
GEOMETRIC SPARSE RESULTANTS

CARLOS D’ANDREA

1. Introduction

Sparse resultants are widely used in polynomial equation solving, a fact that has
sparked a lot of interest in their computational and applied aspects, see for instance
[CE00, EM99, Stu02, D’A02, JKSS04, CLO05, DE05, JMSW09]. They have also
been studied from a more theoretical point of view because of their connections with
combinatorics, toric geometry, residue theory, and hypergeometric functions [GKZ94,
Stu94, CDS98, Kho99, CDS01, Est10].

Sparse elimination theory focuses on ideals and varieties defined by Laurent polyno-
mials with given supports, in the sense that the exponents in their monomial expansion
are a priori determined. The classical approach to this theory consists in regarding
such Laurent polynomials as global sections of line bundles on a suitable projective
toric variety. Using this interpretation, sparse elimination theory can be reduced to
projective elimination theory. In particular, sparse resultants can be studied via the
Chow form of this projective toric variety as it is done in [PS93, GKZ94, Stu94]. This
approach works correctly when all considered line bundles are very ample, but need
to be properly defined in general.

In these notes we will introduce informally elimination theory from both an algebraic
and geometric point of view, and then focus in sparse elimination theory to exhibit
some results obtained recently in [DS15] to show the versatility and applicability of
this tool to polynomial system solving.

2. Elimination Theory: Algebra and Geometry

Elimination Theory lies at the core of Algebra and its applications, as everyone who
has attended a class of elementary Mathematics has found it in many of its several
aspects, including the most elementary following example.

Problem 2.1. Let K be a field, and a00, a00, a10, a11 ∈ K, find “the condition” under
which the system of equations

(2.1)
{
a00x0 + a01x1 = 0
a10x0 + a11x1 = 0

has a solution in K2 different from (0, 0).

Answer: The system (2.1) has a non trivial solution ⇐⇒ a00a11 − a10a01 = 0. �

This is one of the first examples of what we call “elimination theory” in Commutative
Algebra and Algebraic Geometry: one starts with two polynomials in 6 variables
a00x0+a01x1, a10x0+a11x1 ∈ K[a00, a01, a10, a11, x0, x1] and by some formalism which
seems on one side very familiar to any reader who has passed through a course of Linear
Algebra but yet strange from the Computational Algebra point of view, we obtain
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another polynomial depending on less variables (a00a11−a10a01 ∈ K[a00, a01, a10, a11])
from which we can deduce some geometric properties of the system (2.1).

Problem 2.1 has several generalizations, some of them very likely to be familiar.
Let us take a look at them.

Problem 2.2. (Increasing the number of variables) Find “the condition” for the fol-
lowing system of equations

a00x0 + a01x1 + . . .+ a0nxn = 0
a10x0 + a11x1 + . . .+ a1nxn = 0

...
...

...
an0x0 + an1x1 + . . .+ annxn = 0

to have a solution in Kn+1 different from (0, 0, . . . , 0).

Problem 2.3. (Increasing the degrees) Let d0, d1 ∈ Z≥1. Find “the condition” under
which the following system of homogeneous polynomials{

a00x
d0
0 + a01x

d0−1
0 x1 + . . .+ a0d0x

d0
1 = 0

a10x
d1
0 + a11x

d1−1
0 x1 + . . .+ a1d1x

d1
1 = 0

has a solution in K2 \ {(0, 0)}.

Problem 2.4. (Increasing the degrees AND the number of variables) Let n ∈ N, and
d0, . . . , dn ∈ Z≥1, find the condition under which the following system of homogeneous
polynomials 

∑
α0+...+αn=d0

a0,α0,...,αnx
α0
0 . . . xαnn = 0∑

α0+...+αn=d1
a1,α0,...,αnx

α0
0 . . . xαnn = 0

...
...

...∑
α0+...+αn=dn

an,α0,...,αnx
α0
0 . . . xαnn = 0

Homework 2.5.

(1) Prove carefully that the solution of Problem 2.2 is given by “the polynomial”
det(aij).

(2) Is it true that the solution of Problem 2.3 is given by the “Sylvester resultant”

Resultantt(a00 + a01t+ . . .+ a0d0t
d0 , a10 + a11t+ . . .+ a1d1t

d1)?

Questions:

• Is there always “a condition” to solve all these problems?
• Is the condition independent of the ground field K?
• Do we need to use always homogeneous polynomials?

One can get rid of the constrains of homogeneity of the polynomials and “same
number of equations than unknowns” and get the more general situation:
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Problem 2.6. Denote with a a list of parameters a = (a1, . . . , aN ). For k, n ∈ N let
fk(a, x1, . . . , xn) ∈ K[a, x1, . . . , xn]. Find conditions on a such that the system

(2.2)


f1(a, x1, . . . , xn) = 0
f2(a, x1, . . . , xn) = 0

...
...

...
fk(a, x1, . . . , xn) = 0

has a solution in Kn.

Homework 2.7.
(3) Show that if the family (2.2) is a set of linear homogeneous equations of the

form 
a11x1 + . . .+ a1nxn = 0
a21x1 + . . .+ a2nxn = 0

...
...

...
aknx1 + . . .+ aknxn = 0

with k ≥ n, then there is a non trivial solution if and only if all the maximal
minors of the matrix

(
aij
)
1≤i≤k, 1≤j≤n are zero.

Solving the “general” problem 2.6 can be a very complicated task, already in its
simplest expressions. Consider for instance the case k = n = 1, so (2.2) boils down to

(2.3) a0 + a1x1 + a2x
2
1 + . . .+ adx

d
1 = 0.

Note that in this case, if d > 1, the answer to the question whether there is a root of
this polynomial depends strongly on the field K, and even if one restricts the attention
to solutions in algebraically closed field (like the field of complex numbers C), there
are not “closed” conditions like "there will always be a solution” because one of the
instances of (2.3) is a0 = 0 (i.e. a1 = a2 = . . . = ad = 0), which does not have
solutions if a0 6= 0. In this case, by homogenizing (2.3) we can get rid of this kind of
odd situation, because the system

a0x
d
0 + a1x

d−1
0 x1 + a2x

d−2
0 x21 + . . .+ adx

d
1 = 0

has always a complex nontrivial solution, independently of the values of a0, . . . , ad ∈ C.

To some extent, looking at homogeneous equations with coefficients in an alge-
braically closed field simplifies a lot our study on conditions over the system, and this
is not a mere intuitive argument.

Let us look at the geometry of Problem 2.6. We have the following situation:

V := {(a, x1, . . . , xn) : f1(a, x1, . . . , xn) = . . . = fk(a, x1, . . . , xn) = 0} ⊂ KN ×Kn

↓ π1 ↓ π1

π1(V ) ⊂ KN

“The conditions” to solve (2.2) should be given by the equations of the image of the
projection above or -from a more algebraic point of view- the polynomials defining
the ideal of this variety. But the problem is that projections do not behave well when
we work with algebraic sets like the one above, so π1(V ) may not be described by
polynomials! This is when Commutative Algebra and Algebraic Geometry come in
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our help, because if our variety above were a projective one (contained in Pn instead
of Kn), the we would get the following:

Theorem 2.8. [CLO97, Has07, Projective Elimination] If K is algebraically closed
and V ⊂ KN × Pn is an algebraic set (i.e. a the solution of a system of polynomial
equations which are homogeneous in the last n+ 1 variables), then π1(V ) ⊂ KN is also
an algebraic set.

