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Multidimensional Dependencies
in Classification and Ordination

Carles M. Cuadras!

ABSTRACT The relations between two distance matrices on the same
finite set are analyzed, via metric scaling, by correlating principal axis.
Some applications are given and illustrated with examples.

1.1 Introduction

Dissimilarities, similarities and distances are fundamental concepts in mul-
tidimensional scaling and related topics. Euclidean and Mahalanobis dis-
tance also play a basic role in techniques such as regression and discrim-
ination. In many cases, distances are computed by observing variables on
individuals, but in general, the dependence between variables is not taken
into account. Mahalanobis, and its extension Rao’s distance, is an impor-
tant exception. This distance between two observations «, y, say,

(z —y)T ™ (z—y)

depends on the covariance matrix X, hence its computation is not possible
when the variables are categorical, binary or mixed. In such situations,
distances are obtained from similarities such as Jaccard (binary), matching
(categorical) and Gower (mixed) coefficients. Other coefficients are possible,
but none of them has the property of including the relationships among
variables.

Motivated by this problem, [CF97b] recently introduced related metric
scaling, a new multidimensional scaling method to represent objects when
two distances are defined on them. This method is based on the construc-
tion of a joint distance that has some compatible properties, especially
identifying and discarding redundant information.
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1.2 Metric scaling

Given a set Q of n individuals or objects labelled {1,2,...,n}, say, and
an n x n Euclidean distance matrix A = (d;;), where §;; = d(4,5) > 0
is a distance measure between ¢ and j, let us recall that the Euclidean
coordinates, in some RF | are the rows of an n X p matrix X such that

B=XX. (1)
Matrix B is obtained from A by B = HAH, where H is the centring
matrix and A = —((52»2]»)/2. Let the spectral decomposition B = UAU,

where A is diagonal and contains the eigenvalues of B in decreasing order.
Then a suitable solution of (1) is

X =UA'Y2 (2)

The rows of X are called principal coordinates, their Euclidean distances
reproduce A and the columns of X, understood as variables, can be inter-
preted as principal components: they are uncorrelated, the variances are
maximum, and the first coordinates give the best fit to the initial distance,
le.,

87 0 dF(2) = (win — 1) + (wi2 — 2j2)°
if a two-dimensional representation by means of the coordinates (1, #;2),
t=1,...,n1s desired.

Note that B is positive semi-definite (p.s.d.), i.e., B > 0, the columns of
X = UAY/? are eigenvectors of B and only ¢ < p = rank(B) principal axes
are used to represent the n objects {1,2,...,n}. The rows of U are called
standard coordinates.

For an extensive description of metric scaling, see [CC94]. Finally, let us
write

A~ B
to indicate that B is related to A and recall that B is p.s.d. if and only
if A is a Euclidean distance matrix. The relation between A = (4;;) and
B = (b”) 1s
875 = bii + bjj — 2bij,
or, in matrix form
AP =1 +b'1-2B,
where 1 is the vector of ones, A2) = ((52»2]») and b= (b11...bppn) .
The rank order of A = (&;;) is

6i1j1 §6i2j2 S S(SZ m:n(n_ 1)/2

mim
Although the rank order is a concept rather used in non-metric multidi-
mensional scaling, we will study its invariance in related metric scaling.
This invariance is a convenient property in proximity analysis. The rank
order through a principal axis (a column of X) can be similarly defined
using the distances defined by the corresponding principal coordinates.
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1.3 Joining two distances

Suppose that, from two different sources of information, we obtain two
Euclidean distance matrices Ay = (d1(4, 7)), Az = (d2(¢,4)) on the same
set © labelled {1,2,...,n} (Example: n political parties, d1(Z,j) measures
ideology discrepancy, d2(7, j) the times that ¢ and j do not vote the same
in an assembly).

Let A, ~ B, = XOCX;, a = 1,2, where Xy, X5 are the matrices of

principal coordinates. The orthogonality between A; and A 1s defined by
Xlle == 0

Orthogonality implies total incorrelation between principal axes.
Our aim is to define a joint distance §1» from §;,d5. The average, or
better the sum
5 = 62 4 52 3)
is a simple construction, with some advantages, but it implicity presupposes
orthogonality. A more convenient definition is now given.

DEFINITION: Let #;(«)’, ;(«)" be the principal coordinates of ¢ and j
corresponding to the distance A,, a = 1, 2. The joint distance matrix Aqs
is defined as

0a(i, ) = 63 (1, 4) + 03 (i, j) — m2(i. j), (4)

where
T2 (i, j) = (@:(1) — 25 (1) AT X X007 (@0(2) — 2(2) -

It can be proved that the joint distance matrix Ay is such that Ay ~
B> where

Bis= B + By — (B}“Bé/z + Bé/zB}/z) /2 (5)

with

BY? = U AU, = X AZV?X,, a=1,2.
The term 75 encodes the dependence or redundancy between the two dis-
tances, and furnishes the joint distance with properties of compatibility
with the rank order, the invariance of principal axes, the correlation be-
tween coordinates.

