The use of higher order syzygies in the implicitization of rational parametrizations

Carlos D'Andrea

Conference on Geometry Theory and Applications Plzeň, June 2017

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrizations

Setup: Homogeneous Coordinates

$$
\begin{array}{ccc}
\mathbb{K} & --\rightarrow & \mathbb{K}^{2} \\
t & \longmapsto & \left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)
\end{array}
$$

Setup: Homogeneous Coordinates

$$
\begin{array}{ccc}
\mathbb{K} & -\cdots & \mathbb{K}^{2} \\
t & \longmapsto & \left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)
\end{array}
$$

$$
\begin{array}{cccc}
\hline \phi: & \mathbb{P}^{1} & \longrightarrow & \mathbb{P}^{2} \\
\left(t_{0}: t_{1}\right) & \longmapsto & \left(t_{0}^{2}+t_{1}^{2}: t_{0}^{2}-t_{1}^{2}: 2 t_{0} t_{1}\right)
\end{array}
$$

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrization

Rational Plane Parametrizations

$$
\begin{array}{cccc}
\phi: & \mathbb{P}^{1} & \rightarrow & \mathbb{P}^{2} \\
\left(t_{0}: t_{1}\right) & \mapsto & \left.\mapsto\left(t_{0}, t_{1}\right): b\left(t_{0}, t_{1}\right): c\left(t_{0}, t_{1}\right)\right)
\end{array}
$$

$\square a, b, c \in \mathbb{K}\left[T_{0}, T_{1}\right]$, homogeneous of the same degree $d \geq 1$

- $\operatorname{gcd}(a, b, c)=1$

Rational Curves in the plane

The image of ϕ is a rational plane curve

Rational Curves in the plane

The image of ϕ is a rational plane curve

■ It has degree d if ϕ is "generically" injective

Rational Curves in the plane

The image of ϕ is a rational plane curve

- It has degree d if ϕ is "generically" injective
- It has genus 0 , which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$

Rational Curves in the plane

The image of ϕ is a rational plane curve

■ It has degree d if ϕ is "generically" injective
■ It has genus 0 , which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$
■ Computing its implicit equation is relatively easy from the input ϕ

Implicit Equations

$$
\begin{aligned}
& X_{2} a(I)-X_{0} c(I)=X_{2} T_{0}^{2}-2 X_{0} T_{0} T_{1}+X_{2} T_{1}^{2} \\
& X_{2} b(I)-X_{1} c(I)=X_{2} T_{0}^{2}-2 X_{1} T_{0} T_{1}-X_{2} T_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Res}_{\underline{I}}\left(X_{2} \cdot a(I)-X_{0} \cdot c(\underline{I})\right. \\
&= \\
& \operatorname{det}\left(\begin{array}{rrrr}
X_{2} \cdot b(I) & -2 X_{0} & X_{2} & 0 \\
0 & X_{2} & -2 X_{0} \cdot c(I) & X_{2} \\
X_{2} & -2 X_{1} & -X_{2} & 0 \\
0 & X_{2} & -2 X_{1} & -X_{2}
\end{array}\right)=-4 X_{2}^{2}\left(X_{0}^{2}-X_{1}^{2}-X_{2}^{2}\right)
\end{aligned}
$$

How small can the matrix be?

$$
\begin{array}{cccc}
\mathcal{L}_{1,1}(\underline{T}, \underline{X})= & X_{2} & T_{0} & -\left(X_{0}+X_{1}\right) \\
\mathcal{L}_{1,1}^{\prime}(\underline{T}, \underline{X})=\left(-X_{0}+X_{1}\right) & T_{0} & +X_{2} & T_{1}
\end{array}
$$

How small can the matrix be?

$$
\begin{array}{cccc}
\mathcal{L}_{1,1}(\underline{T}, \underline{X})= & X_{2} & T_{0} & -\left(X_{0}+X_{1}\right) \\
\mathcal{L}_{1,1}^{\prime}(\underline{T}, \underline{X})=\left(-X_{0}+X_{1}\right) & T_{0} & +X_{2} & T_{1}
\end{array}
$$

$$
\operatorname{det}\left(\begin{array}{lr}
X_{2} & -X_{0}-X_{1} \\
-X_{0}+X_{1} & X_{2}
\end{array}\right)=X_{1}^{2}+X_{2}^{2}-X_{0}^{2}
$$