Question 2.9. Given V ⊂ KN × Pn as before. Which are the equations of π1(V )?.

Theorem 2.10. [CLO97, Has07, Algebraic version of the Projective Elimination]
If K is algebraically closed and V ⊂ KN × Pn the variety given by the ideal I =
〈f1(a, x0, . . . , xn), . . . , fk(a, x0, . . . , n)〉 ⊂ K[a, x0, . . . , xn] (these polynomials must be
homogeneous in the variables x0, . . . , xn) then π1(V ) is the variety given by the zeroes
of the ideal

(2.4) Î := {f ∈ K[a] : for each 0 ≤ i ≤ n, ∃ei ≥ 0 with xeii f ∈ I} ⊂ K[a].

Example 2.11. Suppose the ideal I is given by 〈f0, f1〉 ⊂ K[a00, a01, a10, a11, x0, x1]
with f0 = a00x0 + a01x1, f1 = a10x0 + a11x1, and K algebraically closed. Let us see
that the determinant ∆ := a00a11 − a10a01 is an element of Î . Indeed, we have that
a10f0 − a00f1 = −x0∆, and a11f0 − a01f1 = x1∆, so ∆ ∈ Î .

Of course it would be interesting to characterize completely the ideal Î in all cases,
even in the one given by Example 2.11.

Question 2.12. Is it true that Î = 〈∆〉 in this case? How do we compute Î if we have
the generators of I.

Homework 2.13.
(4) Show that for π1 : K × K → K given by π1(x1, x2) = x1, and V (x1x2 − 1) ⊂

K2, π1(V ) ⊂ K is not an algebraic set.

2.1. A Session with Mathematica. The ideal Î defined in (2.4) can be described
algorithmically, and there are good formulas using elimination to describe it, see for
instance [CLO97, Has07]. Let us see how a session with a Computational Algebra tool
work if we use Gröbner bases to try to eliminate the homogeneous variables.

Example 2.14. We start with the polynomials of Example 2.11, and we try to “elim-
inate” the variables x0 and x1 with a suitable Lexicographic Monomial Order:
f0 := a00 ∗ x0 + a01 ∗ x1
f1 = a10 ∗ x0 + a11 ∗ x1
Factor[GroebnerBasis[{f0, f1}, {x0, x1, a00, a01, a10, a11}]]
{−(a01a10− a00a11)x1, a10x0 + a11x1, a00x0 + a01x1}
We try a different monomial order
Factor[GroebnerBasis[{f0, f1}, {x1, x0, a00, a01, a10, a11}]]
{−(a01a10− a00a11)x0, a10x0 + a11x1, a00x0 + a01x1}

Example 2.15. If we look for conditions for the following polynomials to have a
nontrivial root in C2, we proceed as before:
f0 := a00 ∗ x02 + a01 ∗ x0 ∗ x1 + a02 ∗ x12

f1 := a10 ∗ x02 + a11 ∗ x0 ∗ x1 + a12 ∗ x12
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Factor[GroebnerBasis[{f0, f1}, {x1, x0, a00, a01, a02, a10, a11, a12}]]

x03
(
a002a122 − a00a01a11a12− 2a00a02a10a12 + a00a02a112 + a012a10a12− a01a02a10a11 + a022a102

)
,

−x0(−a00a12x0− a01a12x1 + a02a10x0 + a02a11x1),
−x02(−a00a11x0− a00a12x1 + a01a10x0 + a02a10x1),
−x02

(
a002a12x0− a00a01a11x0− a00a02a10x0− a00a02a11x1 + a012a10x0 + a01a02a10x1

)
,

a10x02 + a11x0x1 + a12x12,
a00x02 + a01x0x1 + a02x12


We change the monomial order and obtain

Factor[GroebnerBasis[{f0, f1}, {x0, x1, a00, a01, a02, a10, a11, a12}]]

x13
(
a002a122 − a00a01a11a12− 2a00a02a10a12 + a00a02a112 + a012a10a12− a01a02a10a11 + a022a102

)
,

−x1(−a00a12x0− a01a12x1 + a02a10x0 + a02a11x1),
−x12(−a00a11x0− a00a12x1 + a01a10x0 + a02a10x1),
−x12

(
a002a12x0− a00a01a11x0− a00a02a10x0− a00a02a11x1 + a012a10x0 + a01a02a10x1

)
,

a10x02 + a11x0x1 + a12x12,
a00x02 + a01x0x1 + a02x12


Which essentially tell us that the polynomial
(2.5)
a002a122−a00a01a11a12−2a00a02a10a12+a00a02a112+a012a10a12−a01a02a10a11+a022a102

must be in the ideal Î in this case.

Homework 2.16.
(5) Prove that the polynomial (2.5) is the resultant of the polynomials f0 and f1
defined in Example 2.15.
(6) Carry out Gröbner bases computations similar to Examples 2.14 and 2.15 to find
out equations for Î if I is any of the following:

• I = 〈a00x0 + a01x1, a10x0 + a11x1, a20x0 + a21x1〉
• I = 〈a00x0 + a01x1, a10x

3
0 + a11x

2
0x1 + a12x0x

2
1 + a13x

3
1, 〉

• I = 〈a00x0 + a01x1, a10x
3
0 + a11x

2
0x1 + a12x0x

2
1 + a13x

3
1, a20x0 + a21x1〉

With a bit of effort, using the results given by Mathematica in both sessions 2.14 and
2.15, one can show that Î is actually generated by the polynomials ∆ and (2.5) in each
case. But of course we would like to be able to find “simpler” ways of computing these
elements, like avoiding for instane the whole Gröbner basis calculation. In particular
we would like to set us into a situation where

• Î is principal.
• Î is generated by an irreducible element.
• There is a “direct” way of computing this irreducible element.

In the next section we will see that the situation presented in Problem 2.4 (which
contains Problems 2.1, 2.2 and 2.3) can be set within this context, and hence we have
“a closed condition” to deal with all these cases. Of course one may think that this is
a very limited situation, but as in the case of the determinant, the case of elimination
in this kind of “ideal case” can also be adapted to more general cases, and also to find
solutions of polynomial systems.

Homework 2.17.
(6) Prove that the polynomial (2.5) is an irreducible element in C[a00, a01, a02, a10, a11, a12].
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3. Classical Elimination: homogeneous polynomials

We set ourselves in the situation of Problem 2.4. Let n ∈ N, and d0, . . . , dn ∈ Z≥1.
For α = (α0, . . . , αn) ∈ Nn, set |α| =

∑n
j=0 αj . Consider the “generic” homogeneous

polynomials with respect to d0, . . . , dn:

(3.1)


f0 :=

∑
|α|=d0 a0,αx

α0
0 . . . xαnn

f1 =
∑
|α|=d1 a1,αx

α0
0 . . . xαnn

...
...

...
fn =

∑
|α|=dn a0,αx

α0
0 . . . xαnn

By “generic” we mean here that we will consider each of the ai,α as a new indeterminate
over the field C, i.e. f0, . . . , fn ∈ C[ai,α, x0, . . . , xn, |α| = di, 0 ≤ i ≤ n]. Note that
they actually are elements of Z[ai,α, x0, . . . , xn, |α| = di, 0 ≤ i ≤ n]. Denote with
N := #{ai,α, |α| = di, 0 ≤ i ≤ n}.

