Rational Plane Curves Parameterizable by Conics

Carlos D'Andrea

Congreso de la Real Sociedad Matemática Española – Ávila 2011

글 🖒 🛛 글

Carlos D'Andrea Rational Plane Curves Parameterizable by Conics

Rational Plane Curves

- K is an algebraically closed field
- $\phi: \mathbb{P}^1_{\mathbb{K}} \to \mathbb{P}^2_{\mathbb{K}}$ polynomial parameterization
- $\phi(\underline{t}) = (u_1(\underline{t}) : u_2(\underline{t}) : u_3(\underline{t}))$ homogeneous with $gcd(u_i(\underline{t})) = 1$
- C := $\overline{\mathsf{Im}(\phi)}$

◆□ > ◆□ > ◆豆 > ◆豆 >

3

The (computational) Implicitization Problem

Given $(u_1(\underline{t}) : u_2(\underline{t}) : u_3(\underline{t}))$, compute $E(X_1, X_2, X_3) \in \mathbb{K}[X_1, X_2, X_3]$ such that $C = \{E(X_1, X_2, X_3) = 0\}$

$$\underline{u}(\underline{t}) = (2t_1t_2, t_1^2 - t_2^2, t_1^2 + t_2^2) \quad \rightarrow \quad E(X_1, X_2, X_3) = X_1^2 + X_2^2 - X_3^2$$

Carlos D'Andrea

The (computational) Inversion Problem

Given $(u_1(\underline{t}) : u_2(\underline{t}) : u_3(\underline{t}))$, compute $F_1(X_1, X_2, X_3), F_2(X_1, X_2, X_3) \in \mathbb{K}[X_1, X_2, X_3]$ such that $C \xrightarrow{(F_1:F_2)}{\dashrightarrow} \mathbb{P}^1_{\mathbb{K}}$ is the inverse of $\mathbb{P}^1_{\mathbb{K}} \xrightarrow{u(\underline{t})} C$

$$\underline{u}(\underline{t}) = (2t_1t_2, t_1^2 - t_2^2, t_1^2 + t_2^2) \quad \rightarrow \quad (F_1, F_2) = (X_2 + X_3, X_1)$$

Carlos D'Andrea

(meta)-Fact

If Sing(C) is "small", then both the implicitization/inversion problem gets easier

3

Carlos D'Andrea

Curves Parameterizables by lines

C has one singular point of multiplicity equal to deg(C) - 1

By Bézout's theorem, any line passing through the singular point intersects C in another single point The pencil of lines passing through the singular point produces a parameterization $\underline{u(t)}$ of the curve

Carlos D'Andrea

Curves Parameterizables by lines

Assume p = (0:0:1) is the singular point of C For any $a(\underline{t}), b(\underline{t})$ of degrees d - 1, d respectively such that gcd(a, b) = 1, we have $\underline{u}(\underline{t}) = (t_1a(\underline{t}), t_2a(\underline{t}), b(\underline{t}))$ $\underline{E}(\underline{X}) = b(X_1, X_2) - X_3a(X_1, X_2)$ $\underline{F}(1, F_2) = (X_1, X_2)$

3

Carlos D'Andrea

Write

$$\mathsf{a}(X_1,X_2)=\mathbf{c}\prod_{j=1}^r(\mathsf{d}_jX_2-\mathsf{e}_jX_1)^{
u_j}$$

 $\mathbf{c} \in \mathbb{K} \setminus \{\mathbf{0}\}, \, (\mathbf{d}_j : \mathbf{e}_j) \neq (\mathbf{d}_k : \mathbf{e}_k) \text{ if } j \neq k, \, \nu_j \in \mathbb{N}$

- There are τ different branches of C passing through p
- The tangent to the branch $\gamma_j(\underline{t})$ at \underline{t}_j is the line $\mathbf{d}_j X_2 \mathbf{e}_j X_1 = 0$
- Different branches have different tangents (no tacnodes)
- The order of contact of C with $\mathbf{d}_j X_2 \mathbf{e}_j X_1 = 0$ at p is equal to $\nu_j 1$