Hilbert's Syzygy Theorem

There exist $\mu \leq \frac{d}{2}$ and two other parametrizations $\varphi_{\mu}\left(t_{0}, t_{1}\right), \psi_{d-\mu}\left(t_{0}, t_{1}\right)$ of degrees $\mu, d-\mu$ such that

$$
\phi\left(t_{0}, t_{1}\right)=\varphi_{\mu}\left(t_{0}, t_{1}\right) \wedge \psi_{d-\mu}\left(t_{0}, t_{1}\right)
$$

For the unit circle...

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

For the unit circle...

$$
\begin{aligned}
& \varphi_{1}\left(t_{0}: t_{1}\right)=\left(-t_{1}:-t_{1}: t_{0}\right) \\
& \psi_{1}\left(t_{0}: t_{1}\right)=\left(-t_{0}: t_{0}: t_{1}\right)
\end{aligned}
$$

For the unit circle...

$$
\begin{aligned}
& \varphi_{1}\left(t_{0}: t_{1}\right)=\left(-t_{1}:-t_{1}: t_{0}\right) \\
& \psi_{1}\left(t_{0}: t_{1}\right)=\left(-t_{0}: t_{0}: t_{1}\right)
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\mathbf{e}_{0} & \mathbf{e}_{1} & \mathbf{e}_{2} \\
-t_{1} & -t_{1} & t_{0} \\
-t_{0} & t_{0} & t_{1}
\end{array} \right\rvert\,=\left(-t_{0}^{2}-t_{1}^{2}, t_{1}^{2}-t_{0}^{2},-2 t_{0} t_{1}\right)
$$

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrization

Algebraic Version

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

Algebraic Version

$$
\begin{aligned}
& \text { The homogeneous ideal } \\
& I=(a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}\left[T_{0}, T_{1}\right] \text { has a } \\
& \text { Hilbert-Burch resolution of the type }
\end{aligned}
$$

$$
0 \rightarrow \mathbb{K}[\underline{T}]^{2}\left(\varphi_{\mu}, \psi_{d-\mu}\right)^{t} \mathbb{K}[\underline{T}] \xrightarrow{3} \xrightarrow{(a, b, c)} \mathbb{K}[\underline{T}]
$$

Algebraic Version

$$
\begin{aligned}
& \text { The homogeneous ideal } \\
& I=(a(\underline{T}), b(\underline{I}), c(\underline{T})) \subset \mathbb{K}\left[T_{0}, T_{1}\right] \text { has a }
\end{aligned}
$$

Hilbert-Burch resolution of the type

$$
0 \rightarrow \mathbb{K}[\underline{T}]^{2}\left(\varphi_{\mu}, \psi_{d-\mu}\right)^{t} \mathbb{K}[\underline{T}]^{3} \xrightarrow{(a, b, c)} \mathbb{K}[\underline{T}]
$$

A μ-basis of the parametrization is a basis of $\operatorname{Syz}(I)$ as a $\mathbb{K}[\underline{T}]$-module

Why do we care about -bases?

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

Why do we care about -bases?

Implicit equation —— $\operatorname{Res}_{\underline{I}}\left(\varphi_{\mu}(\underline{T}), \varphi_{d-\mu}(\underline{T})\right)$

Computing μ-bases

A moving line

$$
\mathcal{L}\left(T_{0}, T_{1}, X_{0}, X_{1}, X_{2}\right)=v_{0}(\underline{T}) X_{0}+v_{1}(\underline{I}) X_{1}+v_{2}(\underline{I}) X_{2}
$$

Computing μ-bases

A moving line

$$
\mathcal{L}\left(T_{0}, T_{1}, X_{0}, X_{1}, X_{2}\right)=v_{0}(\underline{T}) X_{0}+v_{1}(\underline{I}) X_{1}+v_{2}(\underline{T}) X_{2}
$$ follows the parametrization iff

$$
\mathcal{L}\left(T_{0}, T_{1}, a(\underline{T}), b(\underline{T}), c(\underline{I})\right)=0
$$

