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SUMMARY. Rao (1945) proposed a method, based on Fisher’s information matrix, for

measuring distance between distributions of a parametric family satisfying certain regularity

conditions. In this paper, Rao’s (1945) method is applied to obtain the distance between two negative

multinomial distributions. Some other properties are discussed too.

1. INTRODUCTION

The question of introducing a distance between different statistical populations
has been considered by various authors. If we assume that all the information for
constructing such a distance is contained in the probability density function of a
random vector X , supposedly existing and restricted to each population, it will not
be generally satisfactory to characterize each populations by their mean value of
the random vector X , since the latter does not determine uniquely the probability
density function associated with each population.

A reasonable alternative would be to allow that the probability density function
of the random vector X , in any of the populations studied, to belong to a certain
parametric family, p(·|θ). Thus, a population could be characterized by θ =
(θ1, . . . ,θn), element of a parametric space Ω.

It is also reasonable to require that the proposed distance on the parametric
space Ω, possesses the property of being invariant under any admissible
transformation of the parameters, since the latter does not affect the probability
density function, p(·|θ), of the random vector X . In addition, the distance has to be
invariant for admissible transformations of the random vector X , since it must be
independent of the method by which the measurements are attained.

The method proposed by Rao (1945) and studied later by Atkinson and
Mitchell (1981) and Burbea and Rao (1982a, b), allow us to define a distance
on the parametric space Ω with the above mentioned characteristics. If the
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parametric family satisfy certain regularity conditions, the Fisher information
matrix defines a covariant symmetric tensor field of the second order on the
parametric space Ω,

gi j = E

(

∂ ln p(X |θ)
∂θi

∂ ln p(X |θ)
∂θ j

)

(i, j = 1, . . . ,n) . . . (1.1)

and may also be taken as a metric tensor field on Ω, thereby rendering Ω as a
Riemannian manifold. The Rao distance between two points θA and θB of Ω is then
defined as their geodesic distance with respect to the metric induced by (1.1).

In this paper, Rao’s (1945) method is applied to obtain a distance between
two negative multinomial distributions. We also discuss some other differential
geometric properties of these distributions.

2. DEVELOPMENT

Let F be a holomorphic function in the unit disk ∆ = {z ∈ C : |z| < 1} with a
power-series expansion

F(z) =
∞
∑

m=0

bmzm (z ∈ ∆) . . . (2.1)

with bm > 0 (m = 0,1, . . .) and not all bm are zero. For α= (α1, . . . ,αn) ∈ Z
n
+ and

θ = (θ1, . . . ,θn) ∈ C
n, using multinomial notation, we write

|α| = α1 + · · ·+αn , α! = α1! · · ·αn!

θ
α = (θ1)α1 · · · · · (θn)αn , Θ = θ1 + · · ·+ θn. . . . (2.2)

Define

Ω =
{

θ= (θ1, . . . ,θn) ∈ R
n : θ j > 0 ( j = 1, . . . ,n),Θ < 1

}

. . . (2.3)

and let

p(α|θ) =
1

F(Θ)

|α|!
α!

b|α|θ
α (α ∈ Z

n
+,θ ∈ Ω), . . . (2.4)

then p(α|θ) is a probability distribution defined on Z
n
+×Ω, where Z

n
+ is the sample

space and Ω is the parameter space.

In this case, a use of (1.1) and (2.4) gives

gi j(θ) = f (Θ)

(

1

θi
δi j +

f ′(Θ)

f (Θ)

)

(i, j = 1, . . . ,m) . . . (2.5)

where

f (z) =
F ′(z)

F(z)
(z ∈ ∆). . . . (2.6)
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If we choose

F(z) = (1− z)−r =
∞
∑

m=0

1

m!

Γ(m+ r)

Γ(r)
zm (r > 0, z ∈ ∆) . . . (2.7)

we obtain the family of negative multinomial distributions {Pr(·|·)}, r > 0,

Pr(α|θ) =
Γ(|α|+ r)

α!Γ(r)
θ
α(1−Θ)r . . . (2.8)

In this case

f (z) =
F ′(z)
F(z)

= (logF(z))′ = r(1− z)−1 f ′(z)
f (z)

= (log f (z))′ = (1− z)−1, . . . (2.9)

therefore,

gi j(θ) =
r

θn+1

(

1

θi
δi j +

1

θn+1

)

(i, j = 1, . . . ,n) . . . (2.10)

where θn+1 = 1−Θ and δi j is a Kronecker delta. It follows that the tensor in (2.10)
is positive definite on the parametric space Ω, and thus Ω is a Riemannian manifold
(see also Hicks, 1965).