The following results are classic and go all the way back to the times of Macaulay
([Mac02], although not formulated in this way), see also [Jou91, Jou97, CLO05].

Theorem 3.1. The variety V (f0, . . . , fn) ⊂ CN × Pn is irreducible. It has dimension
N − 1.

A nice fact is that the projection of irreducible varieties is irreducible, so we already
have that our map π1 : CN × Pn → CN is going to send the irreducible variety
V (f0, . . . , fn) above to an irreducible variety in CN . But the situation is even better
in this case:

Theorem 3.2. The variety π1
(
V (f0, . . . , fn)

)
⊂ CN is irreducible, has codimension

1, it is defined over Q[ai,α, x0, . . . , xn, |α| = di, 0 ≤ i ≤ n] and, moreover, the map
π1|V : V → π1(V ) is birational.

Homework 3.3.
(7) Prove that number N defined above is N =

(
n+d0
n

)
+
(
n+d1
n

)
+ . . .

(
n+dn
n

)
.

Definition 3.4. We call the (homogeneous, dense, Macaulay) resultant of the generic
polynomials (3.1) to the irreducible element in Z[ai,α, 0 ≤ i ≤ n] defining the ideal of
π1
(
V (f0, . . . , fn)

)
. It is well-defined up to the sign. We denote it with Resd0,...,dn .

3.1. Examples.

• The case of Problem 2.1 is actually Res1,1, which is equal to ±(a00a11−a10a01).
• The situation presented in Problem 2.2 is now equivalent to studying the geo-
metric elimination of n + 1 homogeneous polynomials of degree 1, and hence
we have that

Res1,1,...,1 = ±det
(
aij
)
0≤i, j≤n.

• In the case of Problem 2.3, we have that n = 1 and it is straightforward to
check that Resd0,d1 = “The Sylvester Resultant” of f0 and f1.
• Let us compute a non-trivial example, we will do Res1,1,2 with Mathematica:

f0:=a00x0 + a01x1 + a02x2
f1:=a10x0 + a11x1 + a12x2
f2:=a20x02 + a21x0x1 + a22x0x2 + a23x12 + a24x1x2 + a25x22
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MResultant[{f0, f1, f2}, {x0, x1, x2}]

a002a112a25− a002a11a12a24 + a002a122a23− 2a00a01a10a11a25 + a00a01a10a12a24
+a00a01a11a12a22− a00a01a122a21 + a00a02a10a11a24− 2a00a02a10a12a23
−a00a02a112a22 + a00a02a11a12a21 + a012a102a25− a012a10a12a22 + a012a122a20
−a01a02a102a24 + a01a02a10a11a22 + a01a02a10a12a21
−2a01a02a11a12a20 + a022a102a23− a022a10a11a21 + a022a112a20

3.2. Properties.
• Degrees: Resd0,...,dn is a homogeneous polynomial in the variables ai,α, 0 ≤
i ≤ n. Moreover, for a fixed i0, Resd0,...,dn is a homogeneous polynomial in the
variables ai0,α of degree d0·d1·...dn

di0
.

• Specialization: For a given evaluation of the coefficients ai,α 7→ ãi,α (which is
equivalent to say given a specific choice of homogeneous polynomials f̃0, . . . f̃n ∈
C[x0, . . . , xn]), we have Resd0,...,dn(f̃0, . . . , f̃n) = 0 if and only if there exists a
zero of the system f̃0 = f̃1 = . . . = f̃n = 0 in Pn.
• Poisson Formula: Denote with f01 , . . . , f0n the “part at infinity” of the polyno-
mials f1, . . . , fn which is obtained by setting x0 7→ 0 in these polynomials.
Also, denote with f11 , . . . , f1n the “affinization” of the polynomials f1, . . . , fn by
setting x0 7→ 1. Then, we have that

Resd0,...,dn = Resd1,...,dn(f01 , . . . , f
0
n)d0

∏
ξ∈V (f11 ,...,f

1
n)

f0(ξ).

• Additivity:

Resd0+d′0,d1,...,dn(f0 · f ′0, f1, . . . , fn) = Resd0,...,dn(f0, . . . , fn) · Resd′0,...,dn(f ′0, . . . , fn).

• Isobarism: If one “declares” that deg(ai,α) = α ∈ Nn+1, then Resd0,...,dn is
“homogeneous” of degree d0 · d1 · . . . · dn(1, 1, . . . , 1).
• Extremal Coefficients: Resd0,...,dn has several well detected monomials with co-
efficients being ±1.
• Hidden variables vs u-resultants If you have n homogeneous polynomials in n
variables f1, . . . , fn ∈ K[x0, . . . , xn], for a given i = 1, . . . , n one can either
compute
– The “u”-resultant Res1,d1,...,dn(uix0 − u0xi, f1, . . . , fn) ∈ K[u0, . . . , un],

– the polynomial Pi(x0, xi) = Resd1,...,dn(f
(i)
1 , . . . , f

(i)
n ), where f (i)j is the

polynomial consisting in giving “degree zero” to the variables x0 xi and
rehomogenizing the polynomials again up to degree di. For instance, if f =
x20x

2
1x2 +x51 +x52 +x0x1x23, then f (1) = x0x

2
1x2z

3 +x51z
5 +x52 +x0x1x

3
2z

2,
where z is the new homogenizating variable.

Proposition 3.5.

P (u0, u1) = ±Res1,d1,...,dn(uix0 − u0xi, f1, . . . , fn),

and these two polynomials encode the i-th coordinates of the affine zeroes of the
system f11 , . . . , f

1
n.

The importance of properties like Proposition 3.5 can be highlighted with the following
example.
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Example 3.6. Consider the homogeneous polynomials F1(x0, x1, x2), F2(x0, x1, x2) ∈
C[x0, x1, x2], of respective degrees d1 and d2. The zero set of each of them gives a curve
in projective space P2 and we would like to count properly the number of intersections.
One can do of course Resd1,d2(F

(1)
1 , F

(2)
2 ), which would encode the 1-st coordinate of

the roots, but then it is not clear from this operator applied to the sequence F (1)
1 , F

(2)
2

which would be the degree of this polynomial in x1. On the other hand, we know
because of Proposition 3.5 that

Res1,d1,d2(u0x1 − u1x0, F1, F2)

has degree d1d2 in the coefficients of (u0, u1), and moreover Poisson’s formula tell us
that up to a constant in C, we have that this resultant is equal to∏

ξ∈V (F
(1)
1 ),F

(2)
2 )

(u0ξ1 − u1),

so we know that generically (if the constant we have not computed is not zero) the
number of common intersections counted properly of these two curves in P2 is d1 · d2,
so we recover Bézout’s Theorem from the properties of the resultant.

Homework 3.7.
(8) Apply Poisson’s formula to a system with n = 2, d0 = d1 = 1, d2 = 2.

Open Problem: We know that there are several coefficients in the monomial expan-
sion of Resd0,...,dn which are equal to ±1, but we do not know which is the largest
nonzero integer appearing in this expression, i.e. we do not know its arithmetic height.
This problem is of importance in Arithmetic Geometry and Dynamical systems (see
for instance [DGS14]). Some bounds are given in [Som04, DKS13], but we do not know
if they are sharp or not. Good conjectures are needed here!