In our example...

$$
\begin{aligned}
& \mathcal{L}_{1}(\underline{T}, \underline{X})=-2 T_{0}^{2} T_{1} X_{0}+0 X_{1}+\left(T_{0}^{3}+T_{0} T_{1}^{2}\right) X_{2} \\
& \mathcal{L}_{2}(\underline{T}, \underline{X})=-2 T_{0} T_{1}^{2} X_{0}+0 X_{1}+\left(T_{0}^{2} T_{1}+T_{1}^{3}\right) X_{2} \\
& \mathcal{L}_{3}(\underline{T}, \underline{X})=0 X_{0}-2 T_{0}^{2} T_{1} X_{1}+\left(T_{0}^{3}-T_{0} T_{1}^{2}\right) X_{2} \\
& \mathcal{L}_{4}(\underline{I}, \underline{X})=0 X_{0}-2 T_{0} T_{1}^{2} X_{1}+\left(T_{0}^{2} T_{1}-T_{1}^{3}\right) X_{2}
\end{aligned}
$$

In our example...

$$
\begin{aligned}
& \mathcal{L}_{1}(\underline{T}, \underline{X})=-2 T_{0}^{2} T_{1} X_{0}+0 X_{1}+\left(T_{0}^{3}+T_{0} T_{1}^{2}\right) X_{2} \\
& \mathcal{L}_{2}(\underline{T}, \underline{X})=-2 T_{0} T_{1}^{2} X_{0}+0 X_{1}+\left(T_{0}^{2} T_{1}+T_{1}^{3}\right) X_{2} \\
& \mathcal{L}_{3}(\underline{T}, \underline{X})=0 X_{0}-2 T_{0}^{2} T_{1} X_{1}+\left(T_{0}^{3}-T_{0} T_{1}^{2}\right) X_{2} \\
& \mathcal{L}_{4}(\underline{I}, \underline{X})=0 X_{0}-2 T_{0} T_{1}^{2} X_{1}+\left(T_{0}^{2} T_{1}-T_{1}^{3}\right) X_{2}
\end{aligned}
$$

$$
\left(\begin{array}{rrrr}
X_{2} & -2 X_{0} & X_{2} & 0 \\
0 & X_{2} & -2 X_{0} & X_{2} \\
X_{2} & -2 X_{1} & -X_{2} & 0 \\
0 & X_{2} & -2 X_{1} & -X_{2}
\end{array}\right)
$$

In general

The determinant of a "matrix of moving lines" is a multiple of the implicit equation

$$
\left(\begin{array}{rrrr}
L_{11}(\underline{X}) & L_{12}(\underline{X}) & \ldots & L_{1 k}(\underline{X}) \\
L_{21}(\underline{X}) & L_{22}(\underline{X}) & \ldots & L_{2 k}(\underline{X}) \\
\vdots & \vdots & \ldots & \vdots \\
L_{k 1}(\underline{X}) & L_{k 2}(\underline{X}) & \ldots & L_{k k}(\underline{X})
\end{array}\right.
$$

Moving conics, moving cubics,...

Moving conics, moving cubics,...

$\mathcal{O}(\underline{T}) X_{0}^{2}+\mathcal{P}(\underline{I}) X_{0} X_{1}+\mathcal{Q}(\underline{T}) X_{0} X_{2}+\mathcal{R}(\underline{T}) X_{1}^{2}+$

$$
\mathcal{S}(\underline{T}) X_{1} X_{2}+\mathcal{T}(\underline{T}) X_{2}^{2} \in \mathbb{K}[\underline{T}, \underline{X}]
$$

is a moving conic following the parametrization if

Moving conics, moving cubics,...