1.4 Properties of the joint distance

The joint distance (4) has some interesting properties. In view of these, the
construction of 415 has some analogies with the construction of probability
distributions with given marginals [Cua92]. Here 41,d2 play the role of
marginal distances.
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1) TIf §; = 0 then d12 = da.
If 6 = 0 then 612 = ;.
2) If &1 = 6y then 610 = 81 = ds.
3) 1If &; and Jy are orthogonals, then

6%y =67 + 3. (6)

Comment: Properties 1) and 2) show that the joint distance do not change
when the second distance is zero or both distances are identical. Property
3) is a distance version of the Pythagoras theorem.

4) If 6;;(2) = ¢, i # j, where ¢ > 0 is a constant, then d; and d;5 have
the same rank order.

5) If 61 and d2 have a common principal axis, i.e., By and B has a
common eigenvector, with eigenvalues A (1), A (2) respectively, then
019 shares the same principal axis with eigenvalue

Me = Mk (1) + Ae(2) — e (DAe(2)) 72 (7)

Comment: 4) says that if J; is not informative 612 essentially preserves d;.
Regarding 5), note that constructing 12 using (3) also shares a common
axis, but the eigenvalue is Ag (1) + Ax(2). Thus the inertia becomes inflated.
Instead, (4) gives A = Ap(1) = Ax(2) if both eigenvalues are equal, see (7).
Also note that the rank order defined by this axis 1s invariant.

6) If 4, and d2 are Euclidean, with related coordinates X, and X, then
419 1s also Euclidean and does not depend on the coordinates.

Comment: The formula giving Bjs ensures that d15 is independent of the
coordinates. Moreover Bis > 0 as a consequence of

Bys — (B}/Z—Béﬁ)z = (BI”+BY*) 220

7) Let Rjs be the p; x ps matrix whose entries are the correlations
between the p; columns of X; and the ps columns of X5 and let
R21 = R/12 Then

1
B, = X, X| + XX, — 3 (X1 R12X5 + XoRo XY)

Comment: This correlation matrix is given by

Ri» = U U,,
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where U; and U, are the standard coordinates.
If p1 = p2, a global measure of association between A; and A, is

7]2 = det(Rlz)z.

This measure reduces to the squared correlation coefficient between X
and Xy when p; = ps, = 1.

8) 0<n<l,
n? = 0 if 6; and &y are orthogonal,
7]2 =1 1f61 :(52.

1.5 Joining two classifications

Suppose that (C1,7v1) and (Ca,v2) are two hierarchical clustering schemes
on the same set 2 = {1,... n}.

That 1s, € is a hierarchical structure of nested clusters and v, is a
level function satisfying vi(¢) < v (¢') if ¢ C ¢ € Cy. Tt is well-known
that (Cy,7y1) is related to an ultrametric distance u; [Joh67]. Similarly
(Cg,72) is related to us. Reciprocally, given an ultrametric distance u we
can construct a hierarchical clustering scheme (C', ).

Suppose that we wish to gather two hierarchies (Cy,41), (C2,72) in order
to obtain a possibly more objective classification represented by (Cia,712).
One way to do this is simply to construct the joint distance uis, to fit an
ultrametric 7, to u12, and to build (Cia,712) from uj,.

The joint distance can preserve certain clusters. Suppose that u; defines
a clustering

Q=0+ + U+ + Qg

where each €2 is a maximal cluster and #(Qx) = ng > 1, for some k, where
ni+---+n,=mn,and

he =wui(i,j) i#j€

are the common distances. [CO87] showed that, related with €2, there is a
matrix X, of principal coordinates whose columns define n; — 1 principal
axes with common variances

1

If uy defines another clustering having a coincident cluster €2, then it
defines the same principal axes with common variances X, . Consequently,
from property 5), these axes remain with the joint distance ujs. Thus Q4
is also a cluster related to uys. In general, the joint classification does not
break common clusters if there are several.
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1.6 Joining probability densities

Improving the construction of probability densities from distances is an-
other application of the joint distance (4). Let X be a random vector with
density f(#) with respect to a suitable measure, e.g., Lebesgue measure.
[CF95] define the geometric variability of X with respect to a distance ¢ as

Vi(X) = 5 [ (.0 (o) flw)dady,

where S is the support of X. [CCO97] introduced and studied the proximity
function to apply in discrimination

63 () = / 5z, y) fw)dy — Va(X),  weS,

which can be estimated without knowing f(#), and used as a discriminant
function with some advantages.

By affine transformation 6% — ad? + b giving ¢3 — a¢? + b/2, we can
consider the probability density generated by ¢

fa(x) = exp (=3 (x))

1.e., choosing a, b such that /fg(az)daz =1
s
To compare f to fs, [CCF9Tb] showed that

I(f; f5) = Vs(X) = H(f) > 0,

where I(f; fs) is the Kullback-Leibler divergence between f and fs5 and
H(f) is the Shannon entropy. When V5 (X) is close to H(f), this indicates
the agreement between the true density f and fs.