3.3. Formulas for computing Resd0,...,dn. In the case n = 1, it should be familiar
to the reader that Resd0,d1 can be computed as the determinant of a “Sylvester” type
matrix of size (d0 +d1). Indeed, if we set K = Q(ai,α, |α| = di, i = 0, 1), then we have
the following K-linear map:

(3.2) ϕ : K[x0, x1]d1−1 ⊕K[x0, x1]d0−1 → K[x0, x1]d0+d1−1
(g0, g1) 7→ g0f0 + g1f1.

Note that ϕ is a map between K-vector spaces of the same dimension, and that its
matrix in the standard monomial bases is the Sylvester matrix.

Theorem 3.8.
det(ϕ) = ±Resd0,d1

From here, we can see easily that det(ϕ) = 0 for a particular specialization of the
coefficients if and only if f̃0 and f̃1 have a common factor of positive degree, which is
equivalent over C to have a common zero in P1. This condition of having a common
factor if and only if having a common zero is only proper of the case n = 1.

If n > 1, there is a general version of the map (3.2) which we describe as follows:
set K = Q(ai,α, |α| = di, 0 ≤ i ≤ n), D =

(∑n
i=0 di

)
− n, and consider the following

map of K-vector spaces

(3.3) Φ : ⊕ni=0K[x0, . . . , xn]D−di → K[x0, . . . , xn]D
(g0, . . . , gn) 7→ g0f0 + . . .+ gnfn.
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Theorem 3.9. The map Φ is surjective, and the gcd of the maximal minors of its
matrix in the monomial bases is equal to ±Resd0,...,dn.

If one wants a more “clear” formulation for Resd0,...,dn as a “determinant”, then one
can see the formulation given by Cayley and highlighted in Appendix A of [GKZ94]
of the resultant as the determinant of a “complex” of vector spaces. In that sense,
the map (3.3) can be regarded as the last part of a longer complex of exact K-vector
spaces whose “determinant” will be equal to Resd0,...,dn up to the sign.

Homework 3.10.
(9) Compute the matrix in the monomial bases of the map Φ of (3.3) in the following
cases: d0 = d1 = 1, d2 = 2(n = 2) and d0 = d1 = d2 = 2.

Macaulay gave somehow an intriguing contribution to making explicit the compu-
tation of Resd0,...,dn as the quotient of a specific (well-defined) minor of (3.3) divided
by another minor of the same matrix. The original work can be found in [Mac02], see
also [DD01, CLO05].

There are also other matricial formulations than those coming from (3.3) for com-
puting Resd0,...,dn involving matrices “a la Bézout”, Dixon-like, hybrid types and other
methods, you can find several of them in [Jou97, DD01, EM99, EM07].

3.4. Software. None of the standard current Symbolic Computation Software has a
command for computing Resd0,...,dn directly, most of them have a Resultant sentence
which computes the Sylvester Resultant of two affine polynomials in one variable or
-in our language- two homogeneous polynomials in two variables. The following is a
(not exhaustive) list of codes available for producing resultant matrices and having
some kind of “representation” of the resultant. Note that the number of coefficients in
the monomial expansion of the resultant can be a huge number, so its calculation is a
heavy task even in the more elementary cases.

• Several codes in C, Maple and Matlab for manipulating polynomials in several
variables and computing resultant matrices, available at

http://www-sop.inria.fr/galaad/logiciels/emiris/softalg.html
Author: Ioannis Emiris

• Multires – a Maple package for the manipulation of multivariate polynomials,
containing several tools for resultants, residues and the resolution of polynomial
systems. Available at https://www-sop.inria.fr/teams/galaad/software/multires/

Authors: Laurent Busé and Bernard Mourrain.
• EliminationMatrices – A package for computing resultants in Macaulay2, avail-
able at http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.7/share/doc/Macaulay2/EliminationMatrices/html/

Authors: Nicolás Botbol, Laurent Busé, and Manuel Dubinski
• Java package for computing modular determinants and constructing Macaulay
matrices, available at http://works.bepress.com/minimair/30/

Authors: Manfred Minimair, Sarah Smith, Jonathan Curran, and Julio
Macavilca.

Homework 3.11.
(10) Try any of the codes above to compute Res2,2,2 .
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4. Sparse Elimination Theory

In practice one does not start with full homogeneous polynomials f0, . . . , fn as in
(3.1), but with functions with more “structure” like in the following example.

Example 4.1. If n > 1, and the affine polynomials f10 , . . . , f1n ∈ C[x1, . . . , xn] are
such that their degree in each individual variable xi, 1 ≤ i ≤ n is bounded by di, i.e.
we have a situation like the following:

(4.1) f1i =
∑

αj≤di, 1≤j≤n
ai,αx

α1
1 · · ·x

αn
n , 0 ≤ i ≤ n

then by homogenizing them and applying Resd,...,d to this family, where d = d1 + . . .+
dn, we will find that the resultant will vanish identically, and this is be due to the fact
that the point (0 : 1 : 0 : . . . : 0) ∈ Pn is a common zero of the homogenized system
(4.1).

Homework 4.2.
(11) Show that (0 : 1 : 0 : . . . : 0) ∈ Pn is a common zero of the homogenizations of
(4.1). Can you find more common zeroes?

A way of working around this situation is by considering “multihomogeneous” poly-
nomials, i.e. changing the homogenization: we would pass from a situation like (4.1)
to the following system of multihomogeneous polynomials:
(4.2)
fi =

∑
αj≤di, 1≤j≤n

ai,αx
α1
1 ydi−α1

1 · · ·xαnn ydi−αnn ∈ Q[ai,α, x1, . . . , xn, y1, . . . , yn], 0 ≤ i ≤ n,

These functions are multihomogeneous in the sense that they are homogeneous in each
group of variables (xi, yi), 1 ≤ i ≤ n, and one could consider their set of zeroes in the
multiprojective space P1 × P1 × . . .× P1 instead of Pn as we did before. This leads to
a very meaningful theory as elimination theory works very well also if we replace the
projective space with a multiprojective one. But our polynomials can be even more
“sparse” than those in (4.1). What happens for instance with a system like

(4.3)

 f10 = a01 + a02x
2
1 x

2
2 + a03x1 x

3
2

f11 = a10 + a11x
2
1 + a12x1 x

2
2

f12 = a20x
3
1 + a21x1 x2.

?

Homework 4.3.
(12) Show that by either homogeneizing this system to consider its zeroes either in P2

or in P1 × P1, we get nontrivial solutions of them (i.e. both the homogeneous and the
bi-homogeneous resultant will vanish).

Is there an “homogenization” for the system given in (4.3) which can lead us to a
meaningful theory of resultants there? Sparse elimination theory deals with situations
like the above. Instead of pre-declaring the total degrees or some partial degrees of
the input polynomials, we will fix their support, i.e. the non-zero exponents appearing
in the monomial expansion of each fi.

To get started in this direction, consider n + 1 finite subsets of Zn which will be
our set of exponents: A0, . . . ,An ⊂ Zn. The reason we now allow negative exponents
will be clarified soon. For i = 0, . . . , n, consider the generic polynomial with support
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in Ai :

(4.4) fi =
∑
α∈Ai

ai,αx
α1
1 . . . xαnn ∈ Z[ajα, x

±1
1 , . . . , x±1n ,α ∈ Aj , 0 ≤ j ≤ n].

In the case of Example 4.3 we haveA0 = {(0, 0), (2, 2), (1, 3)}, A1 = {(0, 0), (2, 0), (1, 2)},
and A2 = {(3, 0), (1, 1)}. In the previous section (homogeneous polynomials), we have
that our input polynomials can gotten by setting x0 7→ 1 in each of the fi, i = 0, . . . , n,
and the finite sets Ai are the following:

Ai = {α ∈ Nn : |α| ≤ di}, 0 ≤ i ≤ n.