$$
\begin{gathered}
\mathcal{O}(\underline{T}) X_{0}^{2}+\mathcal{P}(\underline{T}) X_{0} X_{1}+\mathcal{Q}(\underline{T}) X_{0} X_{2}+\mathcal{R}(\underline{T}) X_{1}^{2}+ \\
\mathcal{S}(\underline{I}) X_{1} X_{2}+\mathcal{T}(\underline{I}) X_{2}^{2} \in \mathbb{K}[\underline{T}, \underline{X}]
\end{gathered}
$$

is a moving conic following the parametrization if

$$
\begin{aligned}
& \mathcal{O}(\underline{I}) a(\underline{I})^{2}+\mathcal{P}(\underline{T}) a(\underline{I}) b(\underline{I})+\mathcal{Q}(\underline{I}) a(\underline{T}) c(\underline{I})+ \\
& \mathcal{R}(\underline{I}) b(\underline{I})^{2}+\mathcal{S}(\underline{I}) b(\underline{I}) c(\underline{I})+\mathcal{T}(\underline{I}) c(\underline{I})^{2}=0
\end{aligned}
$$

The method of moving curves

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

The method of moving curves

The implicit equation can be computed as the determinant of a small matrix with entries

The method of moving curves

The implicit equation can be computed as the determinant of a small matrix with entries

> some moving lines some moving conics some moving cubics

The method of moving curves

The implicit equation can be computed as the determinant of a small matrix with entries

the more singular the curve, the simpler the description of the determinant

Example (Sederberg \& Chen 1995

Example (Sederberg \& Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

Example (Sederberg \& Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.
If the curve has a triple point, then one row is linear and the other is cubic.

Example (Sederberg \& Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.
If the curve has a triple point, then one row is linear and the other is cubic.
Otherwise, both rows are quadratic.

A quartic with a triple point

A quartic with a triple point

$$
\begin{gathered}
\phi\left(t_{0}, t_{1}\right)=\left(t_{0}^{4}-t_{1}^{4}:-t_{0}^{2} t_{1}^{2}: t_{0} t_{1}^{3}\right) \\
F\left(X_{0}, X_{1}, X_{2}\right)=X_{2}^{4}-X_{1}^{4}-X_{0} X_{1} X_{2}^{2}
\end{gathered}
$$

A quartic with a triple point

$$
\begin{gathered}
\phi\left(t_{0}, t_{1}\right)=\left(t_{0}^{4}-t_{1}^{4}:-t_{0}^{2} t_{1}^{2}: t_{0} t_{1}^{3}\right) \\
F\left(X_{0}, X_{1}, X_{2}\right)=X_{2}^{4}-X_{1}^{4}-X_{0} X_{1} X_{2}^{2}
\end{gathered}
$$

A quartic with a triple point

$$
\begin{gathered}
\phi\left(t_{0}, t_{1}\right)=\left(t_{0}^{4}-t_{1}^{4}:-t_{0}^{2} t_{1}^{2}: t_{0} t_{1}^{3}\right) \\
F\left(X_{0}, X_{1}, X_{2}\right)=X_{2}^{4}-X_{1}^{4}-X_{0} X_{1} X_{2}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{1,1}(\underline{T}, \underline{X})=T_{0} X_{2}+T_{1} X_{1} \\
& \mathcal{L}_{1,3}(\underline{T}, \underline{X})=T_{0}\left(X_{1}^{3}+X_{0} X_{2}^{2}\right)+T_{1} X_{2}^{3} \\
&\left(\begin{array}{cc}
X_{2} & X_{1} \\
X_{1}^{3}+X_{0} X_{2}^{2} & X_{2}^{3}
\end{array}\right)
\end{aligned}
$$

A quartic without triple points

$$
\begin{gathered}
\phi\left(t_{0}: t_{1}\right)=\left(t_{0}^{4}: 6 t_{0}^{2} t_{1}^{2}-4 t_{1}^{4}: 4 t_{0}^{3} t_{1}-4 t_{0} t_{1}^{3}\right) \\
F(\underline{X})=X_{2}^{4}+4 X_{0} X_{1}^{3}+2 X_{0} X_{1} X_{2}^{2}-16 X_{0}^{2} X_{1}^{2}-6 X_{0}^{2} X_{2}^{2}+16 X_{0}^{3} X_{1}
\end{gathered}
$$