A set of minimal generators of the Rees Algebra associated to the parameterization given by $\underline{u}(\underline{t})$ is very easy to get in terms of $a(\underline{t}), b(\underline{t})$

- Cox, Hoffman, Wang 2008
- Busé 2009

< 🗇 > < 🖻 >

3

Curves Parameterizable by Conics

(joint work with Teresa Cortadellas)

- A curve is parameterizable by lines iff there exist a birational morphism $C \xrightarrow{(F_1:F_2)} \mathbb{P}^1_{\mathbb{K}}$ such that $\deg(F_1, F_2) = 1$
- A curve is parameterizable by conics iff there exist a birational morphism C ^(F₁:F₂)/_{-→} P¹_K such that deg(F₁, F₂) = 2

Carlos D'Andrea

Pencils of Conics

 $F_1(\underline{X}), F_2(\underline{X}) \in \mathbb{K}[X_1, X_2, X_3]$ homogeneous of degree 2 C is parameterizable by (F_1, F_2) if and only if the system

 $\begin{cases} t_1 F_2(\underline{X}) - t_2 F_1(\underline{X}) = 0 \\ E(\underline{X}) = 0 \end{cases}$

has 2d-1 solutions in $\mathbb{P}^2_{\mathbb{K}}$ and one $(\underline{u}(\underline{t}))$ in $\mathbb{P}^2_{\mathbb{K}(\underline{t})}$

(日) (同) (三) (三)

3

Singularities

$\mathsf{Sing}(\mathbf{C}) \subset V(F_1,F_2)$

Curves parameterizable by conics have at most 4 singular points

・ロト ・四ト ・ヨト ・ヨト

2

Carlos D'Andrea Rational Plane Curves Parameterizable by Conics

Lines vs Conics

Any cubic is parameterizable both by lines and conics!

- $\underline{u}(\underline{t}) = (3t_1t_2^2, 3t_1^2t_2, t_1^3 + t_2^2)$
- $(F_1(\underline{X}), F_2(\underline{X})) = \begin{cases} (X_2, X_1) \\ (X_1^2, X_2^2 3X_2X_3) \end{cases}$
 - $E(\underline{X}) = X_1^3 + X_2^3 3X_1X_2X_3$

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Carlos D'Andrea

Lines vs Conics (Cortadellas - D')

- If deg(C) > 3, then the curve cannot be parameterized by both lines and conics.
- More generally, if C is parameterizable by forms of degree d and d', then d + d' ≥ deg(C)
- Generically, C is parameterizable by forms of degree deg(C) 2

Carlos D'Andrea

Curves Parameterizable by Conics

Assume $(0:0:1) \in V(F_1, F_2)$ and write

 $t_1F_2(\underline{X}) - t_2F_1(\underline{X}) = l_1(\underline{t})X_1X_2 + l_2(\underline{t})X_1X_3 + l_3(\underline{t})X_2X_3 + l_4(\underline{t})X_1^2 + l_5(\underline{t})X_2^2$

Pick $a(\underline{t}), b(\underline{t}) \in \mathbb{K}[\underline{t}]_d$ without common factors

Theorem (Cortadellas - D')

If $F_1(\underline{X}) F_2(\underline{X})$ depend on X_3 then there is a parameterization of a rational curve C parameterizable by (F_1, F_2) given by

 $\begin{cases} u_1(\underline{t}) = -a(\underline{t})(l_1(\underline{t})a(\underline{t}) + l_2(\underline{t})b(\underline{t})) \\ u_2(\underline{t}) = -b(\underline{t})(l_1(\underline{t})a(\underline{t}) + l_2(\underline{t})b(\underline{t})) \\ u_3(\underline{t}) = l_1(\underline{t})a(\underline{t})b(\underline{t}) + l_4(\underline{t})a(\underline{t})^2 + l_5(\underline{t})b(\underline{t})^2 \end{cases}$

