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ABSTRACT

The investigation of a distance-based regression model, using a one-dimensional

set of equally spaced points as regressor values and /|x — y| as a distance function,
leads to the study of a family of matrices which is closely related to a discrete analog
of the Brownian-bridge stochastic process. We describe its eigenstructure and several
properties, recovering in particular well-known results on tridiagonal Toeplitz matrices
and related topics. © 1997 Elsevier Science Inc.

1. INTRODUCTION

The distance-based regression model (Cuadras, 1989; Cuadras and Are-
nas, 1990; Cuadras et al., 1996) is an extension of the ordinary linear model
which can be applied to qualitative or, in general, to mixed continuous and
discrete explanatory variables, provided that a distance & can be defined on
the set of values of these variables.

A brief description of the method is as follows: Assume we are given n
cases or individuals, on which the values y,,..., y, of a continuous response
variable y have been observed, corresponding to the values wy,...,w, of a
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set of explanatory variables. We compute the n X n distance matrix A =
(8(w,, wj)), and from it, we obtain the matrix X of principal coordinates (see
below). Then we perform an ordinary least-squares regression of y, taking
the columns of X as predictors.

Principal-coordinate analysis, also called classic metric scaling, is a solu-
tion to the following problem: given an n X n symmetric matrix A whose
entries are the distances between the elements of a set %, we want to obtain
n vectors {x;,, 1 <i < n} in some R*, such that the Euclidean distance
b, — X; | equals the (z j)entry in A, 1 <i,j < n. Such a set of vectors is
called a Euclidean configuration for %. See, e.g., Mardia et al. (1979) for a
detailed account of the technique. The n X p matrix X referred to in the
previous paragraph is built by stacking together these (row) vectors. The
columns of X form an orthogonal set in R”, which we take as the linear
predictors in the distance-based regression model

We refer to Cuadras and Arenas (1990) and Cuadras et al. (1996) for a
more thorough discussion of the model and its properties. Here we remark
only that if the values w of the explanatory variables actually belong to some
Euclidean space and if we choose the Euclidean distance for 8, we recover
the ordinary least-squares solution. Even if w € R?, distance functions other
than the Euclidean can be used, and in fact

S(w,,w;) = \ﬂwu —wyl + o g, —wyl,

the square root of the L! distance, has excellent properties, and with its use
the distance-based model can often replace advantageously a nonlinear
model.

To examine theoretically the reasons for this behavior, we consider a
one-dimensional model, with a set = {0, 1,..., n} of n + 1 equally spaced
points as predictor values, and compute the principal coordinates X for these
points with the distance 8,; = y/li — jl|. In principle the first step is to write
the matrix A of distances, but the following alternative is more convenient:
We observe that the Euclidean distance between the ith and jth rows of
{n + 1) X n matrix

0 0 0 0
1 0 0 0
1 1 0 0
U= . (1)
1 1 1 0

—
p—
[—
—
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is y/li — jl; hence from the property of duality between principal components
and principal coordinates (Mardia et al., 1979, p. 404) we have X = HUV,
where H=1-1,, 1, . ,/(n + 1) is the (n + 1) X (n + 1) centering ma-
trix and V is the matrix of orthonormalized eigenvectors of the covariance
matrix of U.

The covariance s;; between columns i and j of U equals (n + 1)7* times

cij=(n+l)min{i,j} - if, 1 <i,j<n. (2)

This covariance,

i J i j
$;; = min s - " 1<i,j<n,
J n+l n+1 n+ln+1

can be regarded as the discretization of the covariance function of the
Brownian bridge

K(s,t) = min{s, t} — st, 0<s,t<1, (3)

on a partition of [0,1] in n + 1 subintervals of equal length. As such, it
appears in Anderson and Stephens (1993, 1997) and in tests of goodness of
fit; see Durbin and Knott (1972). Properties of the Brownian bridge are
discussed by Anderson and Stephens (1997). In our case the underlying
continuous structure is a Bernoulli rather than a Gaussian process (Cuadras
and Fortiana, 1993, 1995).

