.
J. van Setten, R. Costa, F. Viñes,
F. Illas, J. Chem. Theory Comput., 14 (2018) 877-883
|
554
|
“Matildite Contact with Media: First-Principles
Study of AgBiS2 Surfaces and Nanoparticle Morphology”, F. Viñes, G. Konstantatos, F.
Illas, J. Phys. Chem. B,
122, 2018, 521-526
|
553
|
“On
the H2 Interaction on Transition Metal Adatoms Supported on
Graphene: A Systematic Density Functional Study”, M. Manadé, F. Viñes,
A. Gil, F. Illas, Phys. Chem. Chem. Phys., 20 (2018) 3819-383
|
552
|
“Properties of Single Oxygen Vacancies on
a Realistic (TiO2)84 Nanoparticle: A Challenge for
Density Functionals”, A. Morales-García, O. Lamiel-García, R. Valero, F. Illas, J. Phys. Chem. C, 122 (2018) 2413-2421.
|
551
|
“Jacob’s Ladder as Sketched by Escher:
Assessing the Performance of Broadly-Used Density Functionals on Transition
Metal Surface Properties”, L. Vega, J. Ruvireta,
F. Viñes, F. Illas, J. Chem. Theory Comput., 14 (2018) 395-403
|
550
|
“Highly-Active
Au/δ-MoC and Au/b-Mo2C
Catalysts for the Low-Temperature Water Gas Shift Reaction: Effects of the Carbide
Metal/Carbon Ratio on the Catalyst Performance”, S.
Posada-Pérez, R. Gutiérrez,
Z. Zuo, P. Ramírez, F. Viñes,
P. Liu, J. Rodriguez, F. Illas, Catal.
Sci.
& Technol., 7 (2017) 5332-5342
|
549
|
“Size dependent level alignment between
rutile and anatase TiO2 nanoparticles: implications for
photocatalysis”, K. C. Ko, J. Y. Lee, S. T. Bromley, F. Illas, J. Phys. Chem. Lett.,
8 (2017) 5593-5598
|
548
|
“Bandgap Engineering by Cationic Disorder:
case study on AgBiS2”, F. Viñes,
G. Konstantatos, F. Illas, Phys. Chem. Chem.
Phys., 19 (2017) 24264-24270
|
547
|
“Calix[n]arene-based Polyradicals:
Enhancing Ferromagnetism by Avoiding Edge Effects”, D. Reta, I. de P.R.
Moreira, F. Illas, Phys. Chem. Chem. Phys., 19 (2017)
24264-24270
|
546
|
“An Empirical, Yet Practical Way to
Predict the Band Gap in Solids by Using Density Functional Band Structure
Calculations”, A. Morales García, R. Valero, F. Illas, J. Phys. Chem. C, 121 (2017) 18862-18866
|
545
|
“Performance
of the G0W0 Method in Predicting the
Electronic Gap of TiO2 Nanoparticles”, A. Morales García, R. Valero, F. Illas, J. Chem. Theory Comput.,
13 (2017) 3746-3753
|
544
|
“Reduction of Hydrogenated ZrO2
Nanoparticles by Water Desorption”, A. Ruiz Puigdollers,
F. Illas, G. Pacchioni, ACS Omega, 2 (2017)
3878-3885
|
543
|
“Size Dependent Structural and Polymorphic
Transitions in ZnO: from Nanocluster to Bulk”,
F. Viñes, O. Lamiel-Garcia,
F. Illas, and S. T. Bromley, Nanoscale, 9 (2017) 10067-10073
|
542
|
“Assessing the
ability of DFT methods to describe static electron correlation effects: CO
core level binding energies as a representative case”, N. Pueyo Bellafont, P. S. Bagus, C. Sousa, F. Illas, J. Chem. Phys., 147, (2017)
024106 (1-7)
|
541
|
“ZrO2
Nanoparticles: A Density Functional Theory Study of Structure, Properties and
Reactivity”, A. Ruiz Puigdollers, F. Illas, G. Pacchioni, Rend. Fis. Acc. Lincei 28 (2017) (Suppl 1) S19–S27
|
540
|
“Substrate mediated single transition metal atom isolation: dispersion of
Ni and La on g-graphyne”, S. Kim, P. Gamallo, F. Viñes, J. Y. Lee, F.