Homework 4.4.
(13) Describe the sets Ai, 0 ≤ i ≤ n for the family f10 , . . . , f1n defined in (4.1).

Before going through the “homogenization” which will require some formalism, let
us take a look at the geometry. Because we allow now negative exponents, the set
of zeroes must be taken in the n-dimensional torus (C×)n, where C× := C \ {0}. Set
N =

∑n
j=0 #Ai, and denote with x = (x1, . . . , xn) for short. As before, we have the

following diagram:

(4.5)
V = {(ai,α,x) : f0(a0,α,x) = · · · = fn(an,α,x) = 0} ⊂ CN × (C×)n

↓ π1 ↓ π1
π1(V ) ⊂ CN .

We cannot use the Projective closure Theorem 2.8 here as (C×)n is not the projective
space, or any kind of compact projective variety where this result will hold. We will
see soon that there is a suitable compactification of the torus which takes very well
into account the information codified by the data (A0, . . . ,An), and generalizes the
projective space in the homogeneous case. But it is not hard to prove the following:

Proposition 4.5. The ideal 〈f0, . . . , fn〉 ⊂ C[ai,α, x
±1
1 , . . . , x±1n , α ∈ Ai, 0 ≤ i ≤ n]

is prime and of dimension N − 1.

This claim gives us some hope to find some irreducible equation defining either
π1(V ) or its Zariski closure, as it is very reasonable to hope that π1(V ) (or its alge-
braically closure) will be an irreducible variety of codimension one in CN , and that
would be the resultant that we are looking for.

Unfortunately, the situation is not very straightforward here. Let us see some of the
non trivial situations that we have to navigate in order to get something “reasonably”
defined as our sparse resultant.

Example 4.6.
• Set n = 2, A0 = A1 = A2 = {(0, 0), (1, 1)}, and write

fi = ai,00 + ai11x1x2, i = 0, 1, 2.

It is straightforward to see that the following polynomials vanish in π1(V ) :
a0,00a1,11 − a0,11a1,00, and a1,00a2,11 − a1,11a2,00. This shows that the variety
π1(V ) ⊂ K6 does not have codimension 1 in K6, and that there will not be “a”
resultant in this case.
• Suppose n = 2 and set A0 = A1 = {(0, 0), (1, 1)}, A2 = {(0, 0), (1, 0), (0, 1)}.
As above, we have that the element a0,00a1,11 − a0,11a1,00 belongs to the ideal
of π1(V ), and surprisingly it is the irreducible generator of this ideal. Note
that the “resultant” in this case does not depend on the coefficients of f2.
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• Set again n = 2 and A0 = A1 = A2 = {(0, 0), (2, 0), (0, 2)}, and write

(4.6) fi = ai,00 + ai,20x
2
1 + ai,02x

2
2, i = 0, 1, 2.

In this case it is not hard to check that π1(V ) is defined by the irreducible
polynomial

det

 a0,00 a0,20 a0,02
a1,00 a1,20 a1,02
a2,00 a2,20 a2,02

 ,

but the map π1|V has degree 4. This observation may seem irrelevant, but we
will see that it will play a central rol in the definition of the resultant.

Whether π1(V ) is an algebraic set or not, we can consider its Zariski closure π1(V ) ⊂
KN , which we know it is irreducible thanks to Proposition 4.5, and asks whether it is
of codimension one or not. There is a very nice combinatorial criterion to decide this:
for i = 0, . . . , n, set

(4.7) Ai = {ai,0, . . . , ai,mi} ⊂ Zn,
and consider the sublattice given by

LAi =

ci∑
j=1

(ai,j − ai,0)Z.

Clearly, this lattice does not depend on the choice of ai,0 ∈ Z. Set now LA =
∑m

i=0 LAi .
With more generality, for any J ⊂ {0, . . . , n}, we set

LAJ
=
∑
j∈J

LAj

The following combinatorial criterion was found by Sturmfels in [Stu94] (see also
[DS15]):

Proposition 4.7. The variety π1(V ) has codimension 1 in CN if and only if

rank(LAJ
) ≥ #J − 1 for all J ⊂ {0, . . . , n}.

This statement is computationally “heavy” to check but give us at least a basic
linear algebra criterion over vectors of Zn to decide if we will have a resultant or not.

Homework 4.8.
(14) Use the criteria given by Proposition 4.7 to decide in which cases π1(V ) has

codimension 1 in all the cases of Example 4.6.
(15) Do the same with the supports of the system given in Example 4.3.
(16) If

(4.8)
A0 = {(0, 0, 0, 0)}, Ai = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, i = 1, 2, 3, 4,

can you say if π1(V ) has codimension 1 or not? If the answer is “yes”, can you
find the irreducible element generating this variety?

There is a bit more we can say from a combinatorial point of view. Set A =
{A0, . . . ,An} for short.

Definition 4.9. Let J ⊂ {0, . . . , n}. The subfamily AJ = (Aj)j∈J is essential if the
following conditions hold:
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(1) #J = rank
(
LAJ

)
+ 1;

(2) #J ′ ≤ rank
(
LA′

J

)
for all J ′ ( J .

Theorem 4.10 ([Stu94, DS15]). The codimension of π1(V ) is equal to 1 if and only
if there exists a unique essential subfamily AJ of A. If this is the case, the polynomial
defining this variety depends only on the coefficients of the polynomial fj , j ∈ J.

Homework 4.11.

(17) Check for the unique essential family (in the cases where there is only one) in
(4.8) and Examples 4.3 and 4.6.

5. Homogenizing the equations: toric varieties

Here is where we will finally replace the torus (C×)n in (4.5) with a suitable (pro-
jective, compact) variety XA from which we will be able to use a general version of
Projective Elimination Theory to conclude that π1(V ) is now a variety, and interpret
the vanishing of the “resultant” as a condition to have common zeroes in XA, i.e. we
will see how to “homogenize” the fi from (4.4) into some f̃i in order to have

V = {(ai,α,X) : f̃0(a0,α,X) = · · · = f̃n(an,α,X) = 0} ⊂ CN ×XA
↓ π1 ↓ π1
π1(V ) ⊂ CN .

This is important as we would like a criteria as the following: the resultant vanishes if
and only if the f̃i have a common zero in ???, and for this we need to know exactly
what it means to be in π1(V ).
XA will be a toric variety in the sense of [Ful93] (see also [CLS11]), which we will

describe explicitely: recall from (4.7) that mi is the cardinality of the set Ai, and
consider the following monomial map:

ϕA : (C×)n → Pm0 × . . .Pmn
ξ 7→

((
ξa0,0 : . . . : ξa0,m0

)
, . . . ,

(
ξan,0 : . . . : ξan,mn

))
.

We set our variety XA to be ϕA
(
(C×)n

)
. It is a multiprojective toric subvariety in the

sense of [CLS11], and we know that

dim(XA) = rank(LA).