The implicit equation of C is given by $a(F_1(\underline{X}), F_2(\underline{X}))X_2 - b(F_1(\underline{X}), F_2(\underline{X}))X_1$ or an irreducible (computable) factor of it. Carlos D'Andrea

- C is parameterizable by lines if and only if for any proper parameterization <u>u(t)</u> of C, there is an element in Syz(<u>u(t)</u>) of degree one
- If C is parameterizable by conics then for any proper parameterization <u>u(t)</u> of C, the minimal degree of a nonzero element in Syz(<u>u(t)</u>) is [deg(C)/2]

 $(\implies$ "moderate" singularities)

Example

•
$$(F_1(\underline{X}), F_2(\underline{X})) = (X_2^2, X_1X_3 - X_2^2)$$

• $V(F_1, F_2) = \{(0:0:1), (1:0:0)\}$, both double points

$$\underline{u}(\underline{t}) = (t_1^{2k} + t_1^{2k-1}t_2, t_1^k t_2^k, t_2^{2k}) \text{ is a parameterization of}$$

$$C = V((X_1X_2 - X_2^2)^k - X_2^{2k-1}X_3), \text{ with inverse } (F_1, F_2)$$

 $\mathsf{Syz}(\underline{u}(\underline{t})) = \langle t_1^k X_3 - t_2^k X_2, t_2^k X_1 - t_1^k X_2 - t_1^{k-1} t_2 X_2 \rangle$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● の Q @

Carlos D'Andrea

•
$$(F_1(\underline{X}), F_2(\underline{X})) = (X_2^2, X_1X_3 - X_2^2)$$

• $V(F_1, F_2) = \{(0:0:1), (1:0:0)\}, \text{ both double points}$
 $\underline{u}(\underline{t}) = (t_1^{2k+1} + t_1^{2k}t_2, t_1^k t_2^{k+1}, t_2^{2k+1}) \text{ is a parameterization of}$
 $C = V(X_3(X_1X_2 - X_2^2)^k - X_2^{2k+1}), \text{ with inverse } (F_1, F_2)$
 $Syz(\underline{u}(\underline{t})) = \langle t_1^k X_3 - t_2^k X_2, t_2^{k+1} X_1 - t_1^{k+1} X_2 - t_1^k t_2 X_2 \rangle$

(日) (四) (王) (王)

æ

Rational Plane Curves Parameterizable by Conics

Carlos D'Andrea

Set $\mathcal{F} = \{(1:0:0), (0:1:0), (0:0:1)\}$ and consider the Cremona Transformation

$$\tau: \qquad \mathbb{P}^2_{\mathbb{K}} \qquad \xrightarrow{- \to} \qquad \mathbb{P}^2_{\mathbb{K}} \\ (x_1: x_2: x_3) \qquad \mapsto \qquad (x_2 x_3: x_1 x_3: x_1 x_2)$$

Theorem (Cortadellas - D')

If $\mathcal{F} \subset V(F_1, F_2)$ then C is parameterizable by (F_1, F_2) iff $\tau(C)$ is parameterizable by lines with unique singular point not in \mathcal{F} Reciprocally, for any \tilde{C} parameterizable by lines with unique singular point not in \mathcal{F} , $\tau(\tilde{C})$ is parameterizable by conics

Theorem (Cortadellas - D')

- If |V(F₁, F₂)| = 4, then C looks locally like parameterizable by lines around each of these points (no tacnodes, etc.)
- If $|V(F_1, F_2)| = 3$, then around the double point there will be a tangent to several folds. In a neighbourhood of any of the other two points, C is like before.