Suppose we now have two dependent random vectors X7, X» with related
distances dp, d2, respectively. So 4 (®,y) is the distance between observa-
tions of X, a = 1,2. Let us consider a joint distance for the joint random
vector X = (X1, X»). The use of distance (3) leads to the proximity func-
tion

P35+ (21, w2) = 65, (v1) + 65, (22).
The probability density generated by §* is then

fé*(l‘l,l‘z) = exXp (—¢§*($1,$2))
Jo, (1) f5, (22),

l.e., §* implicitly assumes independence of X7 and X».
Alternatively, suppose that we consider the joint distance d15 defined in
(4). Then it can be proved that

Vor (X) = V5, (X1) + Ve, (X)
Vo (X) = H(f).

Y
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Thus the density constructed from §12

fém(l‘l, l‘z) = exXp (—¢§12(l‘1, l‘z)) )

is closer to f, the true density of (X1, X2). See [CF97a] for further details.

1.7 Related metric scaling

The graphical representation of {2 using principal coordinates, computed
from a joint distance Ajs, obtained from A, As using (4), is the objective
of the related metric scaling. The eigendecomposition of By, see (5), gives
the principal coordinates.

To achieve a consistent representation, both distance matrices must have
the same geometric variability:

S0 = 5 )

<] <]

This equality is possible by multiplying one distance by a suitable con-
stant, which amounts to a change of measurement unit, but without chang-
ing the representation.

A generalization is as follows. Suppose that Ay, ..., Aj are ¢ > 2 distance

matrices of order n X n on the same finite set. Let A, ~ B,, a=1,...,9
and consider
g 1 Z "
B=> B.—- Y B/'BjJ" (8)
a=1 g a#pf=1

It can be proved that B is p.s.d., and has some interesting properties.
The joint distance matrix is A such that A ~ B. If X;,---, X, X are
the principal coordinates obtained from A, - -, A , A, the related metric
scaling representation or principal coordinate representation of Q from A
using X satisfies:

1) A =---=A; then X; == X, = X.
2) f X, Xg=0,a#3=1,---,g, then X = [X1;--; X].

3) In general, X provides an average representation which takes into
account the redundancy of the marginal distances.

The redundancy can be measured by using ¢ = g(1 — €)/(g — 1), where

__ tr(B)
€ o ?:1 t?“(BZ') ’

We have 0 < 8 <1, with § = 0 or § = 1 if there is orthogonality or equality,
respectively.
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Figure 1 is a simple illustration. The faces are described by the distances
between landmark points and the 3 cases above (equality, orthogonality
and redundancy) are well represented. Note that we need 4 dimensions in
the second case (this is expressed displaying both faces), that is, we cannot
obtain a joint 2-dimensional representation of these two orthogonal faces.

T _ * -
— _— —t -
+ — * *
— S

Figure 1. Related metric scaling representation of two faces showing
equality, orthogonality and redundancy.

1.8 Two examples

Suppose we have five political parties labelled R, C, S, I, P. The first dis-
tance matrix A; measures diferencies according to some sociopolitical vari-
ables. Ay = (J;;(2)) is such that 6;;(2) is the percentage of occasions on
which ¢ and j vote differently in an assembly during one year.

Figure 2 is a multidimensional scaling (MDS) representation of the par-
ties. The right part of the figure is a classification using an ultrametric tree.
Distance Ay is used in both cases. Note two maximal clusters {I, S}, {R, C}
and that P is an isolated object, joining the other parties at a higher level.

Figure 3 is the representation using As. A major agreement between |
and P closes both and now P forms a cluster with C, R.

Figure 4 uses the joint distance matrix Ajs. As for the MDS represen-
tation, it is an ‘average’ of the other two representations. Note that Ajs
preserves the clusters {I, S} and {R, C}. For other examples, see [CF9TD].
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T3
R
c T2
s
T1
P
I

® L0

I s R c P

Figure 2. Representation of five political parties according to their ideology.
T4
T3
s
R +2
c

J/ T |
1 P 19

I s c R P

Figure 3. Representation according the agreement in voting.
T4
T3
R +2
c
s

_l J/ T |
I p ) 40

I s c R P

Figure 4. Related metric scaling representation and classification using a
joint distance.
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Finally, the joint distance related to B in (8) has been applied to obtain
a joint representation of ¢ = 50 pictures of metaphase planes of the human
chromosomes. Figure 5 is the related metric scaling representation, giving
an ideal position of the chromosome pairs. [CCF97a].

12

9 19

16

20 14 12

13 4

20 19

17
22

Figure 5. Ideal position of the 23 pairs of human chromosomes in the
metaphase plane obtained by related metric scaling from g=50 pictures.

1.9 Conclusions

It has been shown, theoretically and with examples, that the joint distance
(4) obtained from two given distances on the same finite set provides a
joint representation, preserving the inertia of the principal axes and the
common clusters. The construction of probability densities related to two
random vectors is another application. This procedure can be generalized
to ¢ > 2 distances and some measures of association and redundancy can
be obtained.
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