With this in mind, consider the following diagram
(5.1)
V = {(ai,α,X) : f̃0(a0,α,X) = · · · = f̃n(an,α,X) = 0} ⊂ CN × Pm0 × . . .Pmn

↓ π1 ↓ π1
π1(V ) ⊂ CN

,

and apply Projective Elimination to this situation.
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6. Sparse Eliminants and Resultants

Now we are ready to define our objects. Recall that we know that π1(V ) in (5.1) is
an irreducible variety

Definition 6.1. The A-eliminant or sparse eliminant, denoted by ElimA, is defined
as any irreducible polynomial in Z[ai,α] giving an equation for π1(V ), if this is a
hypersurface, and as 1 otherwise.

The A-resultant or sparse resultant, denoted by ResA, is defined as any primitive
polynomial in Z[ai,α] giving an equation for the direct image π1∗V .

Both the sparse eliminant and the sparse resultant are well-defined up to a sign. It
follows from these definitions that there exists dA ∈ N such that

(6.1) ResA = ±ElimdA
A ,

with dA equal to the degree of the restriction of π1 to the incidence variety V .

Remark 6.2. The A-resultant is usually defined as an irreducible polynomial giving
an equation for the Zariski closure π1(V ), if this is a hypersurface, and equal to the
constant 1 otherwise (see [GKZ94, Stu94]). This irreducible element is what we call
here the A-eliminant.

The definition of the sparse resultant in terms of a direct image rather than just a
set-theoretical image has better properties and produces more uniform statements as
we will see soon. This is why we distinguish this concept by calling it the geometric
sparse resultant, which will be denoted by “resultant” and denoted with ResA for the
rest of the text.

Example 6.3. For the family (4.3), we have that the exponent dA = 1 and hence both
polynomials ResA and ±ElimA coincide. An explicit calculation of this polynomial
gives:
(6.2)

ResA0,A1,A2 = a501a
7
12a

6
20a21 + 3a401a02a

2
11a

5
12a

4
20a

3
21 + 3a301a

2
02a

4
11a

3
12γ

2
za

5
21

−13a301a02a03a
2
10a11a

4
12a

5
20a

2
21 − 7a301a

2
03a10a

3
11a

3
12a

4
20a

3
21 + 6a201a

3
02a

3
10a11a

3
12a

4
20a

3
21

+a201a
3
02a

6
11a12a

7
21 − a201a202a03a210a311a320a421 + 5a201a02a

2
03a

4
10a

3
12a

6
20a21

−a201a02a203a10a511a12a220a521 + 14a201a
3
03a

3
10a

2
11a

2
12a

5
20a

2
21 + a201a

3
03a

7
11a20a

6
21

−2a01a
4
02a

3
10a

3
11a12a

2
20a

5
21 − 5a01a

3
02a03a

5
10a

2
12a

5
20a

2
21 + a502a

6
10a12a

4
20a

3
21

+2a01a
2
02a

2
03a

4
10a

2
11a12a

4
20a

3
21 − 2a01a02a

3
03a

3
10a

4
11a

3
20a

4
21 − 7a01a

4
03a

5
10a11a12a

6
20a21

+a202a
3
03a

6
10a11a

5
20a

2
21 + a503a

7
10a

7
20

Example 6.4. Consider the polynomials f0, f1, f2 defined in (4.6). Then we have
that

ElimA = det

 a0,00 a0,20 a0,02
a1,00 a1,20 a1,02
a2,00 a2,20 a2,02

 ,

but it turns out that the exponent dA is equal to 4. This is due to the fact that for
every nontrivial zero (t1, t2) of the system f0 = f1 = f2 = 0, we actually have the
following three (generically different) points also “living” in the variety V with the
same values of a : (−t1, t2), (t1,−t2), (−t1,−t2). So, in this case, ResA = Elim4

A .

Homework 6.5.
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(18) Compute the eliminants of the two examples above (one idea could be to use a
Gröbner basis over the family f0, f1, f2 eliminating first the variables x1 and
x2.

(19) Show that the exponent dA in Example 6.4 is equal to 4.

To compute explicitly the exponent dA in all the cases, we need to introduce some
numerical invariantes which are going to replace the numbers d0, . . . , dn of the homo-
geneous case.

The mixed volume of a family of n compact bodies Q1, . . . , Qn ⊂ Rn is defined as

(6.3) MVn(Q1, . . . , Qn) =
n∑
j=1

(−1)n−j
∑

1≤i1<···<ij≤n
voln(Qi1 + · · ·+Qij ),

where voln(·) is the standard volume in Rn. It is not clear from (6.3) that MVn(Q1, . . . , Qn)
is a positive number, but indeed it is actually a nonegative integer, and there are very
efficient ways of computing it without having to go through this alternating sum.

Mixed volumes are of importance in intersection theory of toric varieties due to
the celebrated Bernstein sharp bound on the number of roots of a system of sparse
polynomials in the torus given in [Ber75], so it should be not surprising that they
appear in this context. For i = 0, . . . , n, set ∆i ⊂ Rn to be the convex hull of Ai.

Proposition 6.6.

degai,α(ResA) = MVn(∆0, . . . ,∆i−1,∆i+1, . . . ,∆n).

Example 6.7. For the system given in (4.3), a straightforward computation shows
that

MV2(∆0,∆1) = 7,MV2(∆0,∆2) = 7, MV2(∆1,∆2) = 5,

which coincides with the homogeneities of the polynomial given in (6.2).

Example 6.8. For the polynomials defined in (4.6), we have that MV2(∆i ,∆j) = 4
for all i, j ∈ {0, 1, 2}. This coincides with the partial degrees of the resultant in this
case (but not of the eliminant!).

Now we can give an explicit description of the exponent dA which appears in (6.1).
This formula already appears in [Est07, Theorem 2.23].

Proposition 6.9. Suppose that ResA 6= 1 and let AJ be the unique essential subfamily
of A. Then

dA = [Lsat
AJ

: LAJ
] ·MVZn/Lsat

AJ
({$(∆i)}i/∈J),

where Lsat
AJ

denotes the saturation of the sublattice LAJ
in Zn, and $ the projection

MR → Zn/Lsat
AJ
⊗ R.

Homework 6.10.

(17) Compute the exponent dA in the Examples 4.3 and 4.6.
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6.1. Poisson formula. There is also an analogue of the Poisson formula for these
geometric sparse resultants, but their statement is a bit less straightforward than the
one given in the classical case. To state it properly, we introduce some notation: let
v ∈ Zn \ {0} and put v⊥ ' Zn−1 for its orthogonal lattice. For i = 1, . . . , n, we set
Ai,v for the subset of points of Ai of minimal weight in the direction of v. This gives
a family of n nonempty finite subsets of translates of the lattice v⊥. We denote by
ResA1,v ,...,An,v the corresponding sparse resultant, also called the sparse resultant of
A1, . . . ,An in the direction of v. Set also hA0(v) = mina∈A0〈v, a〉 for the minimum
value at v of the support function of A0.

Theorem 6.11. ([DS15]) Let Ai ⊂ Zn be a nonempty finite subset, i = 0, . . . , n. Then

ResA0,A1,...,An = ±
∏
v

Res
−hA0

(v)

A1,v ,...,An,v ·
∏
ξ

f0(ξ),

the first product being over the primitive vectors v ∈ Zn and the second over the roots
ξ of f1, . . . , fn in the algebraic closure of C(ai,α, α ∈ Ai, 1 ≤ i ≤ n).

Both products in the above formula are finite. Indeed, ResA1,v ,...,An,v 6= 1 only if
v is an inner normal to a facet of the Minkowski sum

∑n
i=1 ∆i. Moreover, by Bern-

stein theorem [Ber75, Theorem B], the hypothesis that no directional sparse resultant
vanishes implies that the set of roots of the family fi, i = 1, . . . , n, is finite.