3

Carlos D'Andrea Rational Plane Curves Parameterizable by Conics

If $V(F_1, F_2) = \{(0 : 1 : 0), (0 : 0 : 1)\}$ we will consider the following quadratic transformation

$$egin{array}{cccc} au':&\mathbb{P}^2_{\mathbb{K}}&\dashrightarrow&\mathbb{P}^2_{\mathbb{K}}\ (x_1:x_2:x_3)&\mapsto&(x_1x_2:x_1^2:x_2x_3) \end{array}$$

- τ' is not defined on $\{(0:1:0), (0:0:1)\}$
- au' is birational, indeed $au' \circ au' = id$
- the line $X_1 = 0$ is not in $Im(\tau')$ (only the point (0:0:1) is)
- au' can be regarded as a limit of the Cremona transformation au when $(1:0:0) \rightarrow (0:0:1)$

Theorem (Cortadellas - D')

If $V(F_1, F_2) = \{(0 : 1 : 0), (0 : 0 : 1)\}$ then C is parameterizable by (F_1, F_2) iff $\tau'(C)$ is parameterizable by lines with unique singular point in $\{X_3 = 0\}$

Reciprocally, for any \tilde{C} parameterizable by lines with unique singular point in $\{X_3 = 0\}$, $\tau'(\tilde{C})$ is parameterizable by conics

Carlos D'Andrea

If $V(F_1, F_2) = \{(0 : 1 : 0), (0 : 0 : 1)\}$, the geometry of C around these points will depend on whether they are both double or one of them is triple.

- Around a single point of $V(F_1, F_2)$, there is a similar behaviour as in the monoid case
- If the point is double or triple, then the transformation will merge the tangents of the different branches but separate the curvatures (the singularity becomes more complicated!)

If $V(F_1, F_2) = \{(0:0:1)\}$ we will consider

$$au'': \qquad \mathbb{P}^2_{\mathbb{K}} \qquad \dashrightarrow \qquad \mathbb{P}^2_{\mathbb{K}} \\ (x_1:x_2:x_3) \qquad \mapsto \qquad (x_1^2:x_2^2+x_1x_3:x_1x_2) \end{cases}$$

•
$$\tau''$$
 is not defined on $\{(0:0:1)\}$
• $\tau''^{-1} = (x_1^2: x_1x_3: x_1x_2 - x_3^2)$, i.e. τ'' is birational
• the line $X_1 = 0$ is not in $\operatorname{Im}(\tau'')$ (only the point $(0:1:0)$ is)
• $\tau''(\{X_1 = 0\}) = (0:1:0)$

•
$$au''$$
 can be regarded as lim au' when $(0:1:0) o (0:0:1)$

Theorem (Cortadellas - D')

If $V(F_1, F_2) = \{(0 : 0 : 1)\}$ then C is parameterizable by (F_1, F_2) iff $\tau''^{-1}(C)$ is parameterizable by lines with (0 : 0 : 1) being its only singular point

Reciprocally, for any \tilde{C} parameterizable by lines with (0 : 0 : 1) being its only singular point, $\tau''(\tilde{C})$ is a curve parameterizable by conics with only one singularity in (0 : 0 : 1)

Around (0:0:1), C has all the branches coming from a singularity parameterizable by lines plus all the images of points of the form $(0:\alpha:\beta) \in C, \alpha \neq 0$.

At (0:0:1), τ'' merges tangent lines and curvature, but separates forms of third degree or more

Carlos D'Andrea

Conclusion

- Curves parameterizable by conics are essentially the image of curves parameterizable by lines via a quadratic transformation of $\mathbb{P}^2_{\mathbb{K}}$
- They have at most 4 singularities
- The geometry of the curve (and the quadratic transformation) depends on the number of singularities and their multiplicities in $V(F_1, F_2)$, the larger the number the simpler the structure

Carlos D'Andrea

A set of minimal generators of the Rees Algebra associated to any proper parameterization of a curve parameterizable by conics is very easy to get in terms of $\{F_1(\underline{X}), F_2(\underline{X}), a(\underline{t}), b(\underline{t})\}$

▲ □ ▶ ▲ 三 ▶ ▲

Moltes Gràcies!

Carlos D'Andrea Rational Plane Curves Parameterizabl<u>e by Conics</u>