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Rational Plane Parametrizations

φ : P1 → P2

(t0 : t1) 7→ (a(t0, t1) : b(t0, t1) : c(t0, t1))

a, b, c ∈ K[T0,T1], homogeneous of the same
degree d ≥ 1
gcd(a, b, c) = 1
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Rational Curves in the plane

The image of φ is a rational plane curve

It has degree d if φ is “generically” injective
It has genus 0, which means the maximal number
of multiple points (d−1)(d−2)

2
Computing its implicit equation is relatively easy
from the input φ
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Implicit Equations

X2a(T )− X0c(T ) = X2T
2
0 − 2X0T0T1 + X2T

2
1

X2b(T )− X1c(T ) = X2T
2
0 − 2X1T0T1 − X2T

2
1

ResT
(
X2 · a(T )− X0 · c(T ),X2 · b(T )− X1 · c(T )

)
=

det


X2 −2X0 X2 0
0 X2 −2X0 X2

X2 −2X1 −X2 0
0 X2 −2X1 −X2

 = −4X 2
2 (X

2
0 − X 2

1 − X 2
2 )
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How small can the matrix be?
L1,1(T ,X ) = X2 T0 −(X0 + X1) T1

L′1,1(T ,X ) = (−X0 + X1) T0 +X2 T1

det
(

X2 −X0 − X1

−X0 + X1 X2

)
= X 2

1 + X 2
2 − X 2

0
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Hilbert’s Syzygy Theorem

There exist µ ≤ d
2 and two other parametrizations

ϕµ(t0, t1), ψd−µ(t0, t1) of degrees µ, d − µ such that

φ(t0, t1) = ϕµ(t0, t1) ∧ ψd−µ(t0, t1)
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For the unit circle...

ϕ1(t0 : t1) = (−t1 : −t1 : t0)
ψ1(t0 : t1) = (−t0 : t0 : t1)∣∣∣∣∣∣

e0 e1 e2

−t1 −t1 t0
−t0 t0 t1

∣∣∣∣∣∣ = (− t2
0 − t2

1 , t
2
1 − t2

0 ,−2t0t1
)
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Algebraic Version

The homogeneous ideal
I =

(
a(T ), b(T ), c(T )

)
⊂ K[T0,T1] has a

Hilbert-Burch resolution of the type

0→ K[T ]2
(ϕµ,ψd−µ)

t

−→ K[T ]3
(a,b,c)−→ K[T ]

A µ-basis of the parametrization is a basis of Syz(I )
as a K[T ]-module
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Why do we care about µ-bases?

Implicit equation
=

ResT
(
ϕµ(T ), ϕd−µ(T )

)
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Computing µ-bases

A moving line

L(T0,T1,X0,X1,X2) = v0(T )X0+v1(T )X1+v2(T )X2

follows the parametrization iff

L(T0,T1, a(T ), b(T ), c(T )) = 0
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In our example...

L1(T ,X ) = −2T 2
0T1X0 + 0X1 + (T 3

0 + T0T
2
1 )X2

L2(T ,X ) = −2T0T
2
1X0 + 0X1 + (T 2

0T1 + T 3
1 )X2

L3(T ,X ) = 0X0 − 2T 2
0T1X1 + (T 3

0 − T0T
2
1 )X2

L4(T ,X ) = 0X0 − 2T0T
2
1X1 + (T 2

0T1 − T 3
1 )X2


X2 −2X0 X2 0
0 X2 −2X0 X2

X2 −2X1 −X2 0
0 X2 −2X1 −X2
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In general

The determinant of a “matrix of
moving lines” is a multiple of the

implicit equation
L11(X ) L12(X ) . . . L1k(X )
L21(X ) L22(X ) . . . L2k(X )

... ... . . . ...
Lk1(X ) Lk2(X ) . . . Lkk(X )
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Moving conics, moving cubics,...

O(T )X 2
0 + P(T )X0X1 +Q(T )X0X2 +R(T )X 2

1 +
S(T )X1X2 + T (T )X 2

2 ∈ K[T ,X ]
is a moving conic following the parametrization if
O(T )a(T )2 + P(T )a(T )b(T ) +Q(T )a(T )c(T ) +
R(T )b(T )2 + S(T )b(T )c(T ) + T (T )c(T )2 = 0

Carlos D’Andrea

The use of higher order syzygies in the implicitization of rational parametrizations



Moving conics, moving cubics,...

O(T )X 2
0 + P(T )X0X1 +Q(T )X0X2 +R(T )X 2

1 +
S(T )X1X2 + T (T )X 2

2 ∈ K[T ,X ]
is a moving conic following the parametrization if

O(T )a(T )2 + P(T )a(T )b(T ) +Q(T )a(T )c(T ) +
R(T )b(T )2 + S(T )b(T )c(T ) + T (T )c(T )2 = 0

Carlos D’Andrea

The use of higher order syzygies in the implicitization of rational parametrizations



Moving conics, moving cubics,...