Example 6.12. Let M = Z2 and consider the family of nonempty finite subsets of Z2

A0 = A1 = {(0, 0), (−1, 0), (0,−1)}, A2 = {(0, 0), (1, 0), (0, 1), (0, 2)}.
Consider also the following system supported in these subsets:

fi = ai,0 + ai,1 x
−1
1 + ai,2 x

−1
2 , i = 0, 1, f2 = a2,0 + a2,1 x1 + a2,2 x2 + a2,3 x

2
2.

with ai,j ∈ C.
The resultant ResA0,A1,A2 is a polynomial in two sets of 3 variables and a set

of 4 variables. It is multihomogeneous of multidegree (3, 3, 1) and has 24 terms.
Considering the Minkowski sum ∆1 + ∆2 we obtain that, in this case, the only

nontrivial directional sparse resultants are those corresponding to the vectors (1, 0),
(1, 1), (0, 1), (−1, 0), (−2,−1), and (0,−1). Computing them together with their
corresponding exponents in the Poisson formula, Theorem 6.11 shows that

ResA0,A1,A2 = ±a1,2 a21,1 a2,0
3∏
i=1

f0(ξi).

where the ξi’s are the solutions of the system of equations f1 = f2 = 0.

Homework 6.13.
(18) Compute ResA for the Example 6.12.

Theorem 6.11 has a lot of very nice applications. For instance, one can deduce
directly from there a formula for the product of the roots of a family of Laurent
polynomials.

Corollary 6.14. ([DS15]) For i = 1, . . . , n, let fi ∈ C[x±1] be a Laurent polynomial
with support contained in Ai. Suppose that for all v ∈ Zn\{0}, ResA1,v ,...,An,v(f1,v, . . . , fn,v) 6=
0. Then for any a ∈ Zn,∏

ξ

ξmξ a = ±
∏
v

ResA1,v ,...,An,v(f1,v, . . . , fn,v)
〈a,v〉,
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the product being over all roots ξ ∈ V (f1, . . . , fn), where mξ denotes the multiplicity of
this root.

This result makes explicit both the scalar factor and the exponents in Khovanskii’s
formula in [Kho99, §6, Theorem 1].

6.2. Additivity. From the Poisson formula, we can deduce a number of other prop-
erties for the sparse resultant. The following is the product formula for the addition
of supports.

Theorem 6.15. ([DS15]) Let A0,A′0,A1, . . . ,An ⊂ Zn be nonempty finite subsets
and f0, f ′0, f1, . . . , fn the general Laurent polynomials with support A0,A′0,A1, . . . ,An,
respectively. Then

ResA0+A′
0,A1,...,An(f0f

′
0, f1, . . . , fn)

= ±ResA0,A1,...,An(f0, f1, . . . , fn) · ResA′
0,A1,...,An(f ′0, f1, . . . , fn).

6.3. Hidden variables vs u-resultants. As another consequence of the Poisson for-
mula in Theorem 6.11, one can obtain an extension to the sparse setting of the “hidden
variable” technique for solving polynomial equations, which is crucial for computa-
tional purposes [CLO05, §3.5]. To state it properly, let n ≥ 1 and, for i = 1, . . . , n,
consider the general Laurent polynomials fi ∈ Z[ai,α, x

±1
1 , . . . , x±1n ] with support Ai.

Each fi can be alternatively considered as a Laurent polynomial in the variables
x′ := {x1, . . . , xn−1} and coefficients in the ring Z[ai,α, xn

±1]. In this case, we de-
note it by fi(x

′). The support of this Laurent polynomial is the nonempty finite
subset $(Ai) ⊂ Zn−1, where $ : Rn → Rn−1 denotes the projection onto the first
n− 1 coordinates of Rn. We then set

(6.4) ResxnA1,...,An = Res$(A1),...,$(An)(f1(x
′), . . . , fn(x′)) ∈ C[ai,α, x

±1
n ].

In other words, we “hide” the variable xn among the coefficients of the fi’s and we
consider the corresponding sparse resultant.

Theorem 6.16. ([DS15]) Let notation be as above. Then, there exists d ∈ Z such that

(6.5) ResxnA1,...,An = ±xdn Res{0,en},A1,...,An(z − xn, f1, . . . , fn)
∣∣
z=xn

,

with en = (0, . . . , 0, 1) ∈ Zn.

6.4. Work in progress. The following results are part of an ongoing project with
Martín Sombra and Gabriela Jerónimo on the study of combinatorial and computa-
tional properties of geometric sparse resultants.

6.5. Homogeneities and extremal monomials of ResA.
Let ω = (ω0, . . . ,ωn) ∈

∏n
i=0RAi . For P =

∑
b pba

b ∈ C[ai,α, α ∈ Ai, 0 ≤ i ≤ n],
we denote by initω(P ) the the initial part of P in the direction of ω, that is,

initω(P ) =
∑
b0

pb0a
b0 ,

the sum being over the vectors b0 ∈
∏n
i=0 ZAi such that 〈b0,ω〉 = min{〈b,ω〉 | pb 6= 0}.

In [Stu94, Theorem 4.1], factorization formulae for the initial part of ElimA in the
direction of ω, in terms of products of other sparse eliminants was studied for some
general cases. We extend that situation to our geometric resultants and get a general
and simplified picture. To do this, we proceed as follows.
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Recall that for i = 0, . . . , n, ∆i ⊂ Rn is the convex hull of the set Ai. Consider also
the “lifted” polytope

∆i,ωi = conv({(a, ωi,a) | a ∈ Ai}) ⊂ Rn+1.

The vector ω induces a coherent decomposition ∆ω of ∆0 + · · · + ∆n via the lower
envelope of the polytope ∆0,ω0 +· · ·+∆n,ωn . For each primitive vector v ∈ Zn+1 which
is inner normal to a facet of the lower envelope of the lifted polytope, one can associate
sets Ai,v ⊂ Ai, i = 0, . . . , n, such that the lifted polytope conv({(a, ωi,a) | a ∈ Ai,v})
is the face of ∆i,ωi in the direction of v. We also set

fi,v =
∑

α∈Ai,v

ai,αx
α.

Theorem 6.17. With notation as above, for ω ∈
∏n
i=0RAi ,

initω(ResA) = ±
∏
v

ResA0,v ,...,An,v
(
f0,v . . . , fn,v

)
,

where the product in the right is indexed by all the primitive vectors v ∈ Zn+1 which
are inner normals to a facet of the lower envelope of ∆0,ω0 + · · ·+ ∆n,ωn.

This Theorem gives a lot of extremal coefficients in ResA, and also states the “facets
of resultants are products of resultants”, which is very important when it comes to the
study of the Newton polytope of ResA, see [Stu94]. These extremal “coefficients” or
situations are of importance in Tropical Geometry.

6.6. Sparse resultants under vanishing coefficients. One of the useful applica-
tions of Theorem 6.17 to give a formula for computing ResA

(
f̃0, . . . , f̃n

)
, with f̃i being

the general Laurent polynomial with support in a subset Ãi ⊂ Ai, i = 0, . . . , n. A par-
tial approach to this problem has been done in [Min03], who considered the case when
Ãi = Ai for all but one i.

To deal with this problem, we consider the vector ω ∈
∏n
i=0 ZAi given by

(6.6) ωi,a =

{
−1 if a ∈ Ãi,
0 otherwise.