Illas, Theoret. Chem. Acc., 136 (2017) 80 (1-9)
|
539
|
“Effective and Highly Selective CO
Generation from CO2 Using a Polycrystalline a-Mo2C
Catalyst”,
X. Liu, C. Kunkel, P. Ramírez de la Piscina, N. Homs, F. Viñes,
F. Illas, ACS Catalysis, 7 (2017) 4323-4335
|
538
|
“ZnO Powders As Multi-Facet Single Crystals”,
F. Haque, S. Chenot, S. Stankic,
J. Jupille, F. Viñes, F.
Illas, Phys. Chem. Chem. Phys., 19 (2017) 10622-10628
|
537
|
“When anatase nanoparticles become
bulk-like: Properties of realistic TiO2 nanoparticles in the 1 – 6
nm size range from all-electron relativistic density functional theory based
calculations” O. Lamiel-Garcia, K. C. Ko, J. Y.
Lee, S. T. Bromley, F. Illas, J. Chem. Theory Comput.,
13 (2017) 1785-1793
|
536
|
“Adding pieces to the CO/Pt(111) puzzle:
The role of dispersion” P. Janthon, F. Viñes, J. Sirijaraensre, J. Limtrakul, F. Illas, J. Phys. Chem. C, 121 (2017) 3970-3977
|
535
|
“Systematic study of the effect of HSE
functional internal parameters on the electronic structure and band gap of a
representative set metal oxides”, F. Viñes, O. Lamiel-García, K. C. Ko, J. Y. Lee, F. Illas, J. Comput. Chem., 38 (2017) 781-789
|
534
|
“Carbon
Dissolution and Segregation in Platinum”, P. Janthon,
F. Viñes, J. Sirijaraensre,
J. Limtrakul, F. Illas, Catal.
Sci. Technol., 7 (2017) 807-816
|
533
|
“Electronic structure of stoichiometric
and reduced ZnO from periodic relativistic all
electron hybrid density functional calculations using numeric atom-centered
orbitals”, F. Viñes and F. Illas, J. Comput. Chem., 38 (2017) 523-529
|
532
|
“Predicting Core Level Binding Energies
Shifts: Suitability of the Projector Augmented Wave Approach as Implemented
in VASP”, N. Pueyo Bellafont,
F. Viñes, W. Hieringer, F.
Illas, J. Comput. Chem., 38 (2017) 518–522
|
531
|
“Influence of NO and (NO)2
Adsorption on the Properties of Fe-N4 Porphyrin-Like Graphene Sheet”, E. Ashori, F. Nazari, F. Illas, Phys. Chem. Chem.
Phys., 19 (2017) 3201-3213
|
530
|
“Selectivity for CO2 over CH4
on a Functionalized Periodic Mesoporous Phenylene-Silica Explained by
Transition State Theory”, C. Kunkel, F. Viñes,
M. A. O. Lourenço, P. Ferreira, J. R. B. Gomes, F. Illas, Chem. Phys. Lett.,
671 (2017) 161-164
|
529
|
“Predicting Size-dependent
Emergence of Crystallinity in Nanomaterials: Titania Nanoclusters versus
Nanocrystals”, O. Lamiel Garcia, A. Cuko, M. Calatayud, F. Illas,
S. T. Bromley, Nanoscale, 9 (2017) 1049-1058
|
528
|
“Adsorption and dissociation of molecular
hydrogen on orthorhombic b-Mo2C
and cubic d-MoC
(001) surfaces”,
S. Posada-Pérez, F. Viñes, R. Valero, J. A.
Rodriguez, F. Illas, Surf.Sci. 656 (2017) 24-32
|
527
|
“Adsorption of CO on the Rutile TiO2(110)
Surface: A Dispersion-Corrected Density Functional Theory Study”, J.
Paulo Prates Ramalho, F. Illas, J. R. B. Gomes,
Phys. Chem. Chem. Phys. 19 (2017) 2487-2494
|