A quartic without triple points

$$
F(\underline{X})=\begin{aligned}
& \phi\left(t_{0}: t_{1}\right)=\left(t_{0}^{4}: 6 t_{0}^{2} t_{1}^{2}-4 t_{1}^{4}: 4 t_{0}^{3} t_{1}-4 t_{0} t_{1}^{3}\right) \\
& X_{2}^{4}+4 X_{0} X_{1}^{3}+2 X_{0} X_{1} X_{2}^{2}-16 X_{0}^{2} X_{1}^{2}-6 X_{0}^{2} X_{2}^{2}+16 X_{0}^{3} X_{1}
\end{aligned}
$$

A quartic without triple points

$$
\begin{gathered}
\phi\left(t_{0}: t_{1}\right)=\left(t_{0}^{4}: 6 t_{0}^{2} t_{1}^{2}-4 t_{1}^{4}: 4 t_{0}^{3} t_{1}-4 t_{0} t_{1}^{3}\right) \\
F(\underline{X})=X_{2}^{4}+4 X_{0} X_{1}^{3}+2 X_{0} X_{1} X_{2}^{2}-16 X_{0}^{2} X_{1}^{2}-6 X_{0}^{2} X_{2}^{2}+16 X_{0}^{3} X_{1}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{1,2}(\underline{T}, \underline{X})=T_{0}\left(X_{1} X_{2}-X_{0} X_{2}\right)+T_{1}\left(-X_{2}^{2}-2 X_{0} X_{1}+4 X_{0}^{2}\right) \\
& \tilde{\mathcal{L}}_{1,2}(\underline{T}, \underline{X})=T_{0}\left(X_{1}^{2}+\frac{1}{2} X_{2}^{2}-2 X_{0} X_{1}\right)+T_{1}\left(X_{0} X_{2}-X_{1} X_{2}\right)
\end{aligned}
$$

Very concentrated singularities

The use of higher order syzygies in the implicitization of rational parametrizations

Very concentrated singularities

If the curve has a point of multiplicity $d-1$

Very concentrated singularities

If the curve has a point of multiplicity $d-1$ the implicit equation is always a 2×2 determinant

$$
\left|\begin{array}{cc}
\mathcal{L}_{1,1}(\underline{X}) & \mathcal{L}_{1,1}^{\prime}(\underline{X}) \\
\mathcal{L}_{1, d-1}(\underline{X}) & \mathcal{L}_{1, d-1}^{\prime}(\underline{X})
\end{array}\right|
$$

In general, we do not know..

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

In general, we do not know..

which moving lines? which moving conics? which moving cubics?
 -••

Higher order syzygies

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrizations

Higher order syzygies

Cox, D. Theoret. Comput. Sci. 392 (2008) The moving curve ideal and the Rees algebra

Higher order syzygies

Cox, D. Theoret. Comput. Sci. 392 (2008) The moving curve ideal and the Rees algebra

$\mathcal{K}_{\phi}:=\{$ Moving curves following $\phi\}=$ homogeneous elements in the kernel of

$$
\begin{array}{ccc}
\mathbb{K}\left[T_{0}, T_{1}, X_{0}, X_{1}, X_{2}\right] & \rightarrow & \mathbb{K}\left[T_{0}, T_{1}, s\right] \\
T_{i} & \mapsto & T_{i} \\
X_{0} & \mapsto & a(\underline{I}) s \\
X_{1} & \mapsto & b(\underline{T}) s \\
X_{2} & \mapsto & c(\underline{I}) s
\end{array}
$$

Higher order syzygies

Cox, D. Theoret. Comput. Sci. 392 (2008) The moving curve ideal and the Rees algebra

$\mathcal{K}_{\phi}:=\{$ Moving curves following $\phi\}=$ homogeneous elements in the kernel of

$$
\begin{array}{rlc}
\mathbb{K}\left[T_{0}, T_{1}, X_{0}, X_{1}, X_{2}\right] & \rightarrow & \mathbb{K}\left[T_{0}, T_{1}, s\right] \\
T_{i} & \mapsto & T_{i} \\
X_{0} & \mapsto & a(\underline{I}) s \\
X_{1} & \mapsto & b(\underline{I}) s \\
X_{2} & \mapsto & c(\underline{I}) s
\end{array}
$$