As before, there is a decomposition ∆ω of the Minkowski sum ∆0 + · · ·+ ∆n made
by taking the lower envelope of the lifted polytope ∆0,ω + · · · + ∆n,ω ⊂ Rn+1. Note
that v0 = (0, . . . , 0, 1) is one of the inner normals of the facets of the lower envelope,
associated to the data (Ã0, . . . , Ãn). All the other facets of this lower envelope are
in correspondence to inner vectors v1, . . . ,vN having its last coordinate positive and
first n coordinates not identically zero. We write vi = (vi,1, vi,n+1), i = 1, . . . , N, with
vi,1 ∈ Zn \ {0}, and vi,n+1 ∈ Z>0.

The decomposition induced by (6.6) is said to be relevant if for all i = 1, . . . , N ,
the associated decomposition

(
A0,vi , . . . ,An,vi

)
has either more than one essential

subfamily, or the unique essential subfamily {Aj,vi}j∈J satisfies Aj,vi ⊂ Ãi for all
j ∈ J.

Theorem 6.18. With notation as above, we have that ResA0,...,An
(
F̃0, . . . , F̃n

)
6= 0 if

and only if the induced coherent mixed decomposition is relevant. If this is the case,
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then

ResA0,...,An
(
f̃0, . . . , f̃n

)
= ±ResÃ0,...,Ãn ·

N∏
i=1

ResA0,vi
,...,An,vi

(
f0,v . . . , fn,v

)
, .

Note that in principle ResA0,vi
,...,An,vi may depend on more variables than those

indexed by the points in Ã0, . . . , Ãn, but the condition of the system being relevant
actually implies that this cannot happen.

Example 6.19. Set n = 1, and A0 = {0, 1, . . . , A}, A1 = {0, 1, . . . , B}, with A, B ∈
Z>0. If we pick Ã0 = {0}, Ã1 = {B}, then the decomposition induced by this choice
has two cells: ({0}, A1) and (A0, {B}), corresponding to the inner normals in Z2 given
by v1 = (1, B) and v2 = (−1, A) respectively. The decomposition is relevant in this
case, as the unique essential subfamilies here are {0} and {B} respectively. Theorem
6.18 states that ResA0,A1(a0,0, a1,B) is actually equal to

Res{0},{B} ·Res{0},A1
·ResA0,{B} = ±aB0,0 · aA1,B,

which can be easily verified.
On the other hand, if we chose Ã0 = Ã1 = {0}, then the cell decomposition may

have one or two cells depending whether A = B or not. In the first case, we have
only one cell which is (A0,A1) corresponding to the (not necessarily primitive) inner
normal in Z2 given by (−2, A+B). Note that this decomposition is not relevant as the
only essential subfamily induced by this vector is {A0, A1}, which is not contained in
(Ã0, Ã1), so we have that ResA0,A1(a0,0, a1,0) = 0.

If A 6= B, suppose w.l.o.g. that A < B, then we have two cells in the decomposition:
({0},A1) induced by (−1, B),and (A0, {B}) induced by (−1, A). This decomposition
is also not relevant as in the second cell we have that the only essential subfamily is
the singleton {B} which is not contained in Ã1. Hence, ResA0,A1(a0,0, a1,0) = 0 also in
this case, as it is easy to verify.

6.7. Isobarism of the geometric sparse resultant. For λ = (λ1, . . . , λn) ∈ (C×)n,
set

fi,λ = fi(λ1x1, . . . , λnxn) =
∑
α∈Ai

ai,α(λ1x1)
α1 . . . (λnxn)αn .

It is well-known that there exist A1, . . . , An ∈ N such that

(6.7) ResA
(
f0,λ, . . . , fn,λ

)
= λA1

1 · · ·λ
An
n ResA(f0, . . . , fn),

see for instance [GKZ94]. We compute explicitely these numbers by using again lifted
functions and convex geometry, as above:

Theorem 6.20. Suppose that ∆i ⊂ (R≥0)n. For i, j = 0, . . . , n, and for j = 0, . . . , n,
consider the convex hull

∆j,i, = conv
(
{(x, xi), (x, 0) | x ∈ ∆j}

)
⊂ Rn+1.

Then the exponent Ai in (6.7) is equal to MVn+1(∆0,i, . . . ,∆n,i).

Example 6.21. Let d0, . . . , dn ∈ N, and set Ai = {(a1, . . . , an) ∈ Nn :
∑n

j=1 aj ≤ di}.
Denote by ∆n ⊂ Rn the standard simplex, defined as the convex hull of 0 ∈ Rn and
the vectors in the standard basis of this space. With the above notation, we have
that ∆i = di ∆n. Denote with {e1, . . . , en+1} the canonical basis of Rn+1. It is easy
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to see that the polytope ∆j,i turns out to be the convex hull in Rn+1 of the vectors
0, dje1, . . . , djen, dj(ei + en+1). This polytope can be transformed straightforwardly
into dj ∆n+1 ⊂ Rn+1 with a linear transformation of determinant 1, hence has the
same volume of the latter. Note that the same linear transformation converts each
∆j,iµj into dj ∆n+1, j = 0, . . . , n. This fact plus elementary properties of the mixed
volume already, implies that, for all i = 0, . . . , n,

Ai = d0 · · · dn.
So, we recover the well-known result of isobarism of resultants in the homogeneous
case, which was presented in the previous section.

6.8. Work in progress: Macaulay style formulae for sparse resultants. We are
currently working on determinantal formulae for computing sparse resultants. We hope
to simplify and generalize the formulae in [D’A02] in the sense that the determinant
of the resultant matrices now are going to be multiples of the sparse resultant, the
assumption that the whole family of supports {A0, . . . ,An} is essential will be dropped,
and the construction of both the resultant matrix and the extraneous factor is going
to be given with a simpler recursion.

7. Open Problems

(1) Same problem with the height of the sparse resultant as in the homogeneous
case. In [DS15] it is shown that

h(ResA) ≤
n∑
i=0

MVM (∆0, . . . ,∆i−1,∆i+1, . . . ,∆n) log(#Ai).

Is this bound sharp? Can you find nontrivial coefficients which grow as the
size of the supports gets larger?

(2) Can you compute ResA as the “determinant of a complex”? In [GKZ94] there
are several complexes whose determinant give the resultant in very smooth
cases where all the supports are n-dimensional and generate the whole lattice
Zn. Do the same complexes exist in all the cases where ResA is not equal to
1? Is there a version of this for the geometric sparse resultant? Does this new
formulation simplify the presentation given in [GKZ94]? This question was
raised by David Cox.

(3) All the construction for the sparse resultant ResA developed here (and detailed
in [DS15]) is made by using the complex numbers C as a base field. One can
extend striaghtforwardly all the results in that paper to resultants over fields
of characteristic zero, but the situation with fields of positive characteristic
is not very clear yet, due to the fact that standard results on toric varieties
used heavily in all the proofs of [DS15] are known to be valid in characteristic
zero only. In addition, the multiplicity of the map π1|V : V → π1(V ) in
characteristic zero is a very “geometric” situation, namely the number of points
in the fiber of a generic point in the image, and we get a whole description of
this degree via this interpretation. In positive characteristic, extra care must
be taken to handle with this situation. In the dense case, the theory in any field
(and any commutative ring) is very well extended and known (cf. [Jou97]).
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