To analyze whether the Riemannian manifold Ω is Euclidean or not, that
is, whether or not there exists an admissible transformation of the coordinates
(parameters) which reduces the metric tensor field to a constant tensor field, we
proceed to calculate the Riemann-Christoffel tensor of the first kind (covariant
curvature tensor) Rhi jk of the metric (2.10). This gives

Rhi jk =
r

4θiθh(θn+1)2

(

δi jδkh − δikδ jh +
θ

i (δkh − δ jh)+ θh (δi j − δik)
θn+1

)

(h, i, j,k = 1, . . . ,n). . . . (2.11)

Evidently, Rhi jk 6= 0 if and only if n > 1, in which case the manifold Ω is not
Euclidean. An alternative expression for Rhi jk is obtained by using (2.10) and
(2.11), namely

Rhi jk = − 1

4r
(gh jgik −ghkgi j) (h, i, j,k = 1, . . . ,n). . . . (2.12)

The Riemannian curvature K is therefore

K = − 1

4r
. . . . (2.13)

It follows that the space Ω, is isotropic, and has a constant negative curvature.
Therefore, it is locally isometric to the Poincaré hyperbolic space. An interesting
property is deduced from this : given θa,θB ∈ Ω there is only geodesic line that
joins both points (see Hicks, 1965 and Spivak, 1979).
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In order to obtain the distance between two points of the parametric space
Ω, where each point equivalent to a negative multinomial distribution, we have
to calculate the geodesic equations. Taking into account that the inverse of the
tensor-metric gi j is given by

gi j =
θ

n+1

r

(

δ
i j
θ

i − θiθ j
)

(i, j = 1, . . . ,n) . . . (2.14)

and defining δi jk = δi jδik, the Christoffel symbols of the second kind are

Γk
i j = −δi jk

2θi
+
δik + δ jk

2θn+1
(i, j,k = 1, . . . ,n). . . . (2.15)

Therefore, the differential equations of the geodesics may be written as

d2
θ

k

ds2
− 1

2θk

(

dθk

ds

)2

+
1

θn+1

dθk

ds

n
∑

i=1

dθi

ds
= 0 (k = 1, . . . ,n). . . . (2.16)

Summing up the above n equations gives

d2
θ

n+1

ds2
+

n
∑

k=1

1

2θk

(

dθk

ds

)2

− 1

θn+1

(

dθn+1

ds

)

= 0, . . . (2.17)

and taking into account that the vector

(

dθ1

ds
, . . . ,

dθn

ds

)

has unit length, that is

r

θn+1

(

n
∑

k=1

1

θk

(

dθk

ds

)2

+
1

θn+1

(

dθn+1

ds

)2
)

= 1, . . . (2.18)

we obtain from (2.17) and (2.18) that

1

θn+1

d2
θ

n+1

ds2
− 3

2

(

1

θn+1

dθn+1

ds

)2

+
1

2r
= 0. . . . (2.19)

The latter equation may be resolved via the transformation

u =
1

θn+1

dθn+1

ds
, . . . (2.20)

yielding

u = − 1√
r

tanh

(

s

2
√

r
+C

)

. . . (2.21)

where C is an integration constant.

From (2.21) and (2.16) we obtain

1

θk

d2
θ

k

ds2
− 1

2

(

1

θk

dθk

ds

)2

+
1

θk

dθk

ds

1√
r

tanh

(

s

2
√

r
+C

)

= 0 (k = 1, . . . ,n).

. . . (2.22)
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Equations (2.22) have the particular solution

θ
k = Ak = const. (k = 1, . . . ,n). . . . (2.23)

More general solutions can be obtained through the transformation

zk = θk
(

dθk

ds

)−1

(k = 1, . . . ,n), . . . (2.24)

which reduces (2.22) to an independent set of linear differential equations of the
form

dzk

ds
− 1√

r
tanh

(

s

2
√

r
+C

)

zk =
1

2
(k = 1, . . . ,n). . . . (2.25)

The general solution (2.25) is

zk = cosh2

(

s

2
√

r
+C

)(√
r tanh

(

s

2
√

r
+C

)

+Bk

)

(k = 1, . . . ,n), . . . (2.26)

where the Bk are constants of integration.

It follows, since

lnθk =

∫

1

zk

ds (1, . . . ,n), . . . (2.27)

that

θ
k = Ak

(

Bk + tanh

(

s

2
√

r
+C

))2

(k = 1, . . . ,n). . . . (2.28)

Equations (2.23) and (2.28) describe the geodesic lines, with the Ak as integration
constants.