O(T )X 2
0 + P(T )X0X1 +Q(T )X0X2 +R(T )X 2

1 +
S(T )X1X2 + T (T )X 2

2 ∈ K[T ,X ]
is a moving conic following the parametrization if
O(T )a(T )2 + P(T )a(T )b(T ) +Q(T )a(T )c(T ) +
R(T )b(T )2 + S(T )b(T )c(T ) + T (T )c(T )2 = 0

Carlos D’Andrea

The use of higher order syzygies in the implicitization of rational parametrizations



The method of moving curves

The implicit equation can be computed as the
determinant of a small matrix with entries∣∣∣∣∣∣∣∣

some moving lines
some moving conics
some moving cubics

· · ·

∣∣∣∣∣∣∣∣
the more singular the curve, the simpler the

description of the determinant
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Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed
as a 2× 2 determinant.

If the curve has a triple point, then one row is linear
and the other is cubic.

Otherwise, both rows are quadratic.
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A quartic with a triple point

φ(t0, t1) = (t4
0 − t4

1 : −t2
0 t

2
1 : t0t

3
1 )

F (X0,X1,X2) = X 4
2 − X 4

1 − X0X1X
2
2

L1,1(T ,X ) = T0X2 + T1X1
L1,3(T ,X ) = T0(X

3
1 + X0X

2
2 ) + T1 X

3
2(

X2 X1
X 3

1 + X0X
2
2 X 3

2

)
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A quartic without triple points

φ(t0 : t1) = (t4
0 : 6t2

0 t
2
1 − 4t4

1 : 4t3
0 t1 − 4t0t3

1 )
F (X ) = X 4

2 +4X0X
3
1 +2X0X1X

2
2 −16X 2

0X
2
1 −6X 2

0X
2
2 +16X 3

0X1

L1,2(T ,X ) = T0(X1X2 − X0X2) + T1(−X 2
2 − 2X0X1 + 4X 2

0 )

L̃1,2(T ,X ) = T0(X
2
1 + 1

2X
2
2 − 2X0X1) + T1(X0X2 − X1X2)
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Very concentrated singularities

If the curve has a point of multiplicity d − 1
the implicit equation is always a 2× 2 determinant∣∣∣∣ L1,1(X ) L′1,1(X )

L1,d−1(X ) L′1,d−1(X )

∣∣∣∣
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In general, we do not know..

∣∣∣∣∣∣∣∣
which moving lines?
which moving conics?
which moving cubics?

· · ·

∣∣∣∣∣∣∣∣
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Higher order syzygies

Cox, D. Theoret. Comput. Sci. 392 (2008)
The moving curve ideal and the Rees algebra

Kφ := {Moving curves following φ} =
homogeneous elements in the kernel of
K[T0,T1,X0,X1,X2] → K[T0,T1, s]

Ti 7→ Ti

X0 7→ a(T )s
X1 7→ b(T )s
X2 7→ c(T )s

“The ideal of moving curves following φ”
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Method of moving curves revisited

The implicit equation should be obtained as the
determinant of a matrix with∣∣∣∣∣∣∣∣

· · ·
some minimal generators of Kφ

and relations among them
· · ·

∣∣∣∣∣∣∣∣
The more singular the curve, the “simpler” the

description of Kφ
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and relations among them
· · ·

∣∣∣∣∣∣∣∣
The more singular the curve, the “simpler” the

description of Kφ
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New Problem

Compute a minimal system of
generators of Kφ for any φ

Known for
µ = 1 (Hong-Simis-Vasconcelos,
Cox-Hoffmann-Wang, Busé, Cortadellas-D)
µ = 2 (Busé, Cortadellas-D, Kustin-Polini-Ulrich)(
Kφ
)
(1,2) 6= 0 (Cortadellas-D)

Monomial Parametrizations (Cortadellas-D)
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Only curves in the plane?
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Rational Surfaces

φS : P2 99K P3

t = (t0 : t1 : t2) 7−→
(
a(t) : b(t) : c(t) : d(t)

)

There are base points!
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Implicitization via

Resultants Macaulay, Dixon,
Gelfand-Kapranov-Zelevinskii, ...

Determinants of complexes Botbol, Busé,
Chardin, Jouanlou, ...
Representation matrices Botbol, Busé, Chardin,
Dickenstein, ...
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Moving planes, moving quadrics,...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, D,
D-Khetan)
Contrast:

The module of moving planes is not free
There is a concept of µ-basis given by
Chen-Cox-Liu
Not easy to compute (bounds on the degree
by Cid Ruiz)
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Some results

Implicitization
Quadratic and cubic surfaces (Chen-Shen-Deng)
Steiner surfaces (Wang-Chen)
Revolution surfaces (Shi-Goldman)
. . .

Rees Algebras
“Monoid” Surfaces (Cortadellas - D)
de Jonquières surfaces (Hassanzadeh- Simis)
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Similar Results for

Spatial curves
φC : P1 99K P3

t = (t0 : t1) 7−→
(
a(t) : b(t) : c(t) : d(t)

)
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Thanks!
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