"The ideal of movino curves following $=\phi^{\prime \prime} \equiv$, \equiv nac

Method of moving curves revisited

Method of moving curves revisited

The implicit equation should be obtained as the determinant of a matrix with

Method of moving curves revisited

The implicit equation should be obtained as the determinant of a matrix with

Method of moving curves revisited

The implicit equation should be obtained as the determinant of a matrix with

The more singular the curve, the "simpler" the description of \mathcal{K}_{ϕ}

New Problem

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

New Problem

Compute a minimal system of generators of \mathcal{K}_{ϕ}

New Problem

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

New Problem

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for
■ $\mu=1$ (Hong-Simis-Vasconcelos,
Cox-Hoffmann-Wang, Busé, Cortadellas-D)

- $\mu=2$ (Busé, Cortadellas-D, Kustin-Polini-Ulrich)
- $\left(\mathcal{K}_{\phi}\right)_{(1,2)} \neq 0$ (Cortadellas-D)

■ Monomial Parametrizations (Cortadellas-D)

Only curves in the plane?

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrizations

Rational Surfaces

$$
\begin{array}{ccc}
\phi_{S}: & \mathbb{P}^{2} & -\rightarrow \mathbb{P}^{3} \\
\underline{t}=\left(t_{0}: t_{1}: t_{2}\right) & \longmapsto(a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))
\end{array}
$$

Rational Surfaces

$$
\begin{array}{ccc}
\phi_{S}: & \mathbb{P}^{2} & -\rightarrow \mathbb{P}^{3} \\
\underline{t}=\left(t_{0}: t_{1}: t_{2}\right) & \longmapsto(a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))
\end{array}
$$

There are base points!

Implicitization via

■ Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...

Implicitization via

■ Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
■ Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...

Implicitization via

■ Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
■ Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
■ Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

Implicitization via

■ Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
■ Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
■ Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

Moving planes, moving quadrics,...

Moving planes, moving quadrics,...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, D, D-Khetan)

Moving planes, moving quadrics,...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, D,
D-Khetan)
Contrast:

- The module of moving planes is not free

Moving planes, moving quadrics,...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, D,
D-Khetan)
Contrast:

- The module of moving planes is not free

■ There is a concept of μ-basis given by Chen-Cox-Liu
Not easy to compute (bounds on the degree by Cid Ruiz)

Some results

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrizations

Some results

Implicitization

Carlos D'Andrea

The use of higher order syzygies in the implicitization of rational parametrizations

Some results

Implicitization

■ Quadratic and cubic surfaces (Chen-Shen-Deng)

Some results

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)

■ Steiner surfaces (Wang-Chen)

Some results

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)

■ Steiner surfaces (Wang-Chen)
■ Revolution surfaces (Shi-Goldman)

Some results

Implicitization

■ Quadratic and cubic surfaces (Chen-Shen-Deng)
■ Steiner surfaces (Wang-Chen)
■ Revolution surfaces (Shi-Goldman)

Rees Algebras

Some results

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)

■ Steiner surfaces (Wang-Chen)
■ Revolution surfaces (Shi-Goldman)
■ . . .

Rees Algebras

■ "Monoid" Surfaces (Cortadellas - D)

Some results

Implicitization

■ Quadratic and cubic surfaces (Chen-Shen-Deng)
■ Steiner surfaces (Wang-Chen)
■ Revolution surfaces (Shi-Goldman)
\square. . .

Rees Algebras

■ "Monoid" Surfaces (Cortadellas - D)
■ de Jonquières surfaces (Hassanzadeh- Simis)

Similar Results for

Spatial curves
ϕ_{C} :

$$
\rightarrow \mathbb{P}^{3}
$$

$$
\underline{t}=\left(t_{0}: t_{1}\right) \longmapsto(a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))
$$

Thanks!

Carlos D'Andrea
The use of higher order syzygies in the implicitization of rational parametrizations