This process is presented and compared with the Brownian bridge in
Section 2. The family of matrices containing the covariance of the discretized
Brownian bridge is defined in Section 3, and some historical references are
given in Section 4. The eigenvectors and eigenvalues are obtained in Section
5, and closed formulae for three particular matrices are given in Section 6.

2. CONTINUOUS AND DISCRETE PROCESSES AND
SOME REPRESENTATIONS

A continuous version of the matrix U is the function
u:[0,1] x [0,1] = R,

_J0 if x<«s,
(x,s)Hu(x,S)—{l if x>s.




176 J- FORTIANA AND C. M. CUADRAS

By considering a uniform probability on [0, 1], i.e., the Lebesgue measure, we
see that for each s € [0, 1], the indicator functlon U, = u(, s) of the interval
[, 1] is a Bernoulli random variable with parameter p = 1 — s. Hence

U={U,0<s<1}, (4)

is a Bernoulli stochastic process. Its covariance function is readily computed:
Since UU, = U, (.1 for s,t €[0,1], we have con(U,, U}) = 1 — max{s, t}
— (1 — X1 — t) = K(s, t), the kernel defined in (3).

The Karhunen-Loeve (principal components) expansion of the Brownian
bridge B = {B,, s € [0, 1]}, obtained from the eigenvalues and eigenfunc-

tions of (3), is

-
B,= Y ——(sm jms)X;, s €[0,1], (5)

j=1

where {X } < is a countable set of i.i.d. N(0, 1) variables (see, e.g., Anderson
and Darlmg 1952). This representation means that both sides of (5) have the
same probabilistic distribution. The representation of the Bernoulli process
(4) is

= V2
u=7y 7(sinj7rs)Y., s € [0,1], (6)

J=1

where {Y, = V2 (1 — cos j U)}] < is a countable set of i.d. and uncorrelated
variables, each with mean v2 and variance 1.
Both the Brownian bridge and the Bernoulli process (4) can be related to
goodness-of-fit tests. From Parseval’s identity we have

where W2 is the limit of the Cramér—von Mises statistic W,*, which also has
a similar but finite decomposition (see Anderson and Stephens, 1997).
Similarly,

v=['vrds i‘}yz
o j=1j27"2
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where U is a uniform [0, 1] random variable, namely the identity function on
[0, 1]. This follows by direct integration of U? = U;:

U(x) =LIM(x)ds=£)xlds=x.

As a measure of goodness of fit for the hypothesis that a sample follows a
uniform (0, 1) distribution, Cuadras and Fortiana (1993) proposed the maxi-
mum Hoeffding correlation, p;, between the sample empirical distribution
F, and the uniform (0,1) distribution. In general, given two univariate
distributions F and G, the maximum Hoeffding correlation is defined as the
maximum of the set of correlations for bivariate distributions having F and G
as marginals (see Dall-Aglio et al., 1991, for details). When F = F, and G is
the uniform distribution,

6 n
pz'z Szn2 igl (21 - n — 1)Z('),
where Z), < ** <Z,, is the ordered sample and S, is the empirical

standard deviation. Note that any test for a completely specified continuous
distribution can be reduced to a test for a uniform (0,1) distribution.
Similarly to W,2, the correlation p; admits the decomposition (see Cuadras
and Fortiana, 1993)

. 4x/§ i Baji1
7

™ 02+ 1)

where

g - V2 i(sm("“”j”—- i

sin — | Z, i>1,
78, 3 n n) © ]

are the sample counterparts of the correlation coefficients

4\/6_/]'27r2 if jisodd,

0 if jiseven.

B; = corr(U,Y;) = {
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A sequence of goodness-of-fit tests can be constructed by comparing the
coefficients B; and their estimates B;. Alternatively, instead of using them to
test the hypothesis, these coefficients are used to ascertain the distribution of
the data in a geometrical way (Cuadras and Fortiana, 1994).