The integration constants will be chosen in such a way that they accomplish
(2.18), and satisfy the initial conditions, that is, for s = 0 the geodesic departs from
a point A, with coordinates

(

a1, . . . ,an
)

and for a positive value s = d, reaches the

point B,
(

b1, . . . ,bn
)

. After some laborious calculations we obtain that the geodesic
distance between A and B is given by

d = 2
√

r cosh−1





1−
n
∑

j=1

√
a jb j

√
an+1bn+1



 . . . (2.29)

Alternatively, (see also Oller and Cuadras, 1982),

d = 2
√

r ln















1−
n
∑

j=1

√
a jb j +

√

√

√

√

(

1−
n
∑

j=1

√
a jb j

)2

−an+1bn+1

√
an+1bn+1















. . . (2.30)
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3. OTHER RESULTS

(A). From (2.29) it follows that the distance between two negative
multinomial distributions is not bounded. However, if we fix an+1 and bn+1, is
easy to prove that

d 6 2
√

r cosh−1

(

1√
an+1bn+1

)

<
√

r ln

(

4

an+1bn+1

)

. . . . (3.1)

(B). It is also possible to establish a relationship between (2.29) and
Bhattacharyya’s distance (1946). This last distance can be obtained applying Rao’s
(1945) method to multinomial distribution (see Rao, 1949).

If we consider the multinomial distribution’s parametric family, with known

index N and parameters θ1, . . . ,θn+1, where
n+1
∑

j=1

θ
j = 1, the Bhattacharyya’s

distance, dB, between two points of the parametric space, (a1, . . . ,an) (b1, . . . ,bn)
is given by

dB = 2
√

N cos−1

(

n+1
∑

j=1

√
a jb j

)

. . . (3.2)

Hence, if we fix an+1 and bn+1, both distances in (2.29) and (3.2), are decreasing

functions of
n
∑

j=1

√
a jb j, and, following Shepard (1962), we conclude that the

preorders associated with (2.29) and (3.2) are equal.

(C). When d is very small, we have

cosh

(

d

2
√

r

)

' 1 +
d2

8r
, . . . (3.3)

and thus

d ' 2

√

√

√

√

√

√

√

2r









1−
n+1
∑

j=1

√
a jb j

√
an+1bn+1









. . . . (3.4)

It follows from (3.2) and (3.4) that

d ' 4
√

r

sin

(

dB

4
√

N

)

4
√

an+1bn+1
'
√

r

N

dB

4
√

an+1bn+1
. . . (3.5)

Thus, when an+1 and bn+1 are fixed, d and dB are nearly proportional, for small
values of d.

(D). Let E sample space and consider two finite partitions of E ,
P1 = {A1, . . . ,An+1} and P2 = {B1, . . . ,Bm+1}. Let P2 be a refinement of
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P1, and thus Bm+1 ⊂ An+1, and consider the parametric family of the negative
multinomial distributions (2.8), with parameters θi = Pr(Ai) and θi = Pr(Bi)
respectively (notice that there are n independent parameters in the first case and
m in the second one). Let A and B two statistical populations with

Pr(Ai) = ai (i = 1, . . . ,n) Pr(B j) = p j ( j = 1, . . . ,m) (population A)

Pr(Ai) = bi (i = 1, . . . ,n) Pr(B j) = q j ( j = 1, . . . ,m) (population B)

. . . (3.6)

then

d1 = 2
√

r cosh−1





1−
n
∑

j=1

√
a jb j

√
an+1bn+1



6 d2 = 2
√

r cosh−1





1−
m
∑

j=1

√

p jq j

√

pm+1qm+1





. . . (3.7)

Actually, it is sufficient to consider first the case

Ai = Bi1

⋃ · · ·⋃ Bisi
Ai ∈ P1, Bi j

∈ P2 (i = 1, . . . ,n +1) . . . (3.8)

and

ai = pi1 + · · ·+ pisi bi = qi1 + · · ·+qisi (i = 1, . . . ,n +1) . . . (3.9)

since P2 is a refinement of P1

√
aibi >

si
∑

j=1

√

pi jqi j (i = 1, . . . ,n +1) . . . (3.10)

because

(

si
∑

j=1

√

pi j qi j

)2

= aibi −∑

j<k

(

pi jqik + pikqi j

)

+ 2
∑

j<k

√

pi jqi j pik qik 6 aibi (i = 1, . . . ,n +1). . . . (3.11)

On the other hand, if

An+1 = B j1

⋃ · · ·⋃ B jh

⋃

Bm+1 An+1 ∈ P1, Bs ∈ P2 . . . (3.12)

then

√
an+1bn+1 >

h
∑

k=1

√

p jkq jk +
√

pm+1qm+1, . . . (3.13)

but since

1−
n+1
∑

j=1

√
a jb j > 0 . . . (3.14)

we find that

1−
n
∑

j=1

√
a jb j

√
an+1bn+1

6

1−
n
∑

j=1

√
a jb j −

h
∑

k=1

√

p jkq jk

√

pm+1qm+1
. . . . (3.15)
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However, since

n
∑

j=1

√
a jkb jk +

h
∑

k=1

√

p jkq jk >
m
∑

j=1

√

p jq j . . . (3.16)

(3.7) follows at once, that is, d1 6 d2 : refining the partition associated with
negative multinomial distribution, the distance (2.29) increases.