3. A FAMILY OF TRIDIAGONAL MATRICES

Consider the n X n matrix C = C[n] = (¢, ) 1< < n, where c;; is
given in (2). The entries in C satisfy ¢;; = ¢,41_; n41-i- Matnces with this
property are called centrosymmetric. Equ1valently, in terms of the permuta-
tion matrix

0 0 1
0 e 1 O

w=1|. - . .l (7)
1 0 0

the equality WCW = C holds. A Toeplitz matrix is centrosymmetric, and
nonsingular centrosymmetric matrices form a multiplicative group; see Cord
and Sylvester (1962) and Good (1970). In general, the inverse of a Toeplitz
matrix is a centrosymmetric matrix. A centrosymmetric matrix is not necessar-
ily symmetric, but C, as defined above, has both properties.

We now introduce two matrices B and B related to C. Let B = B[n] =
(mm{z,]})lsi’jsm =(,2,...,n), and B = B[n] = @n + 1)B — 2bb".

From the definitions we see that

B+B
2

C=(n+1)B—bb =

The three matrices B[n], B[n], and C[n] can be described in terms of the
one-parameter family of tridiagonal n X n matrices

2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 0 0
Fla,n] = : : ‘. : . (8)
0 0 -1 2 -1
0 0 0 -1

where a € R.
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A direct computation shows the equalities B = T2, T=R ) and R =
F[1, n], where the entries in T = (t,.j) and R = (r,.].) are defined by

1 if i+j=
O B L SRS ff’,+],_"+1’
i 0 otherwise, 4 norryEn
0, otherwise,

1<i,j<n.
In particular, F{1, n] = B[n]™!. From this equality and
Fla,n] = B~ + (a — lugu,
where u, = (0,...,0, 1), we can obtain the inverse Fla, n]!:
[n(a — 1) + 1]F[a,n]"' = [n(a — 1) + 1]B[n] — (a — 1)bb'.

Actually, n(a — 1) + 1 = detF[a, n], as is easily checked. Using special
cases of a, we have, in particular,

B[n] =F[L,n]"", C[n]=(n+ 1DF[2,a]},
B[n] = (2n + )F[3,n]".

It is worth noting that F[2, n] is a Toeplitz matrix, but its inverse is
(n + 1)7! times the non-Toeplitz, but centrosymmetric matrix C[n].

4. HISTORICAL REMARKS

Besides distance-based regression and the discretized Brownian bridge,
the matrices Fla, n], their inverses, and other related matrices have been
studied in many contexts. Some examples are the following.

Numerical Linear Algebra
A particular instance (for n = 12) of

A=(n+D1Y -B=max{n+1—i,n+1-j},
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where 1 is the column vector of 1’s, is used by Frank (1958) to validate
algorithms for eigenvalue computation. Frank notices that A lisa tridiago-
nal matrix and gives a closed formula for its eigenvalues:

1 2g — 1 !
Aq=§ 1——cos2n+l7r , g=1,...,n. (9)

A related tridiagonal matrix is described by Longley (1981), who cites an
unpublished note of M. Newman as its origin. This matrix, D;D,, where
D, = I — tN, ¢ is a real parameter, and N is the nilpotent n X n matrix with
ones in its subdiagonal and zeros elsewhere, is a remarkable example of a
poorly conditioned matrix on which many numerical inversion algorithms fail
for moderate values of n and t.

Theory of Inequalities
Fan, Taussky, and Todd (1955) find discrete versions of inequalities
relating the integral of a function and that of its derivatives, e.g., if x(0) = 0,

fﬂ/z[x(t)]z dt < f#/z[x’(t)]z dt, unless x(¢) = asin t.
0 0

Their proofs are based on finding the minimum value, i.e., the least eigen-
value, of quadratic forms build on Fle, n] and related matrices.

Oscillations of Discrete Mechanical Systems

Fan et al. use results of Rutherford (1947, 1951) concerning eigenvalues
of several matrices, which arise in investigations of the motion of mechanical
systems consisting of n equal material particles constrained to move in a
straight line and linked together by elastic springs. In this context, eigenvec-
tors give the normal modes of vibration, and the corresponding eigenvalues
have the meaning of normal periods.

Partial Differential Equations

F[2,n] is a Toeplitz matrix and the most popular of this family of
matrices, since it is the second-difference matrix, which appears in the
discretization of the second-derivative operator (see Shintani, 1968).

Serial Correlation
The matrices obtained with this family are similar to some matrices of
quadratic forms, used for computing serial correlations, especially in the
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circular model. See Anderson (1971), Durbin and Watson (1950, 1951), and
von Neumann (1941). See also Anderson and Stephens (1997).