(E). Let X1, . . . ,Xm be an independent set of random vectors. Each Xi is
distributed as (2.8) with r = ri, n = ni and θi = θij. Then, the parametric space is
defined by

Ω = Ω1 ×·· ·×Ωm . . . (3.17)

where

Ωi =

{

(

θ
1
i , . . . ,θ

ni

i

)

∈ R
ni |θ j

i > 0, j = 1, . . . ,

ni
∑

j=1

θ
j
i < 1

}

(i = 1, . . . ,m).

. . . (3.18)

Let A and B two points of Ω, with A =
(

a1
1, . . . ,a

n1

1 , . . . ,a1
m, . . . ,anm

m

)

and

B =
(

b1
1, . . . ,b

n1

1 , . . . ,b1
m, . . . ,bnm

m

)

. It is not difficult to prove that the geodesic
distance between A and B is given by

d = 2

√

√

√

√

√

√

√

m
∑

j=1

r j









cosh−1









1−
n j
∑

k=1

√

ak
jb

k
j

√

a
n j+1

j b
n j+1

j

















2

. . . (3.19)

because the metric tensor’s matrix of the parametric space Ω is of the form

G = diag(G1, . . . ,Gm) . . . (3.20)

where G1, . . . ,Gm are the metric tensor’s matrix associated with the parametric
spaces Ω1, . . . ,Ωm given by (3.18).

(F). We consider two particular cases :

i(i) Negative binomial distribution. This is given by (2.8) by taking n = 1.
The obtained distance is

d = 2
√

r cosh−1

(

1−
√

a1b1

√

(1−a1)(1−b1)

)

. . . . (3.21)

(ii) Geometric distribution. This is given by (2.8) by taking n = 1, r = 1.
The distance is now

d = 2cosh−1

(

1−
√

a1b1

√

(1−a1)(1−b1)

)

. . . . (3.22)

In both cases, the parametric space is Euclidean.
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4. REMARKS

In practice, each negative multinomial is characterized by maximum
likelihood estimates of the θi. Substituting the latter (2.29), the maximum
likelihood estimate of d is obtained. If we have m negative multinomial
distributions, N1, . . . ,Nm, we can estimate the distances d∗(Ni,N j) among them.
Then, we would obtain the interdistances-matrix ∆ = (d∗(Ni,N j)), and thus we can
apply MDS (Multidimensional Scaling) techniques (Cuadras, 1981) to obtain a
representation of the distributions as points in a low dimensional Euclidean space,
generally a plane.

It is also possible to obtain a hierarchic classification of the distributions and
its graphic output, the dendrogram, by using numerical taxonomy methods.

REFERENCES

ATKINSON, C. and MITCHELL, A. F. S. (1981): Rao’s distance measure. Sankhya, 43, A, 345-365.

BHATTACHARYYA, A. (1946): On a measure of divergence between two multinomial populations.

Sankhya, 7, 401-406.

BURBEA, J. and RAO, C. R. (1982 a): Entropy differential metric, distance and divergence measures

in probability spaces: a unified approach. Jour. Multivariate Analysis, 12, 575-596.

(1982 b): Differential metrics in probability spaces. Probability Math. Statist., 12, 115-132.

CUADRAS, C. M. (1981): Métodos de Análisis Multivariante, Eunibar, Barcelona.

HICKS, N. J. (1965): Notes on Differential Geometry, Van Nostran, Princeton.

OLLER, J. M. and CUADRAS, C. M. On a defined distance for negative multinomial distribution.

Abstracts of XIth Inter. Biometric Conf., Toulouse, 69.

RAO, C. R. (1945): Information and the accuracy attainable in the estimation of statistical

parameters. Bull. Calcutta Math. Soc., 27, 81-91.

(1949): On the distance between two populations. Sankhya, 9, 246-248.

SHEPARD, R. N. (1962): The analysis of proximities: Multidimensional scaling with an unknown

distance function. I. Psychometrika, 27, 219-246.

SPIVAK, M. (1979): A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc.

Berkeley.

Paper received: August, 1983.

Revised: December, 1983.



Printed by Haradhan Chakrabarti at EKA PRESS, 204/1, Barrackpore Trunk Road,

Calcutta-35 and published by K. B. Goswami from Statistical Publishing Society,

204/1, Barrackpore Trunk Road, Calcutta 700 035.