Goodness-of-Fit Statistics

Cln] and F[2, n] appear in the context of uniform goodness-of-fit statistics
built from an ordered uniform (0, 1) sample Z = (Z,, < -+ < Z,,), like the
ones considered by Anderson and Stephens (1997) and in Section 2 above,
and others, e.g.

n+1 iV
M2 = Zoy — ——|
" n E’l(‘f’ n+1)

an analog to W2, studied by Durbin and Knott (1972). This ubiquity is due to
the well-known fact that the matrix of variances and covariances of Z equals
(n+ D7 %(n + 271C[n).

5. EIGENVECTORS

The eigenvalues and eigenvectors of Fla, n] can be expressed in terms of
Chebyshev polynomials of the second kind. These are defined by

U(€) =1, U(&) =2£,  Upo(§) = 28U (€) — U( )
(k=0). (10)
The polynomial U,(¢) has the trigonometric representation

sin(p +1)0

- , where & = cos 0,
sin 8

U, (¢) =
and direct computation gives the identities, for p > 0,
(1= €90(8) = (p + DG,-1(§) — pEl,(6).

(L= E)U(E) =(p+2EU(&) — (p+ DU, (&)
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and

UE) - (6 £) = )
UZ (£) — EU, (&)U, ((£) = %

THEOREM 1. Let u be an eigenvalue of Fla,n] associated with the
eigenvector v = (v, ..., v,). Then

(@) £€=1— u/2 is a zero of the polynomial
Qla.n](£) = U,(§) + (a = 2)U,_,(§). (11)

(b) If v is normalized to unit length, its entries (up to a sign) are given

by

2sin po

o Ven +1—-U, (&)

p=1,...,n, (12)

where 0 is defined by & = cos 0.

Proof. Let Pla,nX¢) be the result of evaluating the characteristic
polynomial of Fla, n] at p = 2(1 — £), i.e,

Pla,n](¢) = det{F[a,n] — 2(1 — ¢)L,}. (13)

Taking a = 2, a direct computation shows the recurrence P2, n)(&) =
26P[2, n — 1N &) — P[2,n — 2)(€). Thus P[2,n)(¢) = U(€). Expanding
the determinant (13) on its last row, whose nth entry is 2¢ + (a — 2), we
obtain

Pla,n](€) = (2£+ (a — 2)}P[2.n — 1](£) — P[2,n — 2](£); (14)

hence P[a, n] coincides with Qla, n], as defined in (11).
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Let v = (v}, v,,...,0,) be an eigenvector of Fla, n] with eigenvalue u.
Rearranging the equation Fla, nlv = uv, we have

vy, = 2€v,,

vy = 2€v, — vy,

v, = Q‘gun—l - vn—2’
(2 —a)v, = 2€v, —v,_;. (15)
Use of the three-point recurrence formula in (10) gives
v, = U,_y(§)v,, p=1,...,n—1 (16)

We obtain v; from the normalization

n n—1
= 2 _ 2 2
1= Elvp_ul ZUp(g)’
p=

p=0

and using the Christoffel-Darboux formula
n—1
Y URE) =3[U(E,_(€) — U (EU_( )],
p=0

together with the identities given above.
Finally,

+2sin @
v, = .
LVen +1-0,,(8)

and (12) follows from (16). The eigenvalue associated with v is
u=2(1~—cos @), (17)
where 0 is such that

U,(cos 8) = (2 ~ a)U,_(cos 8). m (18)
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The eigenvalue A of (detFla, nDFla, n]™! corresponding to the eigen-
value u of Fla, n] is

(a—Dn+1

" (19)

6. EIGENSTRUCTURE OF B, C, AND B

For a = 1,2, 3, the roots of Qla, nl(&) = U (&) + (a — 2U,_(£) can
be expressed in closed form, and hence explicit expressions for eigenvalues
and eigenvectors can be found.

THEOREM 2. Suppose T is any one of the matrices B, C, and B. The
eigenvalues and eigenvectors of T can be ordered so that the matrix V = (v,,,)
of orthonormalized eigenvectors is symmetric. With these orderings, the
entries v,, of V are given by

q Ypq
q 2 2pq
B L sec? —prra+l ;
psect O T T 1"

cl nrL, g )_1 2 pq

2 ( a1 nt2 a1l
ﬁ2n+1 . 2q 2 . 2pg

2 S m 1" Ventl Ton+1”

Proof. Matrix B: The substitution a = 1 in (18) gives the equation
sin(n + 1)@ — sin n@ = 0, which, from the identity sin x — sin y = 2sin[(x
—y)/2lcosl(x + y) /2], is equivalent to

7] (2n + 1)6
sin —cos ———— =0
2 2

The solutions to this equation are given by

2qg — 1
= T,
9 2n+1

g=1,...,n,
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and satisfy U,,(6,) = 0. Substitution gives the entries in the eigenvector
v, =(vy,...,0,.)

2 2g —1
= sin p(2q )71' p=1...,n, (20)

“pq Vén + 1 on +1 ’

and the eigenvalue is

2g — 1
M, =2 1—c052n+17r.

From (19), the corresponding eigenvalue of B is

1
Aq==§ 1 — cos

29~ 1 )—1 (21)

T
2n + 1

in concordance with the result (9).

The sequence {)\q} in (21) is decreasing. If it is reordered in increasing
order, we obtain the first part of Theorem 2.

Let ¢ =n + 1 — q. Then

. p(2g—1) . 2pq’
Sin — 7T = S1n p’TT— T
2n + 1 2n + 1
. 2pq
= --CO0S p7T s ————— T
2n + 1
2pq’

_ ]. p+l . .
(=1 Mont1”
Multiplying each vector v, by the constant factor (—1)7, we obtain the
statement. An analogous computation gives the eigenvalues A,
Matrix C: For a = 2, we have Q[2, n}(¢) = U,(£), and the characteristic
roots are the zeros of the polynomial U,(£), that is,

q

q=n+17'r, qg=1,..., n.
As U, ( §q) = —1 for these values, the entries in v, = (vlq, ...,uﬂq)' are
2 &
= — si , =1,...,n, 22
U, szslnn+1w p n (22)
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and the eigenvalue is

p,q=2(l—cosnzl7r).

The corresponding eigenvalue of C is obtained from (19).

Matrix B: For a = 3, (18) is equivalent to sin(n + 1)8 + sin 6 = 0.
From the identity sin x + sin y = 2sin[(x + y)/2] cos[(x — y)/2] follows
the equation

(gn + 1)6 0
sin ——————cos — = 0.

2 2

The solutions are

2
8 = 9 T,
9 o2n+1

g=1,...,n.

For these values, U, ,(¢) = 0; hence the entries in v,

, = (01,00, 0,,) are

> Yng

2 . 2pq .
qu—m51n 2n+177, p=1....n.

(23)

The eigenvalue is

2q
By =2 1—c052n+177 ,

and the corresponding eigenvalues of B is

7. CONCLUSIONS

Some of the above eigenvalues and eigenvectors were also obtained by
Anderson and Stephens (1997). Use of the family (8) gives a unified ap-
proach. As we have seen, this family contains, as particular cases, three
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matrices related to several statistical problems: goodness-of-fit tests, distance-
based regression, the Brownian bridge, and continuous scaling. F inally, it is
worthwhile studying the eigenstructure of B. Cuadras (1990) has suggested
that the entries of the eigenvectors can be obtained, up to a sign change, by
permutation of the entries of the first eigenvector. An algorithm has been
constructed to show that this property is true for any n such that 2n + lisa
prime number, and has been used to verify the result for primes up to a very
large number. The present proof is, however, quite complicated, and work is
in progress on an easier proof.

REFERENCES

Anderson, T. W. 1971. The Statistical Analysis of Time Series, Wiley, New York.

Anderson, T. W. and Darling, D. A. 1952. Asymptotic theory of certain “goodness of
fit” criteria based on stochastic processes, Ann. Math. Statist. 23:193-212.

Anderson, T. W. and Stephens, M. A. 1993. The modified Cramér—von Mises
goodness-of-fit criterion for time series, Sankhya Ser. A 55:357-369.

Anderson, T. W. and Stephens, M. A. 1997. The continuous and discrete Brownian
bridges: Representations and applications, Linear Algebra Appl., this issue.

Cord, M. 8. and Sylvester, R. J. 1962. The property of cross-symmetry. J. Soc. Indust.
Appl. Math. 10:632-637,

Cuadras, C. M. 1989. Distance analysis in discrimination and classification using both
continuous and categorical variables, in Statistical Data Analysis and Inference,
(Y. Doge, Ed.), Elsevier Science (North-Holland), pp- 459-473.

Cuadras, C. M. 1990. An eigenvector pattern arising in nonlinear regression, Qiiestiié
14:89-95.

Cuadras, C. M. and Arenas, C. 1990. A distance based regression model for prediction
with mixed data, Comm. Statist. A Theory Methods 19:2261-2279.

Cuadras, C. M. and Fortiana, J. 1993. Continuous metric scaling and prediction, in
Multivariate Analysis, Future Directions 2, (C. M. Cuadras and C. R. Rao, Eds.),
Elsevier Science (North-Holland), Amsterdam, pp. 47-66.

Cuadras, C. M. and Fortiana, J. 1994. Ascertaining the underlying distribution of a
data set, in Selected Topics on Stochastic Modelling (R. Gutiérrez and M. .
Valderrama, Eds.), World Scientific, Singapore, pp. 223-230.

Cuadras, C. M. and Fortiana, ]. 1995. A continuous metric scaling solution for a
random variable, J. Multivariate Anal. 52:1-14.

Cuadras, C. M., Arenas, C., and Fortiana, J- 1996. Some computational aspects of a
distance-based model for prediction, Comm. Statist. B Simulation Comput.
25(3):1-18.

Dall'Aglio, G., Kotz, S., and Salinetti, G. (Eds.). 1991. Advances in Probability
Distributions with Given Marginals, Kluwer Academic.

Durbin, J. and Knott, M. 1972. Components of Cramér-Von Mises statistics. I, J.
Roy. Statist. Soc. Ser. B 34:290—307.



188 J. FORTIANA AND C. M. CUADRAS

Durbin, J. and Watson, G. S. 1950. Testing for serial correlation in least squares
regression, 1, Biometrika 37:409~428; reprinted in Kotz and Johnson (1892), pp.
237-259.

Durbin, ]. and Watson, G. S. 1951. Testing for serial correlation in least squares
regression, II, Biometrika 38:159-178; reprinted in Kotz and Johnson (1992), pp.
260—-266.

Fan, K., Taussky, O., and Todd, J. 1955. Discrete analogs of inequalities of Wirtinger,
Monatsh. Math. 59:73-90.

Frank, W. L. 1958. Computing eigenvalues of complex matrices by determinant
evaluation and by methods of Danilevski and Wielandt, J. Soc. Indust. Appl.
Math. 6:378—-392.

Good, 1. J. 1970. The inverse of a centrosymmetric matrix, Technometrics 12:925-928.

Kotz, S. and N. L. Johnson (Eds.). 1992. Breakthroughs in Statistics. Vol. II:
Methodology and Distribution, Springer-Verlag, New York.

Longley, J. W. 1981. Least squares computations and the condition of the matrix,
Comm. Statist. B Simulation Comput. 10:593-615.

Mardia, K. V., Kent, J. T., and Bibby, J. M. 1979. Multivariate Analysis, Academic,
London.

Rutherford, D. E. 1947. Some continuant determinants arising in physics and chem-
istry—1, Proc. Roy. Soc. Edinburgh Sect. A 1XI1:229-236.

Rutherford, D. E. 1951. Some continuant determinants arising in Physics and Chem-
istry—II, Proc. Roy. Soc Edinburgh Sect. A LXII1:232-241.

Shintani, H. 1968. Direct solution of partial difference equations for a rectangle, J.
Sci. Hiroshima Univ. Ser. A-I 32:17-53.

von Neumann, J. 1941. Distribution of the ratio of the mean square successive
difference to the variance, Ann. Math. Statist. 12:367—395.

Received 12 October 1996; final manuscript accepted 7 March